石油与天然气地质 ›› 2025, Vol. 46 ›› Issue (3): 967-982.doi: 10.11743/ogg20250318
杨柳(
), 公飞, 姜晓宇(
), 刘朝阳, 董广涛, 蔡嘉伟
收稿日期:2024-12-19
修回日期:2025-02-10
出版日期:2025-06-30
发布日期:2025-06-26
通讯作者:
姜晓宇
E-mail:shidayangliu@cumtb.edu.cn;18801191349@163.com
第一作者简介:杨柳(1987—),男,博士、副教授、博士研究生导师,深部岩体温度-应力-渗流-化学耦合、CO2地质封存与驱煤层气-页岩油气、非常规油气提高采收率。E‑mail: shidayangliu@cumtb.edu.cn。
基金项目:
Liu YANG(
), Fei GONG, Xiaoyu JIANG(
), Zhaoyang LIU, Guangtao DONG, Jiawei CAI
Received:2024-12-19
Revised:2025-02-10
Online:2025-06-30
Published:2025-06-26
Contact:
Xiaoyu JIANG
E-mail:shidayangliu@cumtb.edu.cn;18801191349@163.com
摘要:
准噶尔盆地玛湖凹陷的致密砂砾岩储层具有极强的非均质性,CO2驱后封存效果的矿场试验预测面临较大困难。CO2-水-砂砾岩之间的相互作用机理对揭示CO2在砂砾岩储层开发后的封存效果具有极为重要的意义。基于CO2盐水饱和实验,综合运用QEMSCAN,Micro-CT,SEM和NMR测试等实验分析数据,研究了CO2-盐水-砂砾岩作用机理与矿物成分、流体赋存及孔隙变化特征。研究结果表明:CO2-水-砂砾岩的相互作用会导致岩石矿物发生溶蚀作用。矿物的溶解和迁移使得岩心的孔喉平均尺寸增大,连通性也随之增强。XRD分析结果表明,CO2-水-岩石相互作用下,钠长石和伊利石的含量分别增加了3.20 %和2.32 %,CO2对石英的影响非常小。SEM分析结果表明,CO2作用后粒缘缝的数量和宽度增加,产生了新的侧向裂缝。碳酸盐和长石的溶蚀作用形成了大量微小粒内孔隙和微裂缝,且裂缝沿着解理方向扩展。核磁共振测试结果显示饱和水主要以黏土矿物束缚水、毛细管束缚水和可动水的形式赋存于岩心内部。经过CO2浸泡后,孔隙中饱和水的赋存含量和范围均有所增加,其中大孔中可动水变化最为明显。研究结果强调了砂砾岩储层中CO2相互作用的复杂性,对于指导玛湖凹陷砂砾岩储层CO2驱后封存的矿场试验效果具有重要意义。
中图分类号:
| 1 | EKWURZEL B, BONEHAM J, DALTON M W, et al. The rise in global atmospheric CO2, surface temperature, and sea level from emissions traced to major carbon producers[J]. Climatic Change, 2017, 144(4): 579-590. |
| 2 | MILLY P C D, WETHERALD R T, DUNNE K A, et al. Increasing risk of great floods in a changing climate[J]. Nature, 2002, 415(6871): 514-517. |
| 3 | 王光付, 李阳, 王锐, 等. 二氧化碳地质封存与利用新进展[J]. 石油与天然气地质, 2024, 45(4): 1168-1179. |
| WANG Guangfu, LI Yang, WANG Rui, et al. Recent advances in geological carbon dioxide storage and utilization[J]. Oil & Gas Geology, 2024, 45(4): 1168-1179. | |
| 4 | GANESH P R, MISHRA S, MAWALKAR S, et al. Assessment of CO2 injectivity and storage capacity in a depleted pinnacle reef oil field in northern Michigan[J]. Energy Procedia, 2014, 63: 2969-2976. |
| 5 | BROWN K, WHITTAKER S, WILSON M, et al. The history and development of the IEA GHG Weyburn-Midale CO2 Monitoring and Storage Project in Saskatchewan, Canada (the world largest CO2 for EOR and CCS program)[J]. Petroleum, 2017, 3(1): 3-9. |
| 6 | VERDON J P, KENDALL J M, WHITE D J, et al. Passive seismic monitoring of carbon dioxide storage at Weyburn[J]. The Leading Edge, 2010, 29(2): 200-206. |
| 7 | GORECKI C D, LIU G, BAILEY T P, et al. The role of static and dynamic modeling in the fort nelson CCS project[J]. Energy Procedia, 2013, 37: 3733-3741. |
