[1] Richnow H H,Jenisch A,Michaelis W.Structural investigations of sulfur rich macromolecular oil fractions and a kerogen by sequential chemical degradation[J].Organic Geochemistry,1992,19:351 -370[2] Trifilieff S,Sieskind O,Albrecht P.Biological markers in petro leum asphaltenes:possible mode of incorporation.In:Moldowan J M,ed.Biological markers in Sediments and Petroleum[M].New Jersey:Prentice Hall,1992.350 -369[3] Snape C E,Bolton C,Dosch R G,et al.High liquid yields from bituminous coal via hydropyrolysis with dispersed catalysts[J].Energy and Fuel,1992,3:421 -425[4] Love G D,Snape C E,Carr A D,et al.Release of covalently bound alkane biomarkers in high yields from kerogen via catalytic hydropyrolysis[J].Organic Geochemistry,1995,23:981 -986[5] Maroto Valer M M,Love G D,Snape C E.Close correspondence between carbon skeletal parameters of kerogens and their hydropyrolysis oils[J].Energy and Fuel,1997,11:539 -545[6] Love G D,Snape C E,Fallick A E.Differences in the mode of incorporation and biogenicity of the principle aliphatic constituents of a Type I oil shale[J].Organic Geochemistry,1998,28:797 -811[7] Murray I P,Love G D,Snape C E,et al.Comparison of covalently bound aliphatic biomarkers released via hydropyrolysis with their solvent extractable counterparts for a suit of Krimmeridge clays[J].Organic Geochemistry,1998,29:1 487 -1 505[8] Meredith W,Russell C A,Snape C E,et al.Potential of bound biomarkers released via hydropyrolysis for the characterization of pryobitumens a tar mats[A].Abstract for 21th International Mee ting on Organic Geochemistry,Krakow,2003[C].305 -306[9] Love G D,Snape C E,Carr A D,et al.Changes in molecular biomarker and bulk carbon skeletal parameters of vitrinite concentrates as a function of rank[J].Energy and Fuel,1996,10:149 -157[10] Love G D,McAulay A,Snape C E,et al.Effect of process variables in catalytic hydropyrolysis on the release of covalently bound aliphatic hydrocarbons from sedimentary organic matter[J].Energy and Fuel,1997,11:522 -531[11] Rocha J D,Brown,S D,Love G D,et al.Hydropyrolysis:a versatile technique for solid fuel liquefaction,sulphur speciation and biomarker release[J].J Anal Appl Pyrolysis,1997,40 -41:91 -103[12] Love G D,Murray I P,Snape C E.Two stage hydropyrolysis:maximizing the yields of covalently bound biomarkers from sedimentary organic matter[A].Abstract for 19th International Meeting on Organic Geochemistry,Istanbul,1999[C].135 -336[13] Snape C E,Meredith W,Russell C A,et al.The potential of HYPY GC MS for fingerprinting petroleum source rocks and coals[A].Abstract for 21th International Meeting on Organic Geochemistry,Krakow,2003[C].175 -176[14] Russell C A,Snape C E,Meredith W,et al.The potential of bound biomarker profiles released from catalytic hydropyrolysis to reconstruction basin charging history for oils[A].Abstract.for 21th International Meeting on Organic Geochemistry,Krakow,2003[C].160 -161[15] Bishop A N,Love G D,Snape C E,et al.Release of kerogen bound hopanoids by hydropyrolysis[J].Organic Geochemistry,1998,29:989 -1 001[16] Farrimond P,Love G D,Bishop A N,et al.Evidence for the rapid incorporation of hopanoids into kerogen[J].Geochimica et Cosmochimica Acta,2003,67:1 383 -1 394[17] Coleman J M,Pancost R D,Bouloubassi I,et al.Non extremophilic archaea:water column versus sedimentary contribution to the marine biomarker record[A].Abstract.for 21th International Meeting on Organic Geochemistry,Krakow,2003,Part 1,No OXVI/2,109 -110[18] Brocks J J,Love G D,Snape C E,et al.Release of bound aromatic hydrocarbons from late Archean and Mesoproterozoic kerogens via hydropyrolysis[J].Geochimica et Cosmochimica Acta,2003,67:1 521 -1 530[19] Bowden S A,Love G D,Summons R E,et al.Molecular biomarker evidence for chlorobiaceae in Proterozoic Sea[A].Abstract for 21th International Meeting on Organic Geochemistry,Krakow,2003.134 -135[20] Sephton M A,Love G D,Watson J S,et al.Hydropyrolysis of insoluble carbonaceous matter in the Murchison meteorite[A].Abstract for 21th International Meeting on Organic Geochemistry,Krakow,2003.175 -176[21] 傅家谟,贾蓉芬,刘德汉,等.碳酸盐岩有机地球化学[M].北京:科学出版社,1989.202[22] 郝石生,高岗,王飞宇,等.高过成熟海相烃源岩[M].北京:石油工业出版社,1996.163[23] 程克明,王兆云,钟宁宁,等.碳酸盐岩油气生成理论与实践[M].北京:石油工业出版社,1996.317[24] 陈丕济.碳酸盐岩生油地化中几个问题的评述[J].石油实验地质,1985,7(1):3~12[25] 张水昌,梁狄刚,张宝民,等.塔里木盆地海相油气的生成[M].北京:石油工业出版社,2004.433[26] 徐世平,孙永革.一种适用于沉积有机质族组分分离的微型柱色谱法[J].地球化学,2006,35(6):681~688[27] Xu S,Sun Y.An improved method for the micro separation of straight chain and branched/cyclic alkanes:Urea inclusion paper layer chromatography[J].Organic Geochemistry,2005,36:1 334 -1 338[28] 庞雄奇,方祖康,陈章明.地史过程中的岩石有机质含量变化及其计算[J].石油学报,1988,9(1):17~24[29] 程克明,王兆云.高成熟和过成熟海相碳酸盐岩生烃条件评价方法研究[J].中国科学(D辑),1996,26(6):537~543[30] 卢双舫.有机质成烃动力学理论及其应用[M].北京:石油工业出版社,1996.91~94[31] 夏新宇,洪峰,赵林.烃源岩生烃潜力的恢复探讨--以鄂尔多斯盆地下奥陶统碳酸盐岩为例[J].石油与天然气地,1998,19(4):307~312[32] 秦建中,刘宝泉,郑伦举,等.海相碳酸盐岩烃源岩生排烃能力研究[J].石油与天然气地质,2006,27(3):348~355[33] 腾格尔,刘文汇,徐永昌,等.海相地层无机参数与烃源岩发育环境的相关研究--以鄂尔多斯盆地为例[J].石油与天然气地质,2005,26(4):411~421[34] 王飞宇,程顶胜,郝石生,等.镜状体反射率可作为下古生界高过成熟烃源岩成熟度标尺[J].天然气工业,1996,16(4):14~17[35] 胡瑛,张枝焕,方朝合.溱潼凹陷低熟油生物标志物特征及成熟度浅析[J].石油与天然气地质,2005,26(4):512~517[36] Zhang S,Hanson A D,Moldowan J M,et al.Paleozoic oil source rock correlations in the Tarim Basin,NW China[J].Organic Geochemistry,2000,31,273 -286[37] 杨树春,卢庆治,宋传真,等.库车前陆盆地中生界烃源岩有机质成熟度演化及影响因素[J].石油与天然气地质,2005,26(6):770~777,785[38] Hsu K J.Buried euxenic basin model sets Tarim basin potential[J].Journal of Oil & Gas,1994,92,51 -60[39] Sun Y,Xu S,Lu H,et al.Source facies of the Paleozoic petroleum systems in the Tabei uplift,Tarim Basin,NW China:implications from aryl isoprenoids in crude oils[J].Organic Geochemistry,2003,34:629 -634[40] Liang D,Zhang S,Zhang B.Marine oil generation in the Tarim basin,NW China[A].In:Proceedings of the Fifth International Conference and Exhibition on Petroleum Geochemistry and Exploration in the Afro Asian Region[C].India:B R Publishing Corporation,2000.155 -168 |