石油与天然气地质 ›› 2025, Vol. 46 ›› Issue (5): 1614-1629.doi: 10.11743/ogg20250514
• 油气地质 • 上一篇
徐泽阳1,2(
), 李军1,2, 吴涛3, 党佳城3, 赵子龙1,2
收稿日期:2025-05-30
修回日期:2025-09-15
出版日期:2025-10-30
发布日期:2025-10-29
第一作者简介:徐泽阳(1991—),男,博士、讲师,沉积盆地异常压力。E‑mail: xuzeyang@xsyu.edu.cn。
基金项目:
Zeyang XU1,2(
), Jun LI1,2, Tao WU3, Jiacheng DANG3, Zilong ZHAO1,2
Received:2025-05-30
Revised:2025-09-15
Online:2025-10-30
Published:2025-10-29
摘要:
准噶尔盆地腹部莫索湾地区侏罗系低饱和致密油藏超压强度空间变化大,研究差异剥蚀背景下的超压成因机制与分布规律对致密油分布预测具有重要意义。构建了针对差异剥蚀效应修正的Bowers超压预测模型,融合地球物理资料解析、实验分析数据与盆地数值模拟技术,建立了一套化学压实-压力传导-晚期构造抬升全过程耦合的定量压力恢复方法。研究结果表明:①新模型避免了传统模型高估剥蚀区地层压力,预测平均相对误差约为5%。②超压成因具有南、北分异特征。莫索湾凸起以化学压实与压力传导复合作用为主,莫北凸起则主要受压力传导控制,石西凸起塑性变形对超压贡献较小。③对超压成因的定量计算表明,莫索湾凸起及莫北凸起中、南部地区超压成因以混合机制为主,弹性成因与塑性成因的贡献比集中在5∶2 ~ 2∶1;石西凸起塑性成因的贡献显著减小。超压现象主要受弹性变形机制主导。④盆地模拟表明,化学压实增压时序与油气充注期的匹配度直接决定储集层启动压力阈值。化学压实增压具有阶段性特征,其启动时间与油气充注期的时序差异决定了储集层启动压力阈值。晚期地层抬升抑制化学压实进程,但断裂活化促进深部流体垂向运移,形成“增压-输导”动态平衡。⑤根据超压成因时-空耦合特征认为该区具有莫索湾凸起“化学压实持续增压-气主油辅型”、莫北凸起“化学压实缓慢增压-油气共存型”和石西凸起“低温弱化学压实-油主气辅型”3类成藏模式。
中图分类号:
| [1] | XIAO Zhenglu, LU Jungang, LI Yong, et al. Oil generated overpressure of shale and its effect on tight sandstone oil enrichment: A case study of Yanchang Formation in the Ordos Basin, China[J]. Journal of Petroleum Science and Engineering, 2022, 219: 111120. |
| [2] | ZHU Rukai, ZOU Caineng, MAO Zhiguo, et al. Characteristics and distribution of continental tight oil in China[J]. Journal of Asian Earth Sciences, 2019, 178: 37-51. |
| [3] | DUAN Zhengxin, LIU Yifeng, LOU Zhanghua, et al. Tight gas accumulation caused by overpressure: Insights from three-dimensional seismic data in the western Sichuan Basin, southwest China[J]. Geoenergy Science and Engineering, 2023, 223: 211589. |
| [4] | 吴远坤, 刘成林, 于春勇. 松辽盆地双城断陷深层原油成藏模式[J]. 吉林大学学报(地球科学版), 2024, 54(5): 1443-1456. |
| WU Yuankun, LIU Chenglin, YU Chunyong. Main controlling factors and accumulation mode of deep oil in Shuangcheng fault depression of Songliao Basin[J]. Journal of Jilin University(Earth Science Edition), 2024, 54(5): 1443-1456. | |
| [5] | 田巍, 李中超, 余传谋, 等. 低渗储层启动压力特征及动用半径的确定[J]. 石油与天然气地质, 2025, 46(3): 959-966. |
| TIAN Wei, LI Zhongchao, YU Chuanmou, et al. Threshold pressure gradient characteristics and drainage radius determination of low-permeability reservoirs[J]. Oil & Gas Geology, 2025, 46(3): 959-966. | |
| [6] | 范彩伟, 刘爱群, 吴云鹏, 等. 莺歌海盆地乐东10区新近系黄流组储层天然气充注与超压演化史[J]. 石油与天然气地质, 2022, 43(6): 1370-1381. |
| FAN Caiwei, LIU Aiqun, WU Yunpeng, et al. Gas charging and overpressure evolution history of the Neogene Huangliu Formation reservoir in Ledong 10 area, Yinggehai Basin[J]. Oil & Gas Geology, 2022, 43(6): 1370-1381. | |
