石油与天然气地质 ›› 2025, Vol. 46 ›› Issue (5): 1614-1629.doi: 10.11743/ogg20250514

• 油气地质 • 上一篇    

准噶尔盆地腹部差异剥蚀区侏罗系低饱和致密油藏压力分布预测及成因分析

徐泽阳1,2(), 李军1,2, 吴涛3, 党佳城3, 赵子龙1,2   

  1. 1.西安石油大学 地球科学与工程学院,陕西 西安 710065
    2.西安石油大学 陕西省油气成藏重点实验室,陕西 西安 710065
    3.中国石油 新疆油田公司 勘探开发研究院,新疆 克拉玛依 834000
  • 收稿日期:2025-05-30 修回日期:2025-09-15 出版日期:2025-10-30 发布日期:2025-10-29
  • 第一作者简介:徐泽阳(1991—),男,博士、讲师,沉积盆地异常压力。E‑mail: xuzeyang@xsyu.edu.cn
  • 基金项目:
    国家科技重大专项(2011ZX05007-004);国家科技重大专项(2011ZX05018001-004);国家自然科学基金项目(41402121);国家自然科学基金项目(41502132)

Pressure distribution prediction and genetic mechanism analysis of the Jurassic undersaturated tight oil reservoirs in an area with differential denudation in the hinterland of the Junggar Basin

Zeyang XU1,2(), Jun LI1,2, Tao WU3, Jiacheng DANG3, Zilong ZHAO1,2   

  1. 1.School of Earth Sciences and Engineering,Xi’an Shiyou University,Shaanxi Xi’an7 10065,China
    2.Shaanxi Key Laboratory of Petroleum Accumulation Geology,Shaanxi Xi’an 710065,China
    3.Exploration and Development Research Institute of PetroChina Xinjiang Oilfield Company,Xinjiang Karamay 834000,China
  • Received:2025-05-30 Revised:2025-09-15 Online:2025-10-30 Published:2025-10-29

摘要:

准噶尔盆地腹部莫索湾地区侏罗系低饱和致密油藏超压强度空间变化大,研究差异剥蚀背景下的超压成因机制与分布规律对致密油分布预测具有重要意义。构建了针对差异剥蚀效应修正的Bowers超压预测模型,融合地球物理资料解析、实验分析数据与盆地数值模拟技术,建立了一套化学压实-压力传导-晚期构造抬升全过程耦合的定量压力恢复方法。研究结果表明:①新模型避免了传统模型高估剥蚀区地层压力,预测平均相对误差约为5%。②超压成因具有南、北分异特征。莫索湾凸起以化学压实与压力传导复合作用为主,莫北凸起则主要受压力传导控制,石西凸起塑性变形对超压贡献较小。③对超压成因的定量计算表明,莫索湾凸起及莫北凸起中、南部地区超压成因以混合机制为主,弹性成因与塑性成因的贡献比集中在5∶2 ~ 2∶1;石西凸起塑性成因的贡献显著减小。超压现象主要受弹性变形机制主导。④盆地模拟表明,化学压实增压时序与油气充注期的匹配度直接决定储集层启动压力阈值。化学压实增压具有阶段性特征,其启动时间与油气充注期的时序差异决定了储集层启动压力阈值。晚期地层抬升抑制化学压实进程,但断裂活化促进深部流体垂向运移,形成“增压-输导”动态平衡。⑤根据超压成因时-空耦合特征认为该区具有莫索湾凸起“化学压实持续增压-气主油辅型”、莫北凸起“化学压实缓慢增压-油气共存型”和石西凸起“低温弱化学压实-油主气辅型”3类成藏模式。

关键词: 差异剥蚀, 化学压实, 压力传导, 超压预测, 致密油藏, 准噶尔盆地

Abstract:

In the Mosuowan area of the hinterland of the Junggar Basin, the Jurassic low-saturation tight oil reservoirs display significant spatial variations in overpressure intensity. Investigating the genetic mechanisms and distribution patterns of overpressure under the differential denudation setting in the area holds great significance for understanding the tight oil distribution. In this study, we establish an overpressure prediction model by revising Bowers’ method to incorporate the differential denudation effect. By integrating geophysical data analysis, experimental results, and basin numerical simulations, we establish a quantitative reconstruction method for pressure throughout the whole process from chemical compaction to pressure transfer and then to later-stage tectonic uplift. The results indicate that the new model overcomes the limitations of traditional models, which tend to overestimate the formation pressure in denudation areas, yielding an average prediction error of about 5%. The overpressure origins vary from north to south. In the Mosuowan Uplift, overpressure is primarily attributed to chemical compaction and pressure transfer. In contrast, in the Mobei Uplift, pressure transfer is the dominant mechanism, while in the Shixi Uplift, plastic deformation makes a minor contribution to overpressure. The qualification of the contributions from different origins reveals that in the Mosuowan Uplift and the central and southern Mobei Uplift, where overpressure arises primarily from mixed origins, the contribution ratios of elastic to plastic deformation primarily range from 5∶2 to 2∶1. In contrast, in the Shixi Uplift, plastic deformation contributes far less to overpressure, which is predominantly governed by elastic deformation. Basin simulations reveal that the degree of match between the timing of chemical compaction-induced pressurization and hydrocarbon charging stages directly determines the threshold pressure gradient (TPG) for reservoir fluid flowing. Specifically, chemical compaction-induced pressurization occurred in stages, and the time difference between its onset and hydrocarbon charging stages plays a direct role in determining the TPG. Although the late-stage tectonic uplift inhibited chemical compaction, fault activation facilitated the vertical migration of deep fluids, resulting in a dynamic equilibrium between pressurization and pressure transfer. The spatiotemporal coupling characteristics of overpressure origins reveal the presence of three distinct hydrocarbon accumulation patterns in the Mosuowan area: (1) gas reservoirs predominating with subordinate oil reservoirs in the Mosuowan Uplift, attributed to chemical compaction-induced continuous pressurization; (2) the coexistence of oil and gas reservoirs in the Mobei Uplift, associated with chemical compaction-induced slow pressurization; and (3) oil reservoirs predominating with subordinate gas reservoirs in the Shixi Uplift, corresponding to low-temperature-related weak chemical compaction.

Key words: differential denudation, chemical compaction, pressure transfer, overpressure prediction, tight oil reservoir, Junggar Basin

中图分类号: