Oil & Gas Geology ›› 2025, Vol. 46 ›› Issue (3): 790-808.doi: 10.11743/ogg20250307
• Petroleum Geology • Previous Articles Next Articles
Shuangbiao HAN1(
), Jin WANG1, Jie HUANG1, Chengshan WANG2
Received:2024-11-18
Revised:2025-05-06
Online:2025-06-30
Published:2025-06-26
CLC Number:
Shuangbiao HAN, Jin WANG, Jie HUANG, Chengshan WANG. Current status and future trends of global research on natural hydrogen[J]. Oil & Gas Geology, 2025, 46(3): 790-808.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 2
Typical global discoveries of natural hydrogen"
| 国家 | 典型氢气发现 | 赋存相态 | 资料来源 |
|---|---|---|---|
| 美国 | 堪萨斯洲钻井中发现H2含量最高91.70 %,在加利福尼亚和北卡罗来纳州地表均检测到H2浓度(0 ~ 1 043) × 10-6 | 游离态 | 文献[ |
| 哥伦比亚 | Cauca-Patia山谷圆形结构中检测到H2浓度为(6 ~ 330) × 10-6 | 游离态 | 文献[ |
| 加拿大 | 加拿大地盾的许多勘探钻孔中H2的含量最高可达30.00 %;雪茄湖铀矿床上伏黏土层中最高H2浓度为500 × 10-6 | 游离态、 吸附态、 溶解态 | 文献[ |
| 阿曼 | Semail蛇绿岩上方温泉中H2含量为0 ~ 8.79 %;Hajar山脉渗漏H2浓度分布范围为(20 ~ 650) × 10-6 | 游离态、 溶解态 | 文献[ |
| 菲律宾 | Zambales蛇绿岩裂缝渗漏气体中H2的含量最高可达42.00 % | 游离态 | 文献[ |
| 法国 | 比利牛斯山地表渗漏H2浓度最高超过1 000 × 10-6 | 游离态 | 文献[ |
| 俄罗斯 | 俄罗斯克拉通数千个直径从100 m到几千米的亚圆形构造中H2最高含量为1.25 % | 游离态 | 文献[ |
| 土耳其 | 土耳其Tekirova蛇绿岩中可能存在含有大量CH4与H2的储层,其中H2的含量可达10.00 % | 游离态 | 文献[ |
| 阿尔巴尼亚 | Bulqizë铬铁矿中H2含量最高可达84.00 % | 游离态、 溶解态 | 文献[ |
| 新喀里多尼亚 | 新喀里多尼亚领土全境中均发现有H2,其中部分温泉溶解着0 ~ 36.07 %的H2含量 | 游离态、 溶解态 | 文献[ |
| 马里 | 马里Taoudeni盆地H2含量最高可达98.00 %,成功商业化开发 | 游离态、 溶解态 | 文献[ |
| 澳大利亚 | 约克半岛拉姆齐1号与拉姆齐2号钻井中H2含量最高可达95.80 %;Frog’s Leg金矿检测到H2含量为19.90 % ~ 68.70 %;Grass Patch与North Perth盆地地表圆形结构中检测到H2浓度为(0 ~ 70) × 10-6 | 游离态、 溶解态、 包裹体态 | 文献[ |
| 中国 | 中国松辽盆地钻井中的H2含量为0 ~ 85.54 %;三水盆地中渗漏H2浓度最高可达6 948 × 10-6;即墨断裂周围温泉溶解气体中H2含量为2.40 % ~ 12.50 % | 游离态、 溶解态 | 文献[ |
Table 3
Differences in natural hydrogen production (rate) across varying genetic sources"
| 地质环境/成因来源 | 形成氢气年通量/速率 | 数据来源 |
|---|---|---|
| 全球蛇绿岩带 | 0.18 ~ 0.36 Tg | 文献[ |
| 全球前寒武系岩石圈 | (0.36 ~ 2.27) × 1011 mol | 文献[ |
| 全球洋中脊裂谷系 | 1.3 × 109 m3 | 文献[ |
| 全球洋壳玄武岩 | 6.3 × 1012 mol | 文献[ |
| 橄榄石蛇纹石化 | 182 Bcf /km3 | 文献[ |
| U,Th和K元素衰变辐射裂解 | 1.9 × 10-9 Bcf /km3 | 文献[ |
Table 4
Hydrogen diffusion capacities across different media"
| 介质类型 | 扩散能力/(m2/s) | 数据来源 |
|---|---|---|
| 砂岩 | (1.6 ~ 2.1) × 10-9 | 文献[ |
| 蒙脱石 | (42.5 ~ 82.7) × 10-9 | 文献[ |
| 蛋白石 | (1.20 ~ 5.13) × 10-9 | 文献[ |
| 无烟煤 | (13 ~ 70) × 10-9 | 文献[ |
| 页岩 | (13 ~ 24) × 10-9 | 文献[ |
| 石盐 | (1.4 ~ 13.0) × 10-9 | 文献[ |
| 纯水 | (3.9 ~ 6.1) × 10-9 | 文献[ |
| 空气 | (0.756 ~ 1.604) × 10-4 | 文献[ |
| 不锈钢 | 0.015 × 10-9 | 文献[ |
| 1 | PRINZHOFE A, TAHARA CISSE C S, DIALLO A B. Discovery of a large accumulation of natural hydrogen in Bourakebougou (Mali)[J]. International Journal of Hydrogen Energy, 2018, 43(42): 19315-19326. |
| 2 | COUZIN-FRANKEL J, HAND E, LANGIN K, et al. 2023 Breakthrough of the Year[J]. Science, 2023, 382(6676): 1228-1233. |
| 3 | 刘全有, 吴小奇, 孟庆强, 等. 天然氢气: 一种潜在的零碳能源[J]. 科学通报, 2024, 69(17): 2344-2350. |
| LIU Quanyou, WU Xiaoqi, MENG Qingqiang, et al. Natural Hydrogen: A Potential Zero Carbon Energy Source[J]. Chinese Science Bulletin, 2024, 69(17): 2344-2350. | |
| 4 | LARIN N, ZGONNIK V, RODINA S, et al. Natural Molecular Hydrogen Seepage Associated with Surficial, Rounded Depressions on the European Craton in Russia[J]. Natural Resources Research, 2015, 24: 369-383. |
| 5 | MORETTI I, PRINZHOFE A, FRAOCOLIN J, et al. Long-term monitoring of natural hydrogen superficial emissions in a brazilian cratonic environment. Sporadic large pulses versus daily periodic emissions[J]. International Journal of Hydrogen Energy, 2021, 46(5): 3615-3628. |
| 6 | TRUCHE L, F-V DONZE, GOSKOLLI E, et al. A deep reservoir for hydrogen drives intense degassing in the Bulqizë ophiolite[J]. Science, 2024, 383(6683): 618-621. |
| 7 | ZGONNIK V, BEAUMONT V, LARIN N, et al. Diffused flow of molecular hydrogen through the Western Hajar mountains, Northern Oman[J]. Arabian Journal of Geosciences, 2019, 12: 71. |
| 8 | MAIGA O, DEVILLE E, LAVAL J, et al. Trapping processes of large volumes of natural hydrogen in the subsurface, The emblematic case of the Bourakebougou H2 field in Mali[J]. International Journal of Hydrogen Energy, 2024, 50(PB): 640-647. |
| 9 | PRINZHOFER A, RIGOLLET C, LEFEUVRE N, et al. Maricá (Brazil), the new natural hydrogen play which changes the paradigm of hydrogen exploration[J]. International Journal of Hydrogen Energy, 2024, 62: 91-98. |
| 10 | RAMIREZ A C, PENACOS F C, RODRIGUEZ G, et al. Natural H2 Emissions in Colombian Ophiolites, First Findings[J]. Geosciences, 2023, 13(12), 358. |
| 11 | ZGONNIK V, BEAUMONT V, DEVLLE E, et al. Evidence for natural molecular hydrogen seepage associated with Carolina bays (surficial, ovoid depressions on the Atlantic Coastal Plain, Province of the USA)[J]. Progress in Earth and Planetary Science, 2015, 2: 31. |
| 12 | LEFEUVRE N, TRUCHE L, F-V DONZE, et al. Natural hydrogen migration along thrust faults in foothill basins, The North Pyrenean Frontal Thrust case study[J]. Applied Geochemistry, 2022, 145: 105396. |
| 13 | ZGONNIK V. The occurrence and geoscience of natural hydrogen, A comprehensive review[J]. Earth Science Reviews, 2020, 203: 103140. |
| 14 | 王基华, 张培仁, 孙凤民, 地震前后地下氢气异常变化的又一实例 [J]. 地震, 1982, (4): 17-34. |
| WANG Jihua, ZHANG Peiren, SUN Fengmin. Another example of underground hydrogen anomaly before and after the earthquake [J]. Earthquake, 1982, (4): 17-34 | |
| 15 | 黄林. 断层气体中氢气和二氧化碳气体的成因及其与断层活动的关系[J]. 地质地球化学, 1984, (7): 16. |
| HUANG Lin. The genesis of hydrogen and carbon dioxide in fault gases and their relationship with fault activity[J]. Earth and Environment, 1984, (7): 16 | |
| 16 | 粟启初, Zeller E., Angino E.. 沿断层逸出的氢气对地震的诱发作用[J]. 地震学报, 1992, (2): 229-235+259. |
| SU Qichu, Zeller E, Angino E. Induced effect of hydrogen gas escaping from fault on earthquake[J]. Acta Seismologica Sinica, 1992, (2) : 229-235+259. | |
| 17 | 杨忠红, 马婧. 地质勘探过程中煤层气联测氢气方法[J]. 四川地质学报, 2009, 29(2): 244-246. |
| YANG Zhonghong, MA Jing. Hydrogen measurement method of coalbed methane in the process of geological exploration[J]. Acta Geologica Sichuan, 2009, 29(2): 244-246. | |