| 8 | JENSEN G K S. Weyburn oilfield core assessment investigating cores from pre and post CO2 injection: Determining the impact of CO2 on the reservoir[J]. International Journal of Greenhouse Gas Control, 2016, 54(Part 2): 490-498. |
| 9 | FALK P D, DORSEY R J. Rapid development of gravelly high-density turbidity currents in marine Gilbert-type fan deltas, Loreto Basin, Baja California Sur, Mexico[J]. Sedimentology, 1998, 45(2): 331-349. |
| 10 | HART B S, PLINT A G. Stratigraphy and sedimentology of shoreface and fluvial conglomerates: Insights from the Cardium Formation in NW Alberta and adjacent British Columbia[J]. Bulletin of Canadian Petroleum Geology, 2003, 51(4): 437-464. |
| 11 | 吴建邦, 杨胜来, 李强, 等. 准噶尔盆地玛湖凹陷致密砂砾岩储层可动孔隙界限[J]. 大庆石油地质与开发, 2022, 41(6): 167-174. |
| WU Jianbang, YANG Shenglai, LI Qiang, et al. Movable pore limits of tight glutenite reservoir in Mahu Sag of Junggar Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2022, 41(6): 167-174. | |
| 12 | 唐勇, 袁云峰, 李辉, 等. 准噶尔盆地阜康凹陷二叠系上乌尔禾组砂砾岩储层特征及发育模式[J]. 石油实验地质, 2024, 46(5): 965-978. |
| TANG Yong, YUAN Yunfeng, LI Hui, et al. Glutenite reservoir characteristics and development model of Permian Upper Wuerhe Formation in Fukang Sag, Junggar Basin[J]. Petroleum Geology and Experiment, 2024, 46(5): 965-978. | |
| 13 | LIU Hui, JIANG Zaixing, ZHANG Ruifeng, et al. Gravels in the Daxing conglomerate and their effect on reservoirs in the Oligocene Langgu Depression of the Bohai Bay Basin, North China[J]. Marine and Petroleum Geology, 2012, 29(1): 192-203. |
| 14 | 王帅, 许莹, 张艳博, 等. 粗颗粒砂砾岩内矿物颗粒和孔隙结构的非均匀性及量化表征细观试验研究[J]. 煤炭学报, 2024, 49(): 832-844. |
| WANG Shuai, XU Ying, ZHANG Yanbo, et al. Microscopic experimental study on the heterogeneity and quantitative characterization of mineral grains and pore structures in coarse-grained glutenites[J]. Journal of China Coal Society, 2024, 49(S2): 832-844. | |
| 15 | KANG Xun, HU Wenxuan, CAO Jian, et al. Selective dissolution of alkali feldspars and its effect on Lower Triassic sandy conglomerate reservoirs in the Junggar Basin, northwestern China[J]. Geological Journal, 2018, 53(2): 475-499. |
| 16 | 吴海光, 康逊, 秦明阳, 等. 准噶尔盆地玛湖凹陷百口泉组砂砾岩非均质储层孔隙结构特征与成因[J]. 中南大学学报(自然科学版), 2022, 53(9): 3337-3353. |
| WU Haiguang, KANG Xun, QIN Mingyang, et al. Pore structure characteristics and genesis of heterogeneous conglomerate reservoir of Baikouquan Formation in Mahu Sag, Junggar Basin[J]. Journal of Central South University (Science and Technology), 2022, 53(9): 3337-3353. | |
| 17 | 秦志军, 操应长, 毛锐, 等. 玛湖凹陷乌尔禾组致密砂砾岩沸石特征及储集层识别[J]. 新疆石油地质, 2023, 44(2): 136-143. |