| [7] | 刘惠民, 张关龙, 范婕, 等. 准噶尔盆地腹部征沙村地区征10井的勘探发现与启示[J]. 石油与天然气地质, 2023, 44(5): 1118-1128. |
| LIU Huimin, ZHANG Guanlong, FAN Jie, et al. Exploration discoveries and implications of Well Zheng 10 in the Zhengshacun area of the Junggar Basin[J]. Oil & Gas Geology, 2023, 44(5): 1118-1128. | |
| [8] | 李勇, 朱治同, 吴鹏, 等. 鄂尔多斯盆地东缘上古生界致密储层含气系统压力演化[J]. 石油与天然气地质, 2023, 44(6): 1568-1581. |
| LI Yong, ZHU Zhitong, WU Peng, et al. Pressure evolution of gas-bearing systems in the Upper Paleozoic tight reservoirs at the eastern margin of the Ordos Basin[J]. Oil & Gas Geology, 2023, 44(6): 1568-1581. | |
| [9] | 杨小艺, 刘成林, 王飞龙, 等. 渤海湾盆地渤中凹陷西南洼古近系东营组超压分布特征及成因[J]. 石油与天然气地质, 2024, 45(1): 96-112. |
| YANG Xiaoyi, LIU Chenglin, WANG Feilong, et al. Distribution and origin of overpressure in the Paleogene Dongying Formation in the southwestern sub-sag, Bozhong Sag, Bohai Bay Basin[J]. Oil & Gas Geology, 2024, 45(1): 96-112. | |
| [10] | 孙靖, 尤新才, 薛晶晶, 等. 准噶尔盆地异常压力特征及其对深层-超深层致密储层的影响[J]. 石油与天然气地质, 2023, 44(2): 350-365. |
| SUN Jing, YOU Xincai, XUE Jingjing, et al. Characteristics of abnormal pressure and its influence on deep and ultra-deep tight reservoirs in the Junggar Basin[J]. Oil & Gas Geology, 2023, 44(2): 350-365. | |
| [11] | ZOU Caineng, YANG Zhi, HOU Lianhua, et al. Geological characteristics and “sweet area” evaluation for tight oil[J]. Petroleum Science, 2015, 12(4): 606-617. |
| [12] | 庞雄奇, 崔新璇, 贾承造, 等. 全油气系统理论在实用中面临的几个问题与解决方法[J]. 石油与天然气地质, 2025, 46(4): 1039-1054. |
| PANG Xiongqi, CUI Xinxuan, JIA Chengzao, et al. Challenges and solutions in the application of the whole petroleum system theory[J]. Oil & Gas Geology, 2025, 46(4): 1039-1054. | |
| [13] | FILLIPPONE W R. On the prediction of abnormally pressured sedimentary rocks from seismic data[C]//Offshore Technology Conference, Houston, 1979. Richardson: SPE, 1979: OTC-3662-MS. |
| [14] | 樊洪海, 张传进. 复杂地层地层孔隙压力求取新技术[J]. 石油钻探技术, 2005, 33(5): 40-43. |
| FAN Honghai, ZHANG Chuanjin. New methods for calculation of pore pressure in complex geologic environment[J]. Petroleum Drilling Techniques, 2005, 33(5): 40-43. | |
| [15] | OGBU A D, IWE K A, OZOWE W, et al. Advances in machine learning-driven pore pressure prediction in complex geological settings[J]. Computer Science & IT Research Journal, 2024, 5(7): 1648-1665. |
| [16] | YU Hao, CHEN Guoxiong, GU Hanming. A machine learning methodology for multivariate pore-pressure prediction[J]. Computers & Geosciences, 2020, 143: 104548. |
| [17] | FARSI M, MOHAMADIAN N, GHORBANI H, et al. Predicting formation pore-pressure from well-log data with hybrid machine-learning optimization algorithms[J]. Natural Resources Research, 2021, 30(5): 3455-3481. |
| [18] | ZHANG Guodao, DAVOODI S, BAND S S, et al. A robust approach to pore pressure prediction applying petrophysical log data aided by machine learning techniques[J]. Energy Reports, 2022, 8: 2233-2247. |
| [19] | ATASHBARI V. Origin of overpressure and pore pressure prediction in carbonate reservoirs of the Abadan Plain Basin[D]. Adelaide: The University of Adelaide, 2016. |
| [20] | Das G, Maiti S. A machine learning approach for the prediction of pore pressure using well log data of Hikurangi Tuaheni Zone of IODP Expedition 372, New Zealand[J]. Energy Geoscience, 2024, 5(2): 229-235. |
| [21] | LIU Yukun, HE Zhiliang, HE Sheng, et al. A new quantitative model and application for overpressure prediction in carbonate formation[J]. Journal of Petroleum Science and Engineering, 2021, 198: 108145. |
| [22] | WANG Zizhen, WANG Ruihe. Pore pressure prediction using geophysical methods in carbonate reservoirs: Current status, challenges and way ahead[J]. Journal of Natural Gas Science and Engineering, 2015, 27(Part 2): 986-993. |
| [23] | ELMAHDY M, FARAG A E, TARABEES E, et al. Pore pressure prediction in unconventional carbonate reservoir[C]//SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition, Dammam, 2018. Richardson: Society of Petroleum Engineers, 2018: SPE-194224-MS. |
| [24] | SHARIFI J, HAFEZI MOGHADDAS N, KHOSHDEL H, et al. Feasibility study of pore-pressure prediction in carbonate rocks[J]. Geophysics, 2023, 88(6): MR323-MR332. |
| [25] | MAGARA K. Importance of aquathermal pressuring effect in Gulf Coast: Geologic note[J]. AAPG Bulletin, 1975, 59(10): 2037-2045. |
| [26] | EATON B A. The effect of overburden stress on geopressure prediction from well logs[J]. Journal of Petroleum Technology, 1972, 24(8): 929-934. |
| [27] | BOWERS G L. Pore pressure estimation from velocity data: Accounting for overpressure mechanisms besides undercompaction[J]. SPE Drilling & Completion, 1995, 10(2): 89-95. |
| [28] | 许玉强, 何保伦, 王䶮舒, 等. 深度学习与Eaton法联合驱动的地层孔隙压力预测方法[J]. 中国石油大学学报(自然科学版), 2023, 47(6): 50-59. |
| XU Yuqiang, HE Baolun, WANG Yanshu, et al. A novel prediction method of formation pore pressure driven by deep learning and Eaton method[J]. Journal of China University of Petroleum (Edition of Natural Science), 2023, 47(6): 50-59. | |
| [29] | 杨朝洪, 司马立强, 王亮, 等. 准噶尔盆地莫索湾凸起八道湾组低饱和度油藏成因分析[J]. 特种油气藏, 2022, 29(5): 42-48, 56. |
| YANG Chaohong, SIMA Liqiang, WANG Liang, et al. Genesis analysis of low saturation oil reservoirs in Badaowan Formation of Mosuowan Bulge in Junggar Basin[J]. Special Oil & Gas Reservoirs, 2022, 29(5): 42-48, 56. | |
| [30] | 单祥, 郭华军, 陈希光, 等. 低渗致密砂岩储集层致密化成因——以准噶尔盆地莫北—莫索湾凸起下侏罗统八道湾组为例[J]. 新疆石油地质, 2021, 42(1): 29-37. |
| SHAN Xiang, GUO Huajun, CHEN Xiguang, et al. Genesis of densification of low-permeability tight sandstone reservoirs: A case study of lower Jurassic Badaowan Formation in Mobei-Mosuowan Swell, Junggar Basin[J]. Xinjiang Petroleum Geology, 2021, 42(1): 29-37. | |
| [31] | 吴海生, 郑孟林, 何文军, 等. 准噶尔盆地腹部地层压力异常特征与控制因素[J]. 石油与天然气地质, 2017, 38(6): 1135-1146. |
| WU Haisheng, ZHENG Menglin, HE Wenjun, et al. Formation pressure anomalies and controlling factors in central Juggar Basin[J]. Oil & Gas Geology, 2017, 38(6): 1135-1146. | |
| [32] | 何登发, 陈新发, 况军, 等. 准噶尔盆地车排子-莫索湾古隆起的形成演化与成因机制[J]. 地学前缘, 2008, 15(4): 42-55. |
| HE Dengfa, CHEN Xinfa, KUANG Jun, et al. Development and genetic mechanism of Chepaizi-Mosuowan Uplift in Junggar Basin[J]. Earth Science Frontiers, 2008, 15(4): 42-55. | |
| [33] | 吴涛, 李军, 闫文琦, 等. 准噶尔盆地腹部地区超压低饱和度油气成因机制与勘探意义[J]. 石油学报, 2024, 45(12): 1728-1742. |
| WU Tao, LI Jun, YAN Wenqi, et al. Genetic mechanism and exploration significance of overpressure and low-saturation oil and gas in the hinterland of Junggar Basin[J]. Acta Petrolei Sinica, 2024, 45(12): 1728-1742. | |
| [34] | 吴涛, 王彬, 费李莹, 等. 准噶尔盆地凝析气藏成因与分布规律[J]. 石油学报, 2021, 42(12): 1640-1653. |
| WU Tao, WANG Bin, FEI Liying, et al. Origin and distribution law of condensate gas reservoirs in Junggar Basin[J]. Acta Petrolei Sinica, 2021, 42(12): 1640-1653. | |
| [35] | 王琼. 准噶尔盆地莫西庄-永进地区白垩系清水河组沉积特征研究[D]. 北京: 中国地质大学(北京), 2021. |
| WANG Qiong. Study on sedimentary characteristics of Qingshuihe Formation of Cretaceous in Moxizhuang-Yongjin area, Junggar Basin[D]. Beijing: China University of Geosciences (Beijing), 2021. | |
| [36] | 唐勇, 宋永, 何文军, 等. 准噶尔叠合盆地复式油气成藏规律[J]. 石油与天然气地质, 2022, 43(1): 132-148. |
| TANG Yong, SONG Yong, HE Wenjun, et al. Characteristics of composite hydrocarbon accumulation in a superimposed basin, Junggar Basin[J]. Oil & Gas Geology, 2022, 43(1): 132-148. | |
| [37] | 何登发, 张磊, 吴松涛, 等. 准噶尔盆地构造演化阶段及其特征[J]. 石油与天然气地质, 2018, 39(5): 845-861. |
| HE Dengfa, ZHANG Lei, WU Songtao, et al. Tectonic evolution stages and features of the Junggar Basin[J]. Oil & Gas Geology, 2018, 39(5): 845-861. | |
| [38] | 吴涛, 徐泽阳, 闫文琦, 等. 准噶尔盆地莫索湾地区侏罗系超压预测技术研究[J]. 地球科学进展, 2024, 39(4): 429-439. |
| WU Tao, XU Zeyang, YAN Wenqi, et al. Research on prediction technologies for overpressure in the Jurassic Strata of the Mosuowan area, Junggar Basin[J]. Advances in Earth Science, 2024, 39(4): 429-439. | |
| [39] | 徐泽阳, 赵靖舟, 李军. 松辽盆地长垣地区白垩系青山口组一段有机质含量对超压分析的影响及校正方法[J]. 石油与天然气地质, 2019, 40(4): 938-946. |
| XU Zeyang, ZHAO Jingzhou, LI Jun. The impact of organic matter content on overpressure analysis and its correction method in the first member of Cretaceous Qingshankou Formation, Placanticline area, Songliao Basin[J]. Oil & Gas Geology, 2019, 40(4): 938-946. | |
