石油与天然气地质 ›› 2025, Vol. 46 ›› Issue (4): 1039-1054.doi: 10.11743/ogg20250402

• 油气地质 • 上一篇    下一篇

全油气系统理论在实用中面临的几个问题与解决方法

庞雄奇1,2(), 崔新璇1,2, 贾承造3(), 鲍李银1,2, 李才俊1,2, 黎茂稳4, 徐帜1,2, 肖惠译1,2, 郑定业4, 金玉洁1,2, 施砍园1,2, 张思佳1,2   

  1. 1.中国石油大学(北京) 油气资源与工程全国重点实验室,北京 102249
    2.中国石油大学(北京) 地球科学学院,北京 102249
    3.中国石油天然气集团有限公司,北京 100724
    4.中国石化 石油勘探开发研究院,北京 102206
  • 收稿日期:2025-04-01 修回日期:2025-07-02 出版日期:2025-08-30 发布日期:2025-09-06
  • 通讯作者: 贾承造 E-mail:pangxq@cup.edu.cn;jiacz@petrochina.com.cn
  • 第一作者简介:庞雄奇(1961—),男,教授、博士研究生导师,油气藏形成机理与分布规律、油气资源评价与油气田勘探。E-mail: pangxq@cup.edu.cn
  • 基金项目:
    中国石油科学研究与技术开发项目(2021DJ0101);国家自然科学基金企业创新发展联合基金项目(U19B6003-02)

Challenges and solutions in the application of the whole petroleum system theory

Xiongqi PANG1,2(), Xinxuan CUI1,2, Chengzao JIA3(), Liyin BAO1,2, Caijun LI1,2, Maowen LI4, Zhi XU1,2, Huiyi XIAO1,2, Dingye ZHENG4, Yujie JIN1,2, Kanyuan SHI1,2, Sijia ZHANG1,2   

  1. 1.State Key Laboratory of Petroleum Resources and Engineering,China University of Petroleum (Beijing),Beijing 102249,China
    2.College of Geosciences,China University of Petroleum (Beijing),Beijing 102249,China
    3.China National Petroleum Corporation,Beijing 100724,China
    4.Petroleum Exploration and Production Research Institute,SINOPEC,Beijing 102206,China
  • Received:2025-04-01 Revised:2025-07-02 Online:2025-08-30 Published:2025-09-06
  • Contact: Chengzao JIA E-mail:pangxq@cup.edu.cn;jiacz@petrochina.com.cn

摘要:

全油气系统概念的提出以及常规和非常规油气藏有序分布模式的建立实现了油气地质理论的统一,为油气勘探开发提供了全新的理论和方法指导。全油气系统理论是基于全球普遍的地质条件建立的,在中国叠合盆地等复杂地质条件下的应用面临着4个方面挑战,主要表现在:①浮力成藏下限因缺少客观指标表征以及后期构造变动破坏,导致在实际工作中判别和预测困难; ②油气藏形成与分布受多动力-多期次-多要素复合作用控制,成藏动力和成藏类型判别困难;③碳酸盐岩和碎屑岩等储层因油气润湿性和界面张力不同,在实际地质条件下形成油气藏的最大埋深和有利富集油气的领域预测困难;④全油气系统演化过程中,油气运聚受动力类型、源-储间毛细管力差、烃类流体特性以及构造变动等多因素联合控制,富集模式建立困难。针对这些问题,利用全球已发现油气藏储层物性特征、产能变化特征和油气润湿性参数特征等资料展开多种方法和技术研究,提出了浮力成藏下限判识、油气成藏动力评价以及油气资源最大埋深预测等新方法,并建立了全油气系统富油气模式,为复杂地质条件下全油气系统理论完善、发展和应用开拓了新途径。

关键词: 油气成藏动力边界, 油气成藏最大埋深, 油气成藏动力场, 油气成藏动力机制, 油气资源, 油气富集模式, 常规和非常规油气, 全油气系统

Abstract:

The concept of the whole petroleum system (WPS)proposed and the ordered distribution pattern of conventional and unconventional hydrocarbon reservoirs established serve to unify petroleum geology theories, providing an entirely new theory and methods for guiding hydrocarbon exploration and exploitation. However, when applied to complex geological conditions such as those of superimposed basins in China, the WPS theory, originally formulated under general geological conditions, encounters several challenges. First, due to the lack of objective indices for quantitative characterization and the disruptions caused by late-stage tectonic activities, the idenfitication or prediction of buoyancy-driven hydrocarbon accumulation depth (BHAD) is hard in practice. Second, the formation and distribution of hydrocarbon reservoirs are governed by the combined effects of multiple driving forces, multiple stages, and diverse elements, complicating the identification of the hydrocarbon accumulation dynamics and reservoir types. Third, reservoirs such as those of the carbonate and clastic types exhibit varying wettability and interfacial tension properties, which lead to difficulties in predicting the maximum burial depth of hydrocarbon reservoirs and favorable hydrocarbon enrichment areas under actual geological conditions. Last, during the evolution of the WPS, hydrocarbon migration and accumulation are controlled by multiple factors including dynamic force types, capillary pressure differences between source rocks and reservoirs, hydrocarbon fluid properties, and tectonic activities. Consequently, establishing the hydrocarbon enrichment model of the WPS remains a challenge. To address these challenges, we explore various methods and technologies based on data from globally discovered hydrocarbon reservoirs, including their physical properties, productivity variations, and wettability. Accordingly, we develop new methods for identifying the BHAD, assessing hydrocarbon accumulation dynamics, and predicting the maximum burial depth of oil and gas resources. Furthermore, we determine the hydrocarbon enrichment model of the WPS. The results of this study offer new approaches to improve, develop, and apply the WPS theory under complex geological conditions.

Key words: dynamic boundary of hydrocarbon accumulation, maximum burial depth of hydrocarbon reservoir, dynamic field of hydrocarbon accumulation, dynamic mechanism behind hydrocarbon accumulation, oil and gas resources, hydrocarbon enrichment model, conventional and unconventional oil and gas, whole petroleum system (WPS)

中图分类号: