石油与天然气地质 ›› 2025, Vol. 46 ›› Issue (5): 1554-1581.doi: 10.11743/ogg20250511
• 油气地质 • 上一篇
张佳琦1,2(
), 赵靖舟1,3(
), 曹磊1,3, 叶卿元2
收稿日期:2025-06-30
修回日期:2025-09-17
出版日期:2025-10-30
发布日期:2025-10-29
通讯作者:
赵靖舟
E-mail:1061862954@qq.com;jzzhao@xsyu.edu.cn
第一作者简介:张佳琦(2000—),女,硕士、助理工程师,非常规油气地质。E-mail:1061862954@qq.com。
基金项目:
Jiaqi ZHANG1,2(
), Jingzhou ZHAO1,3(
), lei CAO1,3, Qingyuan YE2
Received:2025-06-30
Revised:2025-09-17
Online:2025-10-30
Published:2025-10-29
Contact:
Jingzhou ZHAO
E-mail:1061862954@qq.com;jzzhao@xsyu.edu.cn
摘要:
鄂尔多斯盆地三叠系延长组长8-长9油层组泥页岩矿物组成与孔隙、微裂缝发育特征及其对页岩油富集和可动性的影响尚不十分清楚。通过X射线衍射、场发射扫描电镜、CO2吸附、低温氮气吸附、高压压汞和地化实验分析测试资料,对长8-长9油层组页岩储层特征及其控油性进行了综合研究。研究结果表明:①研究区长8-长9油层组页岩具有长英质黏土页岩、黏土质长英页岩和黏土-长英混合页岩3种岩相。长8油层组主要为长英质黏土页岩和黏土质长英页岩岩相,长9油层组3种岩相均比较发育。②根据孔、缝发育情况、可压裂性和可动油富集程度综合评价,黏土质长英页岩岩相最优,黏土质-长英质混合页岩岩相次之,长英质黏土页岩岩相较差。③储层发育有机质孔、晶间孔、粒间孔、溶蚀孔和微裂缝。长8-长9油层组泥页岩总有机碳含量(TOC)与微孔和介孔孔体积具有明显正相关关系,但其有机质孔发育程度不及长7油层组页岩。微裂缝比较发育,主要为生烃增压产生的异常高压层理缝,其次为压溶层理缝及有机质收缩缝。④影响研究区孔隙和微裂缝发育的关键因素为高TOC、高有机质成熟度和高脆性矿物含量。高TOC和高有机质成熟度有利于有机质孔的发育和生烃成因异常高压缝的形成;碳酸盐胶结作用抑制孔隙发育并充填裂缝;高黏土矿物含量有利于微孔发育,但对介孔和宏孔发育具有不利影响。⑤可动油富集的主控因素包括TOC(< 4%)、有机质成熟度[镜质体反射率(Ro) > 1.2%]、脆性矿物含量(> 60%)和裂缝发育程度(裂缝线密度 > 1.6 × 104条/m)。⑥研究区页岩油甜点评价标准为Ⅰ类甜点油饱和度指数(OSI) > 100 mg/g,页岩油可动性最佳,集中分布在富县、甘泉及志丹东部地区,这些地区是研究区最有利的页岩油富集区,具有较好的勘探前景;Ⅱ类甜点OSI = 70 ~ 100 mg/g,页岩油具有可动性;Ⅲ类甜点OSI < 70 mg/g,页岩油动用难度较大,该类页岩油在研究区占主导地位。
中图分类号:
图7
鄂尔多斯盆地吴起—富县地区长8-长9油层组泥页岩典型孔隙类型的氩离子抛光-场发射扫描电镜照片a. 粒间溶蚀孔、海绵状有机质孔,样品C-1,富县地区,长8油层组,埋深1 895.26 m; b. 粒间溶蚀孔、收缩有机质孔,样品2-12, 富县地区,长8油层组,埋深1 467.37 m; c. 海绵状有机质孔、微裂缝,样品2-12,富县地区,长8油层组,埋深1 467.37 m; d. 粒间溶蚀孔、收缩有机质孔,样品5-2,志丹地区,长9油层组,埋深2 013.37 m; e. 碎屑颗粒粒间孔,样品3-3,甘泉地区,长9油层组,埋深1 412.28 m; f. 碎屑颗粒粒间孔,样品3-2,甘泉地区,长9油层组,1 409.87 m; g. 黄铁矿晶间孔,样品C-1,富县地区,长8油层组,埋深1 895.26 m; h. 黄铁矿晶间孔、包覆形有机质孔,样品3-2,甘泉地区,长9油层组,埋深1 409.87 m; i. 黏土矿物晶间孔、粒间溶蚀孔,样品A-4,富县地区,长9油层组,埋深1 807.50 m; j. 微裂缝,样品2-10,富县地区,长9油层组,1 933.29 m; k. 有机质收缩缝,样品2-10,富县地区,长9油层组,埋深1 933.29 m; l. 平行层理发育的微裂缝,样品2-11,富县地区,长8油层组,埋深1 471.59 m"
图8
ImageJ软件处理分析鄂尔多斯盆地吴起—富县地区扫描电镜照片a.有机质孔在ImageJ软件下的表征,样品A-1,富县地区,长9油层组,埋深1 803.50 m; b. 有机质孔在氩离子抛光-场发射扫描电镜下的图像,样品A-1,富县地区,长9油层组,埋深1 803.50 m; c. 黄铁矿晶间孔在ImageJ软件下的表征,样品2-11,富县地区,长8油层组,埋深1 471.59 m;d. 黄铁矿晶间孔在氩离子抛光-场发射扫描电镜下的图像,样品2-11,富县地区,长8油层组,埋深1 471.59 m; e. 粒间溶蚀孔和微裂缝在ImageJ软件下的表征,样品3-1,甘泉地区,长8油层组,埋深1 396.69 m; f. 粒间溶蚀孔和微裂缝在氩离子抛光-场发射扫描电镜下的图像,样品3-1,甘泉地区,长8油层组,埋深1 396.69 m; g. 碎屑颗粒粒间孔在ImageJ软件下的表征,样品3-3,甘泉地区,长9油层组,埋深1 412.28 m;h. 碎屑颗粒粒间孔在氩离子抛光-场发射扫描电镜下的图像,样品3-3,甘泉地区,长9油层组,埋深1 412.28 m"
表4
基于聚焦离子束扫描电镜表征鄂尔多斯盆地吴起—富县地区长8-长9油层组泥页岩孔隙结构相关参数"
| 样品编号 | 层位 | 孔隙类型 | 孔隙度/% | 面孔率/% | 总面孔率/% | 配位数 |
|---|---|---|---|---|---|---|
| B-9 | 长9油层组 | 有机质孔 | 0.100 | 80.70 | 0.12 | 0.04 |
| 无机质孔 | 0.020 | 18.70 | ||||
| 黄铁矿晶间孔 | 0.001 | 0.60 | ||||
| 6-13 | 长9油层组 | 有机质孔 | 0.400 | 36.80 | 1.11 | 0.13 |
| 无机质孔 | 0.700 | 62.50 | ||||
| 黄铁矿晶间孔 | 0.010 | 0.70 | ||||
| 6-3 | 长8油层组 | 有机质孔 | 0.200 | 58.10 | 0.31 | 0.03 |
| 无机质孔 | 0.100 | 41.80 | ||||
| 黄铁矿晶间孔 | — | 0.08 | ||||
| 2-11 | 长8油层组 | 有机质孔 | 0.400 | 98.90 | 0.48 | 0.16 |
| 无机质孔 | 0.080 | 1.10 | ||||
| 黄铁矿晶间孔 | — | 0.02 |
表5
鄂尔多斯盆地吴起—富县地区长8-长9油层组泥页岩高压压汞实验相关参数"
样品 编号 | 地区 | 层位 | 埋深/m | 孔隙度/% | 渗透率/(10-3 μm2) | 排驱压力/MPa | 中值压力/MPa | 最大汞饱和度/% | 最大孔喉半径/μm | 中值孔喉半径/μm | 平均孔喉半径/μm | 退汞效率/% | 曲线类型 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 7-4 | 吴起 | 长8油层组 | 2 145 | 0.5 | 0.003 0 | 13.8 | 13.8 | 86.7 | 0.05 | 0.007 | 0.011 | 71.5 | Ⅰ类 |
| B-8 | 富县 | 长9油层组 | 1 482 | 1.0 | 0.000 3 | 13.8 | 13.8 | 90.9 | 0.05 | 0.007 | 0.011 | 80.6 | Ⅰ类 |
| B-10 | 富县 | 长9油层组 | 1 484 | 1.3 | 0.010 2 | 8.3 | 114.6 | 89.9 | 0.09 | 0.006 | 0.013 | 81.6 | Ⅰ类 |
| 5-1 | 志丹 | 长9油层组 | 2 011 | 2.2 | 0.001 2 | 23.5 | — | 44.0 | 0.05 | — | 0.100 | 79.4 | Ⅱ类 |
| 5-3 | 志丹 | 长9油层组 | 1 801 | 2.3 | 0.001 1 | 20.6 | — | 45.0 | 0.04 | — | 0.009 | 51.0 | Ⅱ类 |
表6
鄂尔多斯盆地吴起—富县地区长8-长9油层组泥页岩高压压汞法测得孔体积和孔隙比表面积参数"
| 样品编号 | 孔体积/(mL/g) | 孔隙比表面积/(m2/g) | ||||
|---|---|---|---|---|---|---|
| 介孔 | 宏孔 | 总孔 | 介孔 | 宏孔 | 总孔 | |
| B-8 | 0.003 2 | 0.000 6 | 0.003 8 | 0.380 0 | 0.030 0 | 0.450 0 |
| B-10 | 0.007 7 | 0.001 3 | 0.009 0 | 0.385 0 | 0.068 0 | 0.453 0 |
| 7-4 | 0.001 4 | 0.000 3 | 0.001 7 | 0.382 0 | 0.070 0 | 0.452 0 |
| 5-1 | 0.003 2 | 0.000 8 | 0.004 0 | 0.720 0 | 0.090 0 | 0.810 0 |
| 5-3 | 0.003 8 | 0.000 8 | 0.004 5 | 0.498 0 | 0.022 0 | 0.520 0 |
图16
鄂尔多斯盆地吴起—富县地区长8-长9油层组泥页岩微裂缝类型扫描电镜照片a. 微裂缝,样品4-4,吴起地区,长8油层组,埋深2 453.15 m; b. 为a图红圈放大后的视域,可见裂缝中充填方解石; c. 异常高压层理缝,样品4-4,吴起地区,长8油层组,埋深2 453.15 m; d. 压溶层理缝,样品C-5,富县地区,长8油层组,埋深1 900.14 m;e. 异常高压层理缝,样品3-2,甘泉地区,长9油层组,埋深1 409.87 m;f. 异常高压层理缝,样品4-6,吴起地区,长9油层组,埋深2 477.95 m; g. 有机质收缩缝,样品3-2,甘泉地区,长9油层组,埋深1 409.87 m;h. 微裂缝被有机质和黄铁矿充填,样品3-3,甘泉地区,长9油层组,埋深1 412.28 m; i. 微裂缝被有机质充填,样品4-6,吴起地区,长9油层组,埋深2 477.95 m"
表8
鄂尔多斯盆地吴起—富县地区长8-长9油层组页岩油甜点分类评价"
| 甜点类型 | Ⅰ类 | Ⅱ类 | Ⅲ类 |
|---|---|---|---|
| 石英+长石含量/% | > 55 | 50 ~ 55 | < 50 |
| 黏土矿物含量/% | < 40 | 40 ~ 45 | > 45 |
| 缝密度/(10⁴条/m) | > 2.4 | 1.6 ~ 2.4 | < 1.6 |
| 孔隙度/% | > 4.5 | 3.0 ~ 4.5 | < 3.0 |
| OSI/mg/g | > 100 | 70 ~ 100 | < 70 |
| TOC/% | < 3 | 3 ~ 4 | > 4 |
| S1/(mg/g) | > 4 | 3 ~ 4 | < 3 |
| Ro/% | > 1.4 | 1.4 ~ 1.2 | < 1.2 |
| Tmax/℃ | > 460 | 460 ~ 455 | < 455 |
| 岩相 | 黏土质长英页岩 | 长英质黏土页岩、黏土-长英混合页岩 | 长英质黏土页岩、黏土-长英混合页岩 |
| [1] | MCMAHON T P, LARSON T E, ZHANG T, 等. 美国页岩油气地质特征及勘探开发进展[J]. 石油勘探与开发, 2024, 51(4): 807-828. |
| MCMAHON T P, LARSON T E, ZHANG T, et al. Geologic characteristics, exploration and production progress of shale oil and gas in the United States: An overview[J]. Petroleum Exploration and Development, 2024, 51(4): 807-828. | |
| [2] | 张廷山, 彭志, 杨巍, 等. 美国页岩油研究对我国的启示[J]. 岩性油气藏, 2015, 27(3): 1-10. |
| ZHANG Tingshan, PENG Zhi, YANG Wei, et al. Enlightenments of American shale oil research towards China[J]. Lithologic Reservoirs, 2015, 27(3): 1-10. | |
| [3] | 何文渊, 蒙启安, 冯子辉, 等. 松辽盆地古龙页岩油原位成藏理论认识及勘探开发实践[J]. 石油学报, 2022, 43(1): 1-14. |
| HE Wenyuan, MENG Qi’an, FENG Zihui, et al. In-situ accumulation theory and exploration & development practice of Gulong shale oil in Songliao Basin[J]. Acta Petrolei Sinica, 2022, 43(1): 1-14. | |
| [4] | 孙龙德, 贾承造, 张君峰, 等. 松辽盆地古龙页岩油重点地区资源潜力[J]. 石油学报, 2024, 45(12): 1699-1714. |
| SUN Longde, JIA Chengzao, ZHANG Junfeng, et al. Resource potential of Gulong shale oil in the key areas of Songliao Basin[J]. Acta Petrolei Sinica, 2024, 45(12): 1699-1714. | |
| [5] | 金之钧, 张谦, 朱如凯, 等. 中国陆相页岩油分类及其意义[J]. 石油与天然气地质, 2023, 44(4): 801-819. |
| JIN Zhijun, ZHANG Qian, ZHU Rukai, et al. Classification of lacustrine shale oil reservoirs in China and its significance[J]. Oil & Gas Geology, 2023, 44(4): 801-819. | |
| [6] | 郭旭升, 马晓潇, 黎茂稳, 等. 陆相页岩油富集机理探讨[J]. 石油与天然气地质, 2023, 44(6): 1333-1349. |
| GUO Xusheng, MA Xiaoxiao, LI Maowen, et al. Mechanisms for lacustrine shale oil enrichment in Chinese sedimentary basins[J]. Oil & Gas Geology, 2023, 44(6): 1333-1349. | |
| [7] | 白斌, 戴朝成, 侯秀林, 等. 松辽盆地白垩系青山口组页岩层系非均质地质特征与页岩油甜点评价[J]. 石油与天然气地质, 2023, 44(4): 846-856. |
| BAI Bin, DAI Chaocheng, HOU Xiulin, et al. Geological heterogeneity of shale sequence and evaluation of shale oil sweet spots in the Qingshankou Formation, Songliao Basin[J]. Oil & Gas Geology, 2023, 44(4): 846-856. | |
| [8] | 赵文智, 卞从胜, 李永新, 等. 鄂尔多斯盆地三叠系长73亚段页岩有机质转化率、排烃效率与页岩油主富集类型[J]. 石油勘探与开发, 2023, 50(1): 12-23. |
| ZHAO Wenzhi, BIAN Congsheng, LI Yongxin, et al. Organic matter transformation ratio, hydrocarbon expulsion efficiency and shale oil enrichment type in Chang 73 shale of Upper Triassic Yanchang Formation in Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2023, 50(1): 12-23. | |
| [9] | 付金华, 刘显阳, 李士祥, 等. 鄂尔多斯盆地三叠系延长组长7段页岩油勘探发现与资源潜力[J]. 中国石油勘探, 2021, 26(5): 1-11. |
| FU Jinhua, LIU Xianyang, LI Shixiang, et al. Discovery and resource potential of shale oil of Chang 7 member, Triassic Yanchang Formation, Ordos Basin[J]. China Petroleum Exploration, 2021, 26(5): 1-11. | |
| [10] | 赵喆, 白斌, 刘畅, 等. 中国石油陆上中-高成熟度页岩油勘探现状、进展与未来思考[J]. 石油与天然气地质, 2024, 45(2): 327-340. |
| ZHAO Zhe, BAI Bin, LIU Chang, et al. Current status, advances, and prospects of CNPC’s exploration of onshore moderately to highly mature shale oil reservoirs[J]. Oil & Gas Geology, 2024, 45(2): 327-340. | |
| [11] | 许璟, 葛云锦, 贺永红, 等. 鄂尔多斯盆地延长探区长7油层组泥页岩孔隙结构定量表征与动态演化过程[J]. 石油与天然气地质, 2023, 44(2): 292-307. |
| XU Jing, GE Yunjin, HE Yonghong, et al. Quantitative characterization and dynamic evolution of pore structure in shale reservoirs of Chang 7 oil layer group in Yanchang area, Ordos Basin[J]. Oil & Gas Geology, 2023, 44(2): 292-307. | |
| [12] | 王哲, 李贤庆, 祁帅, 等. 川南地区筇竹寺组页岩微观孔隙结构特征及其影响因素[J]. 高校地质学报, 2018, 24(2): 273-284. |
| WANG Zhe, LI Xianqing, QI Shuai, et al. Characteristics of microscopic pore structures and its influencing factors of the qiongzhusi formation shales in the southern Sichuan basin[J]. Geological Journal of China Universities, 2018, 24(2): 273-284. | |
| [13] | XIA Debin, YANG Zhengming, GAO Tiening, et al. Characteristics of micro- and nano-pores in shale oil reservoirs[J]. Journal of Petroleum Exploration and Production, 2021, 11(1): 157-169. |
| [14] | 邹才能, 朱如凯, 吴松涛, 等. 常规与非常规油气聚集类型、特征、机理及展望——以中国致密油和致密气为例[J]. 石油学报, 2012, 33(2): 173-187. |
| ZOU Caineng, ZHU Rukai, WU Songtao, et al. Types, characteristics, genesis and prospects of conventional and unconventional hydrocarbon accumulations: Taking tight oil and tight gas in China as an instance[J]. Acta Petrolei Sinica, 2012, 33(2): 173-187. | |
| [15] | GAO Hui, CAO Jie, WANG Chen, et al. Comprehensive characterization of nano-pore system for Chang 7 shale oil reservoir in Ordos Basin[J]. Energy Exploration & Exploitation, 2020, 39(1): 180-200. |
| [16] | 曹琰, 金之钧, 朱如凯, 等. 富有机质泥页岩孔隙结构研究进展及展望[J]. 沉积与特提斯地质, 2024, 44(2): 231-252. |
| CAO Yan, JIN Zhijun, ZHU Rukai, et al. Progress and prospects in the research on pore structures of organic-rich mud shales[J]. Sedimentary Geology and Tethyan Geology, 2024, 44(2): 231-252. | |
| [17] | 王晓琦, 金旭, 李建明, 等. 聚焦离子束扫描电镜在石油地质研究中的综合应用[J]. 电子显微学报, 2019, 38(3): 303-319. |
| WANG Xiaoqi, JIN Xu, LI Jianming, et al. FIB-SEM applications in petroleum geology research[J]. Journal of Chinese Electron Microscopy Society, 2019, 38(3): 303-319. | |
| [18] | 刘显阳, 李士祥, 周新平, 等. 鄂尔多斯盆地石油勘探新领域、新类型及资源潜力[J]. 石油学报, 2023, 44(12): 2070-2090. |
| LIU Xianyang, LI Shixiang, ZHOU Xinping, et al. New domains, types, and resource potential of petroleum exploration in the Ordos Basin[J]. Acta Petrolei Sinica, 2023, 44(12): 2070-2090. | |
| [19] | RYBACKI E, REINICKE A, MEIER T, et al. What controls the mechanical properties of shale rocks?-Part I: Strength and Young’s modulus[J]. Journal of Petroleum Science and Engineering, 2015, 135: 702-722. |
| [20] | 赵圣贤, 夏自强, 李海, 等. 页岩储层天然裂缝定量评价及发育主控因素——以泸州地区五峰组—龙马溪组深层页岩为例[J]. 沉积学报, 2025, 43(1): 212-225. |
| ZHAO Shengxian, XIA Ziqiang, LI Hai, et al. Quantitative evaluation and main controlling factors of natural fractures in a shale reservoir: A case study of the deep shale of the Wufeng Formation-Longmaxi Formation in Luzhou[J]. Acta Sedimentologica Sinica, 2025, 43(1): 212-225. | |
| [21] | RICKMAN R, MULLEN M, PETRE E, et al. A Practical Use of Shale Petrophysics for Stimulation Design Optimization: All Shale Plays are Not Clones of the Barnett Shale[C]//SPE Annual Technical Conference and Exhibition. Richardson: Society of Petroleum Engineers, 2008: SPE-115258-MS. |
| [22] | PANG Xiaojiao, WANG Guiwen, KUANG Lichun, et al. Insights into the pore structure and oil mobility in fine-grained sedimentary rocks: The Lucaogou Formation in Jimusar Sag, Junggar Basin, China[J]. Marine and Petroleum Geology, 2022, 137: 105492. |
| [23] | KUANG Lichun, HOU Lianhua, WU Songtao, et al. Organic matter occurrence and pore-forming mechanisms in lacustrine shales in China[J]. Petroleum Science, 2022, 19(4): 1460-1472. |
| [24] | ROSS D J K, MARC BUSTIN R. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs[J]. Marine and Petroleum Geology, 2009, 26(6): 916-927. |
| [25] | KO L T, LOUCKS R G, ZHANG Tongwei, et al. Pore and pore network evolution of Upper Cretaceous Boquillas (Eagle Ford-equivalent) mudrocks: Results from gold tube pyrolysis experiments[J]. AAPG Bulletin, 2016, 100(11): 1693-1722. |
| [26] | LOUCKS R G, REED R M. Scanning-electron-microscope petrographic evidence for distinguishing organic-matter pores associated with depositional organic matter versus migrated organic matter in mudrocks[J]. Gulf Coast Association of Geological Societies Transactions, 2014, 64: 713. |
| [27] | SING K S W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)[J]. Pure and Applied Chemistry, 1985, 57(4): 603-619. |
| [28] | 曹茜. 鄂尔多斯盆地延长组长7段富有机质泥页岩储层微孔隙特征及表征技术[D]. 成都: 成都理工大学, 2016. |
| CAO Qian. Characterization and techniques of micropores in organic-rich shale of Chang 7th of Yanchang Formation, Ordos Basin[D]. Chengdu: Chengdu University of Technology, 2016. | |
| [29] | ROUQUEROL J, AVNIR D, FAIRBRIDGE C W, et al. Recommendations for the characterization of porous solids (Technical Report)[J]. Pure and Applied Chemistry, 1994, 66(8): 1739-1758. |
| [30] | 张洋洋. 陆相页岩储层孔隙结构多尺度表征方法研究[D]. 北京: 中国石油大学(北京), 2022. |
| ZHANG Yangyang. Study on the multi-scale characterization of pore structure in continental shale reservoir[D]. Beijing: China University of Petroleum (Beijing), 2022. | |
| [31] | ZHANG Quanpei, YANG Chen, GU Ye, et al. Microscopic pore-throat structure and fluid mobility of tight sandstone reservoirs in multi-provenance systems, Triassic Yanchang Formation, Jiyuan area, Ordos Basin[J]. Energy Geoscience, 2025, 6(2): 100407. |
| [32] | 丁文龙, 王垚, 王生晖, 等. 页岩储层非构造裂缝研究进展与思考[J]. 地学前缘, 2024, 31(1): 297-314. |
| DING Wenlong, WANG Yao, WANG Shenghui, et al. Research progress and insight on non-tectonic fractures in shale reservoirs[J]. Earth Science Frontiers, 2024, 31(1): 297-314. | |
| [33] | 杨超, 贺永红, 雷裕红, 等. 鄂南三叠系延长组自生成岩矿物成因及期次[J]. 西南石油大学学报(自然科学版), 2019, 41(4): 45-54. |
| YANG Chao, HE Yonghong, LEI Yuhong, et al. The genesis and period of authigenic diagenetic mineral in Triassic Yanchang Formation, the southern Ordos Basin[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2019, 41(4): 45-54. | |
| [34] | 徐同台, 王行信, 张有渝, 等. 中国含油气盆地粘土矿物[M]. 北京: 石油工业出版社, 2003: 422-456. |
| XU Tongtai, WANG Xingxin, Zhang Youyu, et al. Clay minerals of petroliferous basins in China[M]. Beijing: Petroleum Industry Press, 2003: 422-456. | |
| [35] | HU Haiyan, HAO Fang, LIN Junfeng, et al. Organic matter-hosted pore system in the Wufeng-Longmaxi (O3w-S11) shale, Jiaoshiba area, eastern Sichuan Basin, China[J]. International Journal of Coal Geology, 2017, 173: 40-50. |
| [36] | 陈杨, 金鑫, 黄一舟, 等. 鄂尔多斯盆地Toarcian大洋缺氧事件时期菱铁矿的成因及其地质意义[J/OL]. 沉积学报: 1-25[2025-05-26]. . |
| CHEN Yang, JIN Xin, HUANG Yizhou, et al. Origin and geological significance of siderite during the Toarcian Oceanic Anoxic Event in the Ordos Basin[J/OL]. Acta Sedimentologica Sinica: 1-25[2025-05-26]. . | |
| [37] | 曾联波, 马诗杰, 田鹤, 等. 富有机质页岩天然裂缝研究进展[J]. 地球科学, 2023, 48(7): 2427-2442. |
| ZENG Lianbo, MA Shijie, TIAN He, et al. Research progress of natural fractures in organic rich shale[J]. Earth Science, 2023, 48(7): 2427-2442. | |