| [40] | XU Zeyang, LIU Zhen, ZHAO Jingzhou, et al. Introducing novel correction methods to calculate sedimentary basin overpressure and its application in predicting pressure value and origin[J]. Energies, 2023, 16(14): 5416. |
| [41] | 赵靖舟, 李军, 徐泽阳. 沉积盆地超压成因研究进展[J]. 石油学报, 2017, 38(9): 973-998. |
| ZHAO Jingzhou, LI Jun, XU Zeyang. Advances in the origin of overpressures in sedimentary basins[J]. Acta Petrolei Sinica, 2017, 38(9): 973-998. | |
| [42] | 黄越, 常健, 邱楠生, 等. 松辽盆地齐家—古龙凹陷青山口组压力场特征和超压成因[J]. 石油学报, 2024, 45(12): 1800-1817. |
| HUANG Yue, CHANG Jian, QIU Nansheng, et al. Pressure field characteristics and overpressure geneses of Qingshankou Formation in Qijia-Gulong sag, Songliao Basin[J]. Acta Petrolei Sinica, 2024, 45(12): 1800-1817. | |
| [43] | 张向涛, 李军, 向绪洪, 等. 珠江口盆地深水区白云凹陷超压成因机制及其勘探意义[J]. 石油学报, 2022, 43(1): 41-57. |
| ZHANG Xiangtao, LI Jun, XIANG Xuhong, et al. Genetic mechanism of overpressure and its significance on petroleum exploration in Baiyun sag in the deep water zone of Pearl River Mouth Basin[J]. Acta Petrolei Sinica, 2022, 43(1): 41-57. | |
| [44] | BOWERS G L. Determining an appropriate pore-pressure estimation strategy[C]//Offshore Technology Conference, Houston, 2001. Richardson: Society of Petroleum Engineers, 2001: OTC-13042-MS. |
| [45] | LAHANN R W, LAHANN W, MCCARTY D K, et al. Influence of clay diagenesis on shale velocities and fluid-pressure[C]//Offshore Technology Conference, Houston, 2001. Richardson: Society of Petroleum Engineers, 2001: OTC-13046-MS. |
| [46] | LAHANN R W, SWARBRICK R E. Overpressure generation by load transfer following shale framework weakening due to smectite diagenesis[J]. Geofluids, 2011, 11(4): 362-375. |
| [47] | BOWERS G L, KATSUBE T J. The role of shale pore structure on the sensitivity of wire-line logs to overpressure[M]//HUFFMAN A R, BOWERS G L. Pressure Regimes in Sedimentary Basins and Their Prediction. Tulsa: American Association of Petroleum Geologists, 2001: 43-60. |
| [48] | 田安琦, 陈石, 余一欣, 等. 准噶尔盆地莫索湾凸起西缘走滑断裂分层变形特征及形成机理[J]. 现代地质, 2023, 37(2): 296-306. |
| TIAN Anqi, CHEN Shi, YU Yixin, et al. Layered deformation characteristics, formation mechanism of strike-slip faults on the western margin of Mosuowan uplift, Junggar Basin[J]. Geoscience, 2023, 37(2): 296-306. | |
| [49] | 范佳怡. 油源断裂输导性能与源外成藏关系——以莫索湾地区为例[D]. 西安: 西安石油大学, 2024. |
| FAN Jiayi. The relationship between the conductivity of oil source fault and hydrocarbon accumulation outside the source—A case study of Mosuowan area[D]. Xi’an: Xi’an Shiyou University, 2024. | |