| QIN Zhijun, CAO Yingchang, MAO Rui, et al. Characteristics and identification of zeolite-bearing tight sandy conglomerate reservoirs in Wuerhe Formation, Mahu Sag[J]. Xinjiang Petroleum Geology, 2023, 44(2): 136-143. | |
| 18 | 肖贝, 陈磊, 杨皝, 等. 准噶尔盆地深部咸水层CO2地质封存适宜性及潜力评价[J]. 大庆石油地质与开发, 2024, 43(6): 120-127. |
| XIAO Bei, CHEN Lei, YANG Huang, et al. Suitability and potential evaluation of CO2 geological storage in deep saline aquifers of Junggar Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2024, 43(6): 120-127. | |
| 19 | FIGUEIREDO B, TSANG C F, RUTQVIST J, et al. Coupled hydro-mechanical processes and fault reactivation induced by CO2 Injection in a three-layer storage formation[J]. International Journal of Greenhouse Gas Control, 2015, 39: 432-448. |
| 20 | 谷丽冰, 李治平, 侯秀林. 二氧化碳驱引起储层物性改变的实验室研究[J]. 石油天然气学报, 2007, 29(3): 258-260. |
| GU Libing, LI Zhiping, HOU Xiulin. Experimental research of reservoir physical changes induced by CO2 flooding[J]. Journal of Oil and Gas Technology, 2007, 29(3): 258-260. | |
| 21 | 朱子涵, 李明远, 林梅钦, 等. 储层中CO2—水—岩石相互作用研究进展[J]. 矿物岩石地球化学通报, 2011, 30(1): 104-112. |
| ZHU Zihan, LI Mingyuan, LIN Meiqin, et al. Review of the CO2-water-rock interaction in reservoir[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2011, 30(1): 104-112. | |
| 22 | LI Sihai, ZHANG Shicheng, ZOU Yushi, et al. Pore structure alteration induced by CO2-brine-rock interaction during CO2 energetic fracturing in tight oil reservoirs[J]. Journal of Petroleum Science and Engineering, 2020, 191: 107147. |
| 23 | SEYYEDI M, MAHMUD H K B, VERRALL M, et al. Pore structure changes occur during CO2 injection into carbonate reservoirs[J]. Scientific Reports, 2020, 10(1): 3624. |
| 24 | ZHOU Junping, YANG Kang, TIAN Shifeng, et al. CO2-water-shale interaction induced shale microstructural alteration[J]. Fuel, 2020, 263: 116642. |
| 25 | 李一波, 陈耀旺, 赵金洲, 等. 超临界二氧化碳与页岩相互作用机制[J]. 石油与天然气地质, 2024, 45(4): 1180-1194. |
| LI Yibo, CHEN Yaowang, ZHAO Jinzhou, et al. Interaction mechanism between supercritical carbon dioxide and shale[J]. Oil & Gas Geology, 2024, 45(4): 1180-1194. | |
| 26 | 李颖, 李茂茂, 李海涛, 等. 纳米SiO2强化CO2地质封存页岩盖层封堵能力机制试验[J]. 中国石油大学学报(自然科学版), 2024, 48(2): 92-98. |
| LI Ying, LI Maomao, LI Haitao, et al. Experiment on nano-SiO2 enhancing sealing capacity of shale caprocks for CO2 geological storage[J]. Journal of China University of Petroleum (Edition of Natural Science), 2024, 48(2): 92-98. | |
| 27 | HANGX S, VAN DER LINDEN A, MARCELIS F, et al. The effect of CO2 on the mechanical properties of the Captain Sandstone: Geological storage of CO2 at the Goldeneye field (UK)[J]. International Journal of Greenhouse Gas Control, 2013, 19: 609-619. |
