Oil & Gas Geology ›› 2020, Vol. 41 ›› Issue (4): 862-873.doi: 10.11743/ogg20200418
• Methods and Technologies • Previous Articles Next Articles
Kedan Zhu1(), You Zhang2, Tong Lin3, Yachun Wang1,*(), Xingping Zheng2, Lin Zhu4
Received:
2019-04-19
Online:
2020-08-01
Published:
2020-08-11
Contact:
Yachun Wang
E-mail:redcloudszkd@163.com;dqpiwyc@163.com
CLC Number:
Kedan Zhu, You Zhang, Tong Lin, Yachun Wang, Xingping Zheng, Lin Zhu. Pore-throat heterogeneity in dolomite reservoirs based on CT imaging: A case study of the 3rd member of the Ordovician Yingshan Formation in Well GC601 in Gucheng area, eastern Tarim Basin[J]. Oil & Gas Geology, 2020, 41(4): 862-873.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Major characteristics and pore types of samples from Well GC601, Tarim Basin"
样品编号 | 柱塞直径/mm | 岩性 | 孔隙类型 | 主要镜下结构特征 |
Ⅰ | 25 | 浅灰色细-中晶白云岩 | 晶间孔和少量裂缝 | 白云石晶体半自形-自形,晶间孔多被渗流粉砂充填 |
Ⅱ | 25 | 浅灰色细-中晶白云岩 | 晶间孔和裂缝 | 白云石晶体它形-半自形,残余颗粒结构,晶间孔边缘存在溶蚀现象,局部见微裂缝 |
Ⅲ | 25 | 浅灰色中晶白云岩 | 晶间溶孔和裂缝 | 白云石晶体半自形-自形,残余颗粒结构,晶间孔边缘存在溶蚀现象,亮晶方解石充填孔洞 |
Ⅳ | 25 | 灰色细晶白云岩 | 少量晶间孔 | 白云石晶体半自形-自形,晶间孔多被黑色泥质充填,残余颗粒结构 |
Ⅴ | 25 | 浅灰色细-中晶白云岩 | 晶间孔和裂缝 | 白云石晶体它形-半自形,残余颗粒结构,较多晶间孔被黑色泥质充填 |
Ⅵ | 25 | 岩溶浅灰色中晶白云岩 | 晶间孔和少量裂缝 | 白云石晶体半自形-自形,残余颗粒结构,晶间孔边缘存在溶蚀,部分晶间孔被黑色泥质充填 |
Ⅶ | 25 | 浅灰色细晶白云岩 | 晶间孔和溶蚀孔洞 | 白云石晶体半自形-自形,残余颗粒结构,晶间孔多被黑色泥质充填,有溶蚀现象 |
Ⅷ | 15 | 浅灰色中晶白云岩 | 晶间孔和溶蚀孔洞 | 白云石晶体半自形-自形,残余颗粒结构,晶间孔边缘存在溶蚀现象 |
Ⅸ | 25 | 花斑状浅灰色中晶白云岩 | 晶间孔和少量裂缝 | 白云石晶体半自形-自形,自形程度有渐变趋势,晶间孔有溶蚀现象,残余颗粒结构 |
Table 2
Parameter statistics of CT scanned samples from Well GC601, Tarim Basin"
样品编号 | Ⅰ | Ⅱ | Ⅲ | Ⅳ | Ⅴ | Ⅵ | Ⅶ | Ⅷ | Ⅸ | ||
样品 | 分辨率/μm | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 6 | 8 | |
定量计算区体积/ (109 μm3) | 226.98 | 262.14 | 314.43 | 250.04 | 226.98 | 287.50 | 274.63 | 456.53 | 287.50 | ||
孔隙度/% | 3.48 | 10.07 | 6.29 | 0.73 | 2.06 | 2.40 | 5.03 | 3.68 | 2.71 | ||
连通体积百分比/% | 36.33 | 99.61 | 99.87 | 79.18 | 44.08 | 24.05 | 79.05 | 51.40 | 30.62 | ||
孔隙 | 数量/个 | 14 707 | 14 391 | 9 530 | 3 461 | 7 644 | 5 927 | 3 595 | 1 221 | 6 506 | |
体积/(106 μm3) | 2 867 | 9 562 | 7 121 | 8 916 | 1 873 | 2 809 | 5 405 | 2 446 | 3 066 | ||
半径/μm | 平均 | 18.45 | 28.90 | 24.31 | 13.66 | 17.06 | 20.67 | 27.42 | 39.06 | 20.08 | |
最小 | 3.53 | 3.88 | 3.74 | 2.78 | 3.66 | 3.60 | 3.38 | 3.06 | 3.41 | ||
最大 | 63.29 | 156.50 | 445.90 | 46.59 | 98.86 | 143.00 | 401.70 | 180.60 | 187.60 | ||
喉道 | 数量/个 | 20 060 | 18 020 | 14 193 | 552 | 4 696 | 2 897 | 4 390 | 1 215 | 4 357 | |
体积/(106 μm3) | 1 164.2 | 3 817.9 | 2 970.2 | 35.8 | 510.8 | 683.5 | 1 654.0 | 1 192.2 | 892.0 | ||
半径/μm | 平均 | 13.40 | 19.12 | 23.37 | 10.18 | 12.42 | 19.33 | 34.25 | 28.86 | 17.40 | |
最小 | 3.26 | 3.13 | 3.19 | 2.64 | 3.49 | 3.48 | 3.21 | 3.07 | 3.24 | ||
最大 | 55.76 | 102.00 | 216.50 | 32.26 | 71.98 | 89.08 | 276.20 | 136.40 | 103.30 |
1 |
刘策, 张义杰, 李洪辉, 等. 塔里木盆地古城地区奥陶系鹰山组层序地层划分及其地质意义[J]. 东北石油大学学报, 2017, 41 (1): 82- 96.
doi: 10.3969/j.issn.2095-4107.2017.01.009 |
Liu Ce , Zhang Yijie , Li Honghui , et al. Sequence stratigraphy classification and its geologic implications of Ordovician Yingshan formation in Gucheng area, Tarim basin[J]. Journal of Northeast Petroleum University, 2017, 41 (1): 82- 96.
doi: 10.3969/j.issn.2095-4107.2017.01.009 |
|
2 |
王招明, 杨海军, 齐英敏, 等. 塔里木盆地古城地区奥陶系天然气勘探重大突破及其启示[J]. 天然气工业, 2014, 34 (1): 1- 9.
doi: 10.3787/j.issn.1000-0976.2014.01.001 |
Wang Zhaoming , Yang Haijun , Qi Yingmin , et al. Ordovician gas exploration breakthrough in the Gucheng lower uplift of the Tarim Basin and its enlightenment[J]. Natural Gas Industry, 2014, 34 (1): 1- 9.
doi: 10.3787/j.issn.1000-0976.2014.01.001 |
|
3 |
厉玉乐, 王显东, 孙效东, 等. 古城低凸起构造演化及有利勘探方向[J]. 大庆石油地质与开发, 2014, 33 (5): 97- 102.
doi: 10.3969/J.ISSN.1000-3754.2014.05.016 |
Li Yule , Wang Xiandong , Sun Xiaodong , et al. Structural evolution and favorable exploration direction for Gucheng Low Uplift[J]. Petroleum Geology and Oilfield Development in Daqing, 2014, 33 (5): 97- 102.
doi: 10.3969/J.ISSN.1000-3754.2014.05.016 |
|
4 | 冯曦, 彭先, 李隆新, 等. 碳酸盐岩气藏储层非均质性对水侵差异化的影响[J]. 天然气工业, 2018, 38 (6): 67- 75. |
Feng Xi , Peng Xian , Li Longxin , et al. The influence of reservoir heterogeneity on water invasion differentiation in carbonate gas reservoirs[J]. Natural Gas Industry, 2018, 38 (6): 67- 75. | |
5 |
Al-Khulaifi Y , Lin Q , Blunt M J , et al. Reservoir-condition pore-scale imaging of dolomite reaction with supercritical CO2 acidified brine:Effect of pore-structure on reaction rate using velocity distribution analysis[J]. International Journal of Greenhouse Gas Control, 2018, 68, 99- 111.
doi: 10.1016/j.ijggc.2017.11.011 |
6 | Hussein D, Lawrence J, Rashid F, et al.Developing pore size distribution models in heterogeneous carbonates using especially nuclear magnetic resonance[C]//Engineering in Chalk.Proceedings of the Chalk 2018 Conference.London: ICE Publishing, 2018: 529-534. |
7 | Sok R M , Knackstedt M A , Varslot T , et al. Pore scale characterization of carbonates at multiple scales:Integration of Micro-CT, BSEM, and FIBSEM[J]. Petrophysics, 2010, 51 (6): 1- 12. |
8 | 李俊键, 刘洋, 高亚军, 等. 微观孔喉结构非均质性对剩余油分布形态的影响[J]. 石油勘探与开发, 2018, 45 (6): 1043- 1052. |
Li Junjian , Liu Yang , Gao Yajun , et al. Effects of microscopic pore structure heterogeneity on the distribution and morphology of remaining oil[J]. Petroleum Exploration and Development, 2018, 45 (6): 1043- 1052. | |
9 |
李传亮, 朱苏阳, 聂旷, 等. 恒速压汞不能确定孔喉比[J]. 岩性油气藏, 2016, 28 (6): 134- 139.
doi: 10.3969/j.issn.1673-8926.2016.06.018 |
Li Chuanliang , Zhu Suyang , Nie Kuang , et al. Pore-throat ratio cannot be determined by constant-speedmercury injection method[J]. Lithologic Reservoirs, 2016, 28 (6): 134- 139.
doi: 10.3969/j.issn.1673-8926.2016.06.018 |
|
10 | 张天付, 寿建峰, 郑兴平, 等. 川东北下三叠统飞仙关组鲕粒白云岩孔喉的空间展布与刻画[J]. 古地理学报, 2012, 14 (2): 187- 196. |
Zhang Tianfu , Shou Jianfeng , Zheng Xingping , et al. Spatial distribution and characterization of pore and throat of oolitic dolostone of the Lower Triassic Feixianguan Formation in northeastern Sichuan Province[J]. Journal of Palaeogeography, 2012, 14 (2): 187- 196. | |
11 | 郑剑锋, 陈永权, 倪新锋, 等. 基于CT成像技术的塔里木盆地寒武系白云岩储层微观表征[J]. 天然气地球科学, 2016, 27 (5): 780- 789. |
Zheng Jianfeng , Chen Yongquan , Ni Xinfeng , et al. Microstructure characterization based on CT imaging technology of Cambrian dolomite reservoir in Tarim Basin[J]. Natural Gas Geoscience, 2016, 27 (5): 780- 789. | |
12 |
白斌, 朱如凯, 吴松涛, 等. 非常规油气致密储层微观孔喉结构表征新技术及意义[J]. 中国石油勘探, 2014, 19 (3): 78- 86.
doi: 10.3969/j.issn.1672-7703.2014.03.010 |
Bai Bin , Zhu Rukai , Wu Songtao , et al. New Micro-throatstructural characterization techniques for unconventional tight hydrocarbon reservoir[J]. China Petroleum Exploration, 2014, 19 (3): 78- 86.
doi: 10.3969/j.issn.1672-7703.2014.03.010 |
|
13 | 蒋裕强, 陈林, 蒋婵, 等. 致密储层孔隙结构表征技术及发展趋势[J]. 地质科技情报, 2014, 33 (3): 63- 70. |
Jiang Yuqiang , Chen Lin , Jiang Chan , et al. Characterization techniques and trends of the pore structure of tight reservoir[J]. Geological Science and Technology Information, 2014, 33 (3): 63- 70. | |
14 |
焦堃, 姚素平, 吴浩, 等. 页岩气储层孔隙系统表征方法研究进展[J]. 高校地质学报, 2014, 20 (1): 151- 161.
doi: 10.3969/j.issn.1006-7493.2014.01.015 |
Jiao Kun , Yao Suping , Wu Hao , et al. Advances in characterization of pore system of gas shales[J]. Geological Journal of China Universities, 2014, 20 (1): 151- 161.
doi: 10.3969/j.issn.1006-7493.2014.01.015 |
|
15 | 白斌, 朱如凯, 吴松涛, 等. 利用多尺度CT成像表征致密砂岩微观孔喉结构[J]. 石油勘探与开发, 2013, 40 (3): 329- 333. |
Bai Bin , Zhu Rukai , Wu Songtao , et al. Multi-scale method of Nano(Micro)-CT study on microscopic pore structure of tight sandstone of Yanchang Formation, Ordos Basin[J]. Petroleum Exploration and Development, 2013, 40 (3): 329- 333. | |
16 | 代榕, 罗顺社, 吕奇奇, 等. 苏里格气田致密砂岩微观孔喉分布及流动特征[J]. 地质科技情报, 2017, 36 (3): 144- 149. |
Dai Rong , Luo Shunshe , Lü Qiqi , et al. Porethroat distribution and flow characteristics of tight sandstone in Sulige Gasfield[J]. Geolo-gical Science and Technology Information, 2017, 36 (3): 144- 149. | |
17 |
孙卫, 史成恩, 赵惊蛰, 等. X-CT扫描成像技术在特低渗透储层微观孔隙结构及渗流机理研究中的应用[J]. 地质学报, 2006, 80 (5): 775- 779.
doi: 10.3321/j.issn:0001-5717.2006.05.020 |
Sun Wei , Shi Chengen , Zhao Jingzhe , et al. Application of X-CT scanned image technique in the research of micro-pore texture and percolation mechanism in ultar-premeable oil field[J]. Acta Geologica Sinica, 2006, 80 (5): 775- 779.
doi: 10.3321/j.issn:0001-5717.2006.05.020 |
|
18 | Arns C H , Bauget F , Limaye A , et al. Pore scale characterization of carbonates using X-ray microtomography[J]. SPE Journal, 2005, 10 (4): 475- 484. |
19 | Hebert V , Garing C , Luquot L , et al. Multi-scale X-ray tomography analysis of carbonate porosity[J]. Geological Society, London, Special Publications, 2014, 406 (1): 61- 79. |
20 |
Devarapalli R S , Islam A , Faisal T F , et al. Micro-CT and FIB-SEM imaging and pore structure characterization of dolomite rock at multiple scales[J]. Arabian Journal of Geosciences, 2017, 10 (16): 361.
doi: 10.1007/s12517-017-3120-z |
21 | Youssef S, Rosenberg E, Gland N F, et al.High resolution CT and pore-network models to assess petrophysical properties of homogeneous and heterogeneous carbonates[C].SPE/EAGE Reservoir characterization and simulation conference.Society of Petroleum Engineers, 2007: 1-12. |
22 | 佘敏, 寿建峰, 郑兴平, 等. 基于CT成像的三维高精度储集层表征技术及应用[J]. 新疆石油地质, 2011, (6): 664- 666. |
She Min , Shou Jianfeng , Zheng Xingping , et al. 3Dhigh resolution re-servoir characterization technique based on ct imaging and application[J]. Xinjiang Petroleum Geology, 2011, (6): 664- 666. | |
23 | Thompson K E , Willson C S , White C D , et al. Application of a new grain-based reconstruction algorithm to microtomography images for quantitative characterization and flow modeling[J]. SPE Journal, 2008, 13 (02): 164- 176. |
24 | 张