| [50] | 李啸, 董雪梅, 陈建平, 等. 准噶尔盆地莫索湾凸起盆5井油气藏凝析油成因与成藏过程[J]. 地质学报, 2025, 99(7): 2367-2389. |
| LI Xiao, DONG Xuemei, CHEN Jianping, et al. Genesis of condensate and accumulation process of the Well Pen-5 oil and gas reservoir in the Mosowan uplift of the Junggar Basin[J]. Acta Geologica Sinica, 2025, 99(7): 2367-2389. | |
| [51] | 李二庭, 陈俊, 曹剑, 等. 准噶尔盆地莫索湾地区原油地球化学特征及成因分析[J]. 石油实验地质, 2022, 44(1): 112-120. |
| LI Erting, CHEN Jun, CAO Jian, et al. Geochemical characteristics and genetic analysis of crude oils in Mosuowan area, Junggar Basin[J]. Petroleum Geology and Experiment, 2022, 44(1): 112-120. | |
| [52] | 饶松, 朱亚珂, 胡迪, 等. 准噶尔盆地热史恢复及其对早—中二叠世时期盆地构造属性的约束[J]. 地质学报, 2018, 92(6): 1176-1195. |
| RAO Song, ZHU Yake, HU Di, et al. The thermal history of Junggar Basin: Constraints on the tectonic attribute of the Early-Middle Permian Basin[J]. Acta Geologica Sinica, 2018, 92(6): 1176-1195. |
| [1] | 白玉彬, 任海姣, 张军, 陈绍蓉, 吴伟涛, 赵辛楣, 吴和源, 邹阳. 页岩油组分特征及可动性评价——以准噶尔盆地玛湖凹陷二叠系风城组为例[J]. 石油与天然气地质, 2025, 46(5): 1582-1596. |
| [2] | 康逊, 谭静强, 胡文瑄, 靳军, 胡瑞璞, 曹剑. 准噶尔盆地玛湖凹陷全油气系统成储机制差异性[J]. 石油与天然气地质, 2025, 46(4): 1250-1266. |
| [3] | 鲍李银, 庞雄奇, 邹亮, 陈宏飞, 林昊, 张婷, 沈彬, 王凯, 王睿. 全油气系统油气成藏动力判别与贡献量评价——以准噶尔盆地玛湖凹陷二叠系风城组为例[J]. 石油与天然气地质, 2025, 46(4): 1267-1280. |
| [4] | 胡耀, 贾承造, 庞雄奇, 宋永, 何文军, 陈宏飞, 鲍李银, 陈玮岩, 赵文, 肖惠译, 李才俊, 徐帜. 远源型致密油气藏运聚动力与成藏模式——以准噶尔盆地玛湖凹陷三叠系百口泉组砂砾岩油藏为例[J]. 石油与天然气地质, 2025, 46(4): 1281-1298. |
| [5] | 杨柳, 公飞, 姜晓宇, 刘朝阳, 董广涛, 蔡嘉伟. CO2-盐水-砂砾岩作用机理与矿物成分、流体赋存及孔隙变化特征[J]. 石油与天然气地质, 2025, 46(3): 967-982. |
| [6] | 杨柳, 姜晓宇, 董广涛, 公飞, 朱凯, 裴奕杰, 蔡嘉伟. 前置CO2压裂后砂砾岩CO2驱油的三维孔隙尺度模拟[J]. 石油与天然气地质, 2025, 46(2): 670-684. |
| [7] | 鲍李银, 庞雄奇, 崔新璇, 陈宏飞, 高军, 邹亮, 赵振丞, 王琛茜, 王雷, 李闻东, 刘利. 准噶尔盆地金龙油田二叠系佳木河组火山岩岩相组合及产能差异[J]. 石油与天然气地质, 2025, 46(1): 136-150. |
| [8] | 王继远, 王斌, 胡宗全, 商丰凯, 刘德志, 李振明, 邱岐, 宋振响, 胡志啟. 深层-超深层碎屑岩优质储层成因机理[J]. 石油与天然气地质, 2025, 46(1): 151-166. |
| [9] | 宋璠, 孔庆圆, 张学才, 曹海防, 焦国华, 杨悦. 干旱型浅水三角洲沉积特征及沉积模式[J]. 石油与天然气地质, 2024, 45(5): 1275-1288. |
| [10] | 冯德浩, 刘成林, 杨海波, 韩杨, 杨小艺, 苏加佳, 李国雄, 张景坤. 准噶尔盆地东部中二叠统咸化湖相烃源岩生气潜力及天然气勘探意义[J]. 石油与天然气地质, 2024, 45(5): 1289-1304. |
| [11] | 孙靖, 尤新才, 薛晶晶, 郑孟林, 常秋生, 王韬. 准噶尔盆地深层-超深层碎屑岩致密气储层特征及其控制因素[J]. 石油与天然气地质, 2024, 45(4): 1046-1063. |
| [12] | 杜晓宇, 金之钧, 曾联波, 刘国平, 杨森, 梁新平, 陆国青. 基于成像测井的深层陆相页岩油储层天然裂缝有效性评价[J]. 石油与天然气地质, 2024, 45(3): 852-865. |
| [13] | 潘虹, 于庆森, 李晓山, 宋俊强, 蒋志斌, 王丽, 罗官幸, 徐文秀, 尤浩宇. 准噶尔盆地红车断裂带石炭系重新认识及油气成藏特征[J]. 石油与天然气地质, 2024, 45(1): 215-230. |
| [14] | 陈轩, 陶鑫, 覃建华, 许长福, 李映艳, 邓远, 高阳, 尹太举. 准噶尔盆地吉木萨尔凹陷及周缘二叠系芦草沟组异重流沉积[J]. 石油与天然气地质, 2023, 44(6): 1530-1545. |
| [15] | 刘惠民, 张关龙, 范婕, 曾治平, 郭瑞超, 宫亚军. 准噶尔盆地腹部征沙村地区征10井的勘探发现与启示[J]. 石油与天然气地质, 2023, 44(5): 1118-1128. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||