| 28 | ADEBAYO A R, KANDIL M E, OKASHA T M, et al. Measurements of electrical resistivity, NMR pore size and distribution, and X-ray CT-scan for performance evaluation of CO2 injection in carbonate rocks: A pilot study[J]. International Journal of Greenhouse Gas Control, 2017, 63: 1-11. |
| 29 | PENG Huan, ZHOU Lang, YANG Jian, et al. Influence of supercritical CO2 on the formation sensitivity of tight sandstone[J]. Frontiers in Energy Research, 2022, 10: 922941. |
| 30 | 侯大力, 龚凤鸣, 陈泊, 等. 底水砂岩气藏注CO2驱气提高采收率机理及埋存效果[J]. 天然气工业, 2024, 44(4): 93-103. |
| HOU Dali, GONG Fengming, CHEN Bo, et al. Gas recovery enhancement and CO2 storage effects by CO2 flooding in bottom-water sandstone gas reservoir[J]. Natural Gas Industry, 2024, 44(4): 93-103. | |
| 31 | 杨术刚, 蔡明玉, 张坤峰, 等. CO2-水-岩相互作用对CO2地质封存体物性影响研究进展及展望[J]. 油气地质与采收率, 2023, 30(6): 80-91. |
| YANG Shugang, CAI Mingyu, ZHANG Kunfeng, et al. Research progress and prospect of CO2-water-rock interaction on petrophysical properties of CO2 geological sequestration[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(6): 80-91. | |
| 32 | YANG Liu, YANG Duo, ZHANG Mingyuan, et al. Application of nano-scratch technology to identify continental shale mineral composition and distribution length of bedding interfacial transition zone-A case study of Cretaceous Qingshankou formation in Gulong Depression, Songliao Basin, NE China[J]. Geoenergy Science and Engineering, 2024, 234: 212674. |
| 33 | YANG Liu, WANG Hengkai, XU Huijin, et al. Experimental study on characteristics of water imbibition and ion diffusion in shale reservoirs[J]. Geoenergy Science and Engineering, 2023, 229: 212167. |
| 34 | 赵林, 蒋尔梁, 王树森, 等. 二氧化碳注入对低渗透储层矿物及孔隙结构的影响[J]. 油田化学, 2021, 38(4): 659-664, 670. |
| ZHAO Lin, JIANG Erliang, WANG Shusen, et al. Effect of carbon dioxide injection on mineral and pore structure of low permeability reservoirs[J]. Oilfield Chemistry, 2021, 38(4): 659-664, 670. | |
| 35 | NIE Yuanxun, WU Bisheng, ZHANG Guangqing, et al. Microscale damage induced by CO2 storage on the microstructure of sandstone coupling hydro-mechanical-chemical processes[J]. Energy & Fuels, 2022, 36(24): 15023-15036. |
| 36 | LAI Jin, WANG Guiwen, FAN Zhuoying, et al. Fractal analysis of tight shaly sandstones using nuclear magnetic resonance measurements[J]. AAPG Bulletin, 2018, 102(2): 175-193. |
| 37 | ZHOU Sandong, LIU Dameng, CAI Yidong, et al. Fractal characterization of pore-fracture in low-rank coals using a low-field NMR relaxation method[J]. Fuel, 2016, 181: 218-226. |