| [38] | MATHIA E J, REXER T F T, THOMAS K M, et al. Influence of clay, calcareous microfossils, and organic matter on the nature and diagenetic evolution of pore systems in mudstones[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(1): 149-174. |
| [39] | SLATT R M, O’BRIEN N R. Pore types in the Barnett and Woodford gas shales: Contribution to understanding gas storage and migration pathways in fine-grained rocks[J]. AAPG Bulletin, 2011, 95(12): 2017-2030. |
| [40] | BIAN Ruikang. The formation and evolutionary characteristics of organic matter and pyrites in the continental shales of the 3rd submember of Chang 7 Member, Yanchang formation, Ordos Basin, China[J]. Energy Geoscience, 2024, 5(2): 100250. |
| [41] | XU Xiang, ZENG Lianbo, TIAN He, et al. Controlling factors of lamellation fractures in marine shales: A case study of the Fuling Area in eastern Sichuan Basin, China[J]. Journal of Petroleum Science and Engineering, 2021, 207: 109091. |
| [42] | EMMANUEL S, ELIYAHU M, DAY-STIRRAT R J, et al. Impact of thermal maturation on nano-scale elastic properties of organic matter in shales[J]. Marine and Petroleum Geology, 2016, 70: 175-184. |
| [43] | CURTIS J B. Fractured shale-gas systems[J]. AAPG Bulletin, 2002, 86(11): 1921-1938. |
| [44] | YUAN Bin, WANG Yongqing, WEI Nan. The effects of fracturing fluid retention on permeability of shale reservoirs[J]. Energy Procedia, 2019, 158: 5934-5939. |
| [45] | JARVIE D M. Shale resource systems for oil and gas: Part 2—shale-oil resource systems[M]//BREYER J A. Shale Reservoirs—Giant Resources for the 21st Century. Tulsa: American Association of Petroleum Geologists, 2012: 89-119. |
| [46] | 黄振凯, 郝运轻, 李双建, 等. 鄂尔多斯盆地长7段泥页岩层系含油气性与页岩油可动性评价——以H317井为例[J]. 中国地质, 2020, 47(1): 210-219. |
| HUANG Zhenkai, HAO Yunqing, LI Shuangjian, et al. Oil-bearing potential, mobility evaluation and significance of shale oil in Chang 7 shale system in the Ordos Basin: A case study of Well H317[J]. Geology in China, 2020, 47(1): 210-219. | |
| [47] | ZHANG Cunjian, HU Qinhong, WANG Qiming, et al. Effects of solvent extraction on pore structure properties and oil distribution in shales of alkaline lacustrine basins[J]. Marine and Petroleum Geology, 2025, 171: 107207. |
| [48] | ZHANG Cunjian, HU Qinhong, YANG Shengyu, et al. Hierarchical cluster and principal component analyses of multi-scale pore structure and shale components in the Upper Triassic Chang 7 Member in the Ordos Basin of northern China[J]. Journal of Asian Earth Sciences, 2024, 261: 106001. |
| [49] | YANG Feng, NIE Sijia, JIANG Shu, et al. Occurrence characteristics of mobile hydrocarbons in lacustrine shales: Insights from solvent extraction and petrophysical characterization[J]. Energy & Fuels, 2024, 38(1): 374-386. |
| [50] | WANG Xiaojun, SONG Yong, GUO Xuguang, et al. Pore-throat structure characteristics of tight reservoirs of the Middle Permian Lucaogou formation in the Jimsar Sag, Junggar Basin, northwest China[J]. Journal of Petroleum Science and Engineering, 2022, 208(Part A): 109245. |
| [1] | 赵靖舟, 高振东, 孟选刚, 吴伟涛, 白玉彬, 曹磊, 赵子龙. 鄂尔多斯盆地陕北地区三叠系延长组长7—长9油层组重力流沉积致密油富集条件与勘探潜力——兼论拗陷型湖盆的石油勘探范式[J]. 石油与天然气地质, 2025, 46(5): 1367-1391. |
| [2] | 吴伟涛, 李天宇, 闫新智, 周凯, 殷露, 曹磊. 鄂尔多斯盆地定边—富县地区延长组长8油层组致密油富集因素与富集模式[J]. 石油与天然气地质, 2025, 46(5): 1392-1409. |
| [3] | 曹磊, 闫新智, 李辉, 吴伟涛, 白玉彬, 赵子龙. 鄂尔多斯盆地陕北地区延长组长8与长9油层组烃源岩分布与地球化学特征及页岩油资源潜力评价[J]. 石油与天然气地质, 2025, 46(5): 1410-1429. |
| [4] | 耳闯, 关宏博, 刘伟, 程妮, 白洁, 胡崇. 陆源物质输入对有机质类型的影响——以鄂尔多斯盆地三叠系延长组长73油层亚组页岩为例[J]. 石油与天然气地质, 2025, 46(5): 1430-1445. |
| [5] | 张军, 白玉彬, 张海, 赵靖舟, 徐宁. 鄂尔多斯盆地富县地区三叠系延长组长7油层组深水重力流致密砂岩成因与分布[J]. 石油与天然气地质, 2025, 46(5): 1446-1465. |
| [6] | 陈伟涛, 赵靖舟, 高振东, 李哲, 孟选刚, 闫新智, 董旭. 鄂尔多斯盆地志丹地区延长组长7—长9油层组深水重力流沉积特征及含油性[J]. 石油与天然气地质, 2025, 46(5): 1466-1484. |
| [7] | 李晓龙, 白玉彬, 陈珊珊, 张刚, 王聪娥. 三角洲与重力流砂体构型特征及其对油藏分布的控制——以鄂尔多斯盆地甘泉地区三叠系延长组长7油层组为例[J]. 石油与天然气地质, 2025, 46(5): 1485-1503. |
| [8] | 王琳茜, 赵靖舟, 高振东, 魏繁荣, 周世琪, 孟选刚, 闫新智, 徐宁. 深水重力流沉积类型及含油性对比——以鄂尔多斯盆地富县地区三叠系延长组长7—长9油层组为例[J]. 石油与天然气地质, 2025, 46(5): 1504-1521. |
| [9] | 吴吉泽, 李华, 何幼斌, 姜纯伟, 何一鸣, 姚凤南, 张显坤. 鄂尔多斯盆地西缘奥陶系樱桃沟组等深流-重力流交互作用沉积特征及形成机理[J]. 石油与天然气地质, 2025, 46(5): 1522-1535. |
| [10] | 张一帆, 葸克来, 操应长, 张博, 王秀娟, 尤源, 马文忠, 王雨轩, 孙琦慧. 鄂尔多斯盆地三叠系延长组长73油层亚组页岩岩相及页岩油差异赋存与微观运聚特征[J]. 石油与天然气地质, 2025, 46(5): 1536-1553. |
| [11] | 杨海风, 王飞龙, 胡安文, 关超, 滑彦岐. 渤海湾盆地页岩油勘探现状、进展及展望[J]. 石油与天然气地质, 2025, 46(4): 1123-1135. |
| [12] | 徐田武, 李素梅, 陈湘飞, 马学峰, 邓硕, 张莹莹. 渤海湾盆地东濮凹陷全油气系统特征及其成藏模式[J]. 石油与天然气地质, 2025, 46(4): 1152-1168. |
| [13] | 陈冬霞, 王翘楚, 熊亮, 王小娟, 杨映涛, 雷文智, 张玲, 潘珂, 庞宏. 川西—川中地区陆相层系全油气系统常规和非常规有效储层成因机制与分类评价[J]. 石油与天然气地质, 2025, 46(4): 1215-1232. |
| [14] | 文龙, 罗冰, 张本健, 彭瀚霖, 李文正, 刘一锋, 沈安江, 张玺华, 袁海峰, 胡安平. 川中地区二叠系茅口组深层灰岩基质孔隙发育与保持机理[J]. 石油与天然气地质, 2025, 46(4): 1233-1249. |
| [15] | 丁蓉, 庞雄奇, 贾承造, 熊先钺, 邓泽, 田文广, 蒲庭玉, 王飞宇, 林浩, 陈雨萱. 鄂尔多斯盆地石炭纪—二叠纪煤系全油气系统天然气成藏特征与有序分布模式[J]. 石油与天然气地质, 2025, 46(4): 1333-1348. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||