| 18 | 孟庆强, 陶成, 朱东亚, 等. 微量氢气定量富集方法初探[J]. 石油实验地质, 2011, 33(3): 314-316. |
| MENG Qingqiang, TAO Cheng, ZHU Dongya, et al. Preliminary study on quantitative enrichment method of trace hydrogen[J]. Petroleum Geology and Experiment, 2011, 33(3): 314-316. | |
| 19 | 刘国勇, 张刘平, 杨振平. 天然气中氢气的地化特征及油气成藏效应[J]. 天然气工业, 2004, (11): 31-33+13. |
| LIU Guoyong, ZHANG Liuping, YANG Zhenping. Geochemical characteristics and hydrocarbon accumulation effect of hydrogen in natural gas[J]. Natural gas industry, 2004, (11): 31-33+13. | |
| 20 | 邱军利, 雷天柱, 夏燕青. 氢气和气态烃在煤成气形成演化研究中的意义[J]. 煤田地质与勘探, 2005, (3): 26-29. |
| QIU Junli, LEI Tianzhu, XIA Yanqing. Significance of hydrogen and gaseous hydrocarbons in the study of coal-derived gas formation and evolution[J]. Coal Geology & Exploration, 2005, (3): 26-29. | |
| 21 | 周强, 江洪清, 梁汉东. 沁水盆地南部煤层气中氢气释放规律研究[J]. 天然气地球科学, 2006, (6): 871-873. |
| ZHOU Qiang, JIANG Hongqing, LIANG Handong. Study on the law of hydrogen release in coalbed methane in southern Qinshui Basin[J]. Natural Gas Geosciences, 2006, (6): 871-873. | |
| 22 | 李玉宏, 魏仙样, 卢进才, 等. 内蒙古自治区商都盆地新生界氢气成因[J]. 天然气工业, 2007, (9): 28-30+128-129. |
| LI Yuhong, WEI Xianxiang, LU Jincai, et al. Cenozoic hydrogen genesis in the Shangdu Basin, Inner Mongolia[J]. Natural gas industry, 2007, (9): 28-30+128-129. | |
| 23 | 韩双彪, 唐致远, 杨春龙, 等. 天然气中氢气成因及能源意义[J]. 天然气地球科学, 2021, 32(9): 1270-1284. |
| HAN Shuangbiao, TANG Zhiyuan, YANG Chunlong, et al. Genesis and energy significance of hydrogen in natural gas[J]. Natural Gas Geosciences, 2021, 32(9): 1270-1284. | |
| 24 | HAN S B, TANG Z Y, WANG C S, et al. Hydrogen-rich gas discovery in continental scientific drilling project of Songliao Basin, Northeast China: new insights into deep Earth exploration[J]. Science bulletin, 2022, 67(10): 1003-1006. |
| 25 | WANG L, CHENG J W, JIN Z J, et al. High-pressure hydrogen adsorption in clay minerals: Insights on natural hydrogen exploration[J]. Fuel, 2023, 344: 127919. |
| 26 | 韩双彪, 王缙,黄劼, 等. 煤岩吸附氢气特征及其地质意义[J]. 煤炭学报. 2024, 49(3): 1501-1517. |
| HAN Shuangbiao, WANG Jin, HUANG Jie, et al. Characteristics of hydrogen adsorption on coal and its geological significance[J]. Journal of Coal Science & Engineering, 2024,49(3): 1501-1517. | |
| 27 | JIN Z J, ZHANG P P, LIU R C, et al. Discovery of anomalous hydrogen leakage sites in the Sanshui Basin, South China[J]. Science Bulletin, 2024, 69(9): 1217-1220. |
| 28 | HAO Y L, PANG Z H, TIAN J, et al. Origin and evolution of hydrogen-rich gas discharges from a hot spring in the eastern coastal area of China[J]. Chemical Geology, 2020, 538: 119477. |
| 29 | WANG L, JIN Z J, LIU R C, et al. The occurrence pattern of natural hydrogen in the Songliao Basin, P.R. China: Insights on natural hydrogen exploration[J]. International Journal of Hydrogen Energy, 2024, 50(PB): 261-275. |
| 30 | WARD L K. Report on the prospects of obtaining supplies of petroleum by boring in the vicinity of Robe and elsewhere in the south-eastern portion of South Australia[J]. A Review of Mining Operations in the State of South Australia during the half-year ended December 31st, 1976, 25: 45-53. |
| 31 | SHCHERBAKOV A V, KOZLOVA N D. Occurrence of Hydrogen in Subsurface Fluids and the relationship of Anomalous Concentrations to Deep Faults in the USSR[J]. Geotectonics, 1986, 20(2): 120-128. |
| 32 | SMIGAN P, GREKSAK M, KOZANKOVA J, et al. Methanogenic bacteria as a key factor involved in changes of town gas stored in an underground reservoir[J]. Fems Microbiology Letters, 1990, 73(3): 221-224. |
| 33 | KORZHINSKY M A, BOTCHARNIKOV R E, TKACHENKO S I, et al. Decade-long study of degassing at Kudriavy volcano, Iturup, Kurile Islands (1990-1999): Gas temperature and composition variations, and occurrence of 1999 phreatic eruption[J]. Earth Planet and Space, 2002, 54: 337-347. |
| 34 | AIUPPA A, INGUAGGIATOS, MCGONIGLE A J S, et al. H2S fluxes from Mt. Etna, Stromboli, and Vulcano (Italy) and implications for the sulfur budget at volcanoes[J]. Geochimica Et Cosmochimica Acta, 2005, 69(7): 1861-1871. |
| 35 | SHINOHARA H, MATSUSHIMA N, KAZAHAYA K, et al. Magma-hydrothermal system interaction inferred from volcanic gas measurements obtained during 2003-2008 at Meakandake volcano, Hokkaido, Japan[J]. Bulletin of Volcanology, 2011, 73: 409-421. |
| 36 | MOUSSALLAM Y, OPPENHEIMER C, AIUPPA A, et al. Hydrogen emissions from Erebus volcano, Antarctica[J]. Bulletin of Volcanology, 2012, 74: 2109-2120. |
| 37 | LOLLAR B S, ONSTOTT T C, LACRAMPE-COULOUME G, et al. The contribution of the Precambrian continental lithosphere to global H2 production[J]. Nature, 2014, 516: 379-382. |
| 38 | ROCHE V, GEYMOND U, BOKA-MENE M, et al. A new continental hydrogen play in Damara Belt (Namibia)[J]. Scientific Reports, 2024, 14(1): 11655. |
| 39 | DEVILLE E, PRINZHOFER A. The origin of N2-H2-CH4 rich natural gas seepages in ophiolitic context, A major and noble gases study of fluid seepages in New Caledonia[J]. Chemical Geology, 2016, 440, 139-147. |
| 40 | LEFEUVRE N, TRUCHE L, F-V DONZE, et al. Native H2 exploration in the western Pyrenean foothills[J]. Geochemistry, Geophysics, Geosystems, 2021, 22(8): e2021GC009917. |
| 41 | FRERY E, LANGHI L, MASIN M, et al. Natural hydrogen seeps identified in the North Perth Basin, Western Australia[J]. International Journal of Hydrogen Energy, 2021, 46(61): 31158-31173. |
| 42 | AIMAR L, FRERY E, STRAND J, et al. Natural hydrogen seeps or salt lakes, how to make a difference? Grass Patch example, Western Australia[J]. Frontiers in Earth Science, 2023, 11: 2296-6463. |
| 43 | MAIGA O, DEVILLE E, LAVAL J, et al. Characterization of the spontaneously recharging natural hydrogen reservoirs of Bourakebougou in Mali[J]. Scientific Reports, 2023, 13: 11876. |
| 44 | PRINZHOFER A, M-C CACAS-STENTZ. Natural hydrogen and blend gas: a dynamic model of accumulation[J]. International Journal of Hydrogen Energy, 2023, 48(57): 21610-21623. |
| 45 | GUELARD J, BEAUMONT V, ROUCHON V, et al. Natural H2 in Kansas, deep or shallow origin?[J]. Geochemistry Geophysics Geosystems, 2017, 18(5), 1841-1865. |
| 46 | KNEZ D, ZAMANI O A M. Up-to-Date Status of Geoscience in the Field of Natural Hydrogen with Consideration of Petroleum Issues[J]. Energies, 2023, 16(18): 6580. |
| 47 | JACKSON O, LAWRENCE S R, HUTACHINSON I P, et. al . Natural hydrogen, sources, systems and exploration plays[J]. Geoenergy, 2024, 2(1): geoenergy2024-002. |
| 48 | 孟庆强, 金之钧, 孙冬胜, 等. 高含量氢气赋存的地质背景及勘探前景[J]. 石油实验地质, 2021, 43(2): 208-216. |
| MENG Qingqiang, JIN Zhijun, SUN Dongsheng, et al. Geological background and exploration prospects for the occurrence of high-content hydrogen[J]. Petroleum Geology and Experiment, 2021,43(2): 208-216. | |
| 49 | LEILA M, LOISEAU K, MORETTI I. Controls on generation and accumulation of blended gases (CH4/H2/He) in the Neoproterozoic Amadeus Basin, Australia[J]. Marine and Petroleum Geology, 2022, 140: 105643. |
| 50 | BAPTISTE J. Cartographie structurale et lithologique du substratum du Bassin parisien et sa place dans la chaîne varisque de l’Europe del’Ouest, approches combinées géophysiques, pétrophysiques, géochronologiq-ues et modélisations 2D[D]. Université d'Orléans, 2016. |
| 51 | 杨经绥, 熊发挥, 郭国林, 等. 东波超镁铁岩体: 西藏雅鲁藏布江缝合带西段一个甚具铬铁矿前景的地幔橄榄岩体[J]. 岩石学报, 2011, 27(11): 3207-3222. |
| YANG Jingsui, XIONG Fahui, GUO Guolin, et al. The Dongbo ultramafic massif: A mantle peridotite in the western part of the Yarlung Zangbo suture zone, Tibet, with excellent prospects for a major chromite deposit[J]. Acta Petrologica Sinica, 2011, 27(11): 3207-3222. | |
| 52 | PRINZHOFER A, MORETTI I, FRANÇOLIN J, et al. Natural hydrogen continuous emission from sedimentary basins: The example of a Brazilian H2-emitting structure[J]. International Journal of Hydrogen Energy, 2019, 44(12): 5676-5685. |
| 53 | SUTTON K J, MCGEE A. Monitoring of hydrogen along the San Andreas and Calaveras faults in central California in 1980-1984[J]. Geophysical Research Letters, 1986, 91(B12): 12315-12326. |
| 54 | BOREHAM C J, SOHN J H, COX N, et al. Hydrogen and hydrocarbons associated with the Neoarchean Frog’s Leg Gold Camp. Yilgarn Craton,western Australia[J]. Chemical Geology, 2021, 575: 120098. |
| 55 | GOLD HYDROGEN. Significant concentrations of hydrogen and he‐lium detected in the Ramsay 1 Well[EB/OL]. https:⫽ , 2023-10-31. |
| 56 | COVENEY J R R M, GOEBEL E D, ZELLER E, et al. Serpentinization and the origin of hydrogen gas in Kansas[J]. American Association of Petroleum Geologists, 1987, 71(1): 39-48. |
| 57 | WARR O, GIUNTA T, C.J BALLENTINE, et al. Mechanisms and rates of 4He, 40Ar, and H2 production and accumulation in fracture fluids in Precambrian Shield environments[J]. Chemical Geology, 2019, 530: 119322. |
| 58 | TRUCHE L, JOUBERT G, DARGENT M, et al. Clay minerals trap hydrogen in the Earth’s crust, Evidence from the Cigar Lake uranium deposit, Athabasca[J]. Earth and Planetary Science Letters, 2018, 493: 186-197. |
| 59 | T.A ABRAJANO, STURCHIO N.C, BOHLKE J.K,et al. Methane-Hydrogen Gas Seeps, Zambales Ophiolite, Philippines, Deep or Shallow Origin?[J]. Chemical Geology, 1988, 7(1-3): 211-222. |
| 60 | HOSGÖRMEZ H, ETIOPE G, YALÇIN M.N. New evidence for a mixed inorganic and organic origin of the Olympic Chimaera fire (Turkey), a large onshore seepage of abiogenic gas[J]. Geofluids, 2008, 8: 263-273. |
| 61 | GOLD HYDROGEN. Ramsay project[EB/OL]. , 2022-08-31. |
| 62 | 孟庆强. 地质体中天然氢气成因识别方法初探[J]. 石油实验地质, 2022, 44(3): 552-558. |
| MENG Qingqiangl. Identification method for the origin of natural hydrogen gas in geological bodies[J]. Petroleum Geology and Experiment, 2022, 44(3): 552-558. | |
| 63 | 帅燕华, 宋娜娜, 张水昌, 等. 松辽盆地北部生物降解成因气及其成藏特征[J]. 石油与天然气地质, 2011, 32(5): 659-670. |
| SHUAI Yanhua, SONG Nana, ZHANG Yongchang, et al. Gas of biodegradation origin and their poolingcharacteristics in northern Songliao Basin[J]. Oil & Gas Geology, 2011, 32(5): 659-670. | |
| 64 | 孙龙德, 冯子辉, 江航, 等. 松辽盆地富氢天然气地质调查与研究[J]. 大庆石油地质与开发, 2024, 43(3): 7-16. |
| SUN Longde, FENG Zihui, JIANG Hang, et al. Geological survey and study of hydrogen-rich natural gas in Songliao Basin[J]. Petroleum geology & oilfield development in Daqing, 2024, 43(3): 7-16. | |
| 65 | BOREHAM C J, EDWARDS D S, CZADO K, et al. Hydrogen in Australian natural gas, occurrences, sources and resources[J]. The APPEA Journal, 2021, 61(1): 163-191. |
| 66 | MILKOV A V. Molecular hydrogen in surface and subsurface natural gases: Abundance, origins and Liu ideas for deliberate exploration[J]. Earth-Science Reviews, 2022, 230: 104063. |
| 67 | POETZ S, HORSFIELD B, WILKES H. Maturity-Driven Generation and Transformation of Acidic Compounds in the Organic-Rich Posidonia Shale as Revealed by Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry[J]. Energy & Fuels, 2014, 28(8): 4877-4888. |
| 68 | 孟庆强, 金之钧, 刘全有, 等.天然氢气研究的现状、进展及展望[J]. 石油与天然气地质, 2024, 45(5): 1483-1501. |
| MENG Qingqiang, JIN Zhijun, LIU Quanyou, et al. Current status, advances, and prospects of research on natural hydrogen[J]. Oil & Gas Geology, 2024, 45(5): 1483-1501. | |
| 69 | LIU Q Y, WU X Q, HUANG X W, et al. Integrated geochemical identification of natural hydrogen sources[J]. Science Bulletin, 2024, 69(19): 2993-2996. |
| 70 | 刘佳宜, 刘全有, 朱东亚, 等. 深部流体对有机质生烃演化过程的影响[J].天然气地球科学, 2019, 30(4): 478-492. |
| LIU Jiayi, LIU Quanyou, ZHU Dongya, et al. The influence of deep-seated fluids on the hydrocarbon generation and evolution process of organic matter[J]. Natural Gas Geoscience, 2019, 30(4): 478-492. | |
| 71 | DE L M, PILZ P, LEBSCHER A, et al. Measurements of H2 solubility in saline solutions under reservoir conditions, preliminary results from project H2 store[J]. Energy Procedia, 2015, 76: 487-494. |
| 72 | BO Z K, ZENG L P, CHEN Y Q, et al. Geochemical reactions-induced hydrogen loss during underground hydrogen storage in sandstone reservoirs[J]. International Journal of Hydrogen Energy, 2021, 46(38): 19998-20009. |
| 73 | YEKTA A E, PICHAVANT M, AUDIGANE P. Evaluation of geochemical reactivity of hydrogen in sandstone, application to geological storage[J]. Applied Geochemistry, 2018, 95: 182-194. |
| 74 | ESFANDYARI H, SARMADIVALEH M, ESMAELLZADEH F, et al. Experimental evaluation of rock mineralogy on hydrogen wettability, Implications for hydrogen geo-storage[J]. Journal of Energy storage, 2022, 52(PA): 104866. |
| 75 | AL-YASERI A, WOLFF-BOENISCH D, FAUZLAH C A, et al. Hydrogen wettability of clays, Implications for underground hydrogen storage[J]. International Journal of Hydrogen Energy, 2021, 46(69): 34356-34361. |
| 76 | HEMME C, VAN B W. Hydrogeochemical modeling to identify potential risks of underground hydrogen storage in depleted gas fields[J]. Applied Sciences, 2018, 8(11): 2282. |
| 77 | WELHAN J A, CRAIG H. Methane and hydrogen in East Pacific Rise hydrothermal fluids[J]. Geophysical research letters, 1879, 6: 829-831. |
| 78 | HOLLOWAY J R, O’DAY P A. Production of CO2 and H2 by Diking-Eruptive Events at Mid-Ocean Ridges: Implications for Abiotic Organic Synthesis and Global Geochemical Cycling[J]. International Geology Review, 2000, 42: 673-683. |
| 79 | MCCOLLOM T M, KLEIN F, ROBBINS M, et al. 2016. Temperature trends for reaction rates, hydrogen generation, and partitioning of iron during experimental serpentinization of olivine[J]. Geochimica et Cosmochimica Acta, 2016, 181: 175-200. |
| 80 | PIET H, CHIZMESHYA A, CHEN B, et al. Superstoichiometric Alloying of H and Close-Packed Fe-Ni Metal Under High Pressures: Implications for Hydrogen Storage in Planetary Core[J]. Geophysical Research Letters, 2020, 50(5): e2022GL01155. |
| 81 | VACQUAND C. Genèse et mobilité de l’hydrogène dans les roches sédimentaires, source d’énergie naturelle ou vecteur énergétique stockable?[D]. IFP Energies nouvelles and Institut de Physique du Globe de Paris, 2011. |
| 82 | SHCHERBAKOV A V, KOZLOVA N D. Occurrence of Hydrogen in Subsurface Fluids and the relationship of Anomalous Concentrations to Deep Faults in the USSR[J]. Geotectonics, 1986, 20: 120-128. |
| 83 | WOOLNOUGH W G. Natural Gas in Australia and New Guinea[J]. AAPG Bulletin, 1934, 18: 226-242. |
| 84 | POTTER J, RANKIN A H, TRELOAR P J. Abiogenic Fischer-Tropsch synthesis of hydrocarbons in alkaline igneous rocks; fluid inclusion, textural and isotopic evidence from the Lovozero complex, N.W. Russia[J]. Lithos, 2004, 75(3): 311-330. |
| 85 | LODHIA B H, CLARK S R. Computation of vertical fluid mobility of CO2, methane, hydrogen and hydrocarbons through sandstones and carbonates[J]. Scientific Reports, 2022, 12: 10216. |
| 86 | VIVIAN J E, KING C J. The mechanism of liquid-phase resistance to gas absorption in a packed column[J]. Aiche Journal, 1964, 10(2): 221-227. |
| 87 | STRAUCH B, PILZ P, HIEROLD J, et al. Experimental simulations of hydrogen migration through potential storage rocks[J]. International Journal of Hydrogen Energy, 2023, 48(66): 25808-25820. |