| 38 | SHAO Xinhe, PANG Xiongqi, LI Hui, et al. Fractal analysis of pore network in tight gas sandstones using NMR method: A case study from the Ordos Basin, China[J]. Energy & Fuels, 2017, 31(10): 10358-10368. |
| 39 | ZHOU Junping, YANG Kang, TIAN Shifeng, et al. CO2-water-shale interaction induced shale microstructural alteration[J]. Fuel, 2020, 263: 116642. |
| 40 | 石玉江, 蔡文渊, 刘国强, 等. 页岩油储层孔隙流体的全直径岩心二维核磁共振图谱特征及评价方法[J]. 中国石油勘探, 2023, 28(3): 132-144. |
| SHI Yujiang, CAI Wenyuan, LIU Guoqiang, et al. Full diameter core 2D NMR spectrum characteristics of pore fluid in shale oil reservoir and evaluation method[J]. China Petroleum Exploration, 2023, 28(3): 132-144. | |
| 41 | 宁从前, 周明顺, 成捷, 等. 二维核磁共振测井在砂砾岩储层流体识别中的应用[J]. 岩性油气藏, 2021, 33(1): 267-274. |
| NING Congqian, ZHOU Mingshun, CHENG Jie, et al. Application of 2D NMR logging in fluid identification of glutenite reservoir[J]. Lithologic Reservoirs, 2021, 33(1): 267-274. |
| [1] | 迟焕鹏, 毕彩芹, 宛东平, 魏呈祥, 蔡承政, 田守嶒, 郑凡石, 王天宇. 超临界CO2浸泡中阶煤岩力学性能劣化特性及其机制[J]. 石油与天然气地质, 2025, 46(3): 983-994. |
| [2] | 康家豪, 王兴志, 曾德铭, 黄梓桑, 朱逸青, 李博, 谢圣阳, 张芮. 岩相对于湖相页岩孔隙结构特征及孔隙演化的控制机理[J]. 石油与天然气地质, 2025, 46(2): 491-509. |
| [3] | 杨柳, 姜晓宇, 董广涛, 公飞, 朱凯, 裴奕杰, 蔡嘉伟. 前置CO2压裂后砂砾岩CO2驱油的三维孔隙尺度模拟[J]. 石油与天然气地质, 2025, 46(2): 670-684. |
| [4] | 鲍李银, 庞雄奇, 崔新璇, 陈宏飞, 高军, 邹亮, 赵振丞, 王琛茜, 王雷, 李闻东, 刘利. 准噶尔盆地金龙油田二叠系佳木河组火山岩岩相组合及产能差异[J]. 石油与天然气地质, 2025, 46(1): 136-150. |
| [5] | 王继远, 王斌, 胡宗全, 商丰凯, 刘德志, 李振明, 邱岐, 宋振响, 胡志啟. 深层-超深层碎屑岩优质储层成因机理[J]. 石油与天然气地质, 2025, 46(1): 151-166. |
| [6] | 王馨佩, 刘成林, 蒋立伟, 冯德浩, 邹辰, 刘飞, 李君军, 贺昱搏, 董明祥, 焦鹏飞. 渝西大安地区五峰组-龙马溪组深层页岩微观孔隙结构与含气性控制因素[J]. 石油与天然气地质, 2025, 46(1): 230-245. |
| [7] | 宋璠, 孔庆圆, 张学才, 曹海防, 焦国华, 杨悦. 干旱型浅水三角洲沉积特征及沉积模式[J]. 石油与天然气地质, 2024, 45(5): 1275-1288. |
| [8] | 冯德浩, 刘成林, 杨海波, 韩杨, 杨小艺, 苏加佳, 李国雄, 张景坤. 准噶尔盆地东部中二叠统咸化湖相烃源岩生气潜力及天然气勘探意义[J]. 石油与天然气地质, 2024, 45(5): 1289-1304. |
| [9] | 阮壮, 徐睿, 王杰, 常秋红, 王大华, 王建东, 周广清, 于炳松. 柴达木盆地马海东地区古近系砂岩储层微观孔隙结构特征及微观致密区成因[J]. 石油与天然气地质, 2024, 45(4): 1032-1045. |
| [10] | 孙靖, 尤新才, 薛晶晶, 郑孟林, 常秋生, 王韬. 准噶尔盆地深层-超深层碎屑岩致密气储层特征及其控制因素[J]. 石油与天然气地质, 2024, 45(4): 1046-1063. |
| [11] | 方锐, 蒋裕强, 杨长城, 邓海波, 蒋婵, 洪海涛, 唐松, 谷一凡, 朱讯, 孙莎莎, 蔡光银. 四川盆地侏罗系凉高山组不同岩性组合页岩油赋存状态及可动性[J]. 石油与天然气地质, 2024, 45(3): 752-769. |
| [12] | 杜晓宇, 金之钧, 曾联波, 刘国平, 杨森, 梁新平, 陆国青. 基于成像测井的深层陆相页岩油储层天然裂缝有效性评价[J]. 石油与天然气地质, 2024, 45(3): 852-865. |
| [13] | 雷文智, 陈冬霞, 王永诗, 巩建强, 邱贻博, 王翘楚, 成铭, 蔡晨阳. 渤海湾盆地济阳坳陷东部深层砂砾岩多类型油气藏成藏机理及模式[J]. 石油与天然气地质, 2024, 45(1): 113-129. |
| [14] | 潘虹, 于庆森, 李晓山, 宋俊强, 蒋志斌, 王丽, 罗官幸, 徐文秀, 尤浩宇. 准噶尔盆地红车断裂带石炭系重新认识及油气成藏特征[J]. 石油与天然气地质, 2024, 45(1): 215-230. |
| [15] | 张宏国, 杨海风, 宿雯, 徐春强, 黄志, 程燕君. 源外层系油气运聚关键环节研究与评价方法[J]. 石油与天然气地质, 2024, 45(1): 281-292. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||