| 88 | VINSOT A, APPELO C A J, LUNDY M, et al. In situ diffusion test of hydrogen gas in the opalinus clay[J]. Geological Society, London, Special Publications, 2014, 400: 563-578. |
| 89 | LIU J Y, WANG S, JAVADPOUR F, et al. Hydrogen diffusion in clay slit: Implications for the geological storage[J]. Energy & Fuels, 2022, 36(14): 7651-7660. |
| 90 | BAGREEV A, MENENDEZ J A, DUKHNO I, et al. Bituminous coal‐based activated carbons modified with nitrogen as adsorbents of hydrogen sulfide[J]. Carbon, 2004, 42(3): 469-476. |
| 91 | KESHAVARZ A, ABID H, ALI M, et al. Hydrogen diffusion in coal: Implications for hydrogen geo-storage[J]. Journal of Colloid and Interface Science, 2022, 608(P2): 1457-1462. |
| 92 | AL-YASERI A, YEKEEN N, MAHMOUD M, et al. Thermodynamic characterization of H2-brineshalewettability: Implications for hydrogen storage at subsurface[J]. International Journal of Hydrogen Energy, 2022, 47(53): 22510-22521. |
| 93 | DE BLOK W J, FORTUIN J M H, et al. Bestimmung des diffusion skoeffizienten von wasserstoff in wasser und w isserigen polymerliisungen nach der CBS-methode. Measurement of the diffusion coefficient of hydrogen in water ca and aqueous polymer solutions according to the CBS-method[J]. Wirme-und Stofffibertragung, 1982, 17: 11-16. |
| 94 | FERRELL R T, HIMMELBLAU D M. Diffusion coefficients of hydrogen and helium in water[J]. Aiche Journal, 1967, 13(4): 702-708. |
| 95 | JACOPS E, AERTSENS M, MAES N, et al. Interplay of molecular size and pore network geometry on the diffusion of dissolved gases and HTO in boom clay[J]. Applied Geochemistry, 2017, 76: 182-195. |
| 96 | OWCZAREK E, ZAKROCZYMSKI T. Hydrogen transport in a duplex stainless steel[J]. Acta Materialia, 2000, 48(12): 3059-3070. |
| [1] | Shuangbiao HAN, Jin WANG, Jie HUANG, Chengshan WANG. Adsorption characteristics and occurrence pattern of natural hydrogen in a continental scientific drilling well of the Songliao Basin [J]. Oil & Gas Geology, 2025, 46(2): 462-477. |
| [2] | Zhuoyi LI, Min XIE. Hydrocarbon accumulation models of buried hills in the Dongpu Sag, Bohai Bay Basin [J]. Oil & Gas Geology, 2025, 46(2): 407-426. |
| [3] | Yutong SU, Zhijun JIN, Runchao LIU, Lu WANG. Natural hydrogen exploration: A case study of hydrogen wells in the Mali gas field in Africa and global advances [J]. Oil & Gas Geology, 2024, 45(5): 1502-1510. |
| [4] | Qingqiang MENG, Zhijun JIN, Quanyou LIU, Dongsheng SUN, Jianfang SUN, Dongya ZHU, Xiaowei HUANG, Yuan ZHOU, Qiang LI, Yongbo WEI, Yutong SU, Lu WANG, Pengpeng LI, Runchao LIU, Jiayi LIU. Current status, advances, and prospects of research on natural hydrogen [J]. Oil & Gas Geology, 2024, 45(5): 1483-1501. |
| [5] | Guo Yingchun, Pang Xiongqi, Chen Dongxia, Jiang Fujie, Tang Guomin. Progress of research on hydrocarbon accumulation of tight sand gas and several issues for concerns [J]. Oil & Gas Geology, 2013, 34(6): 717-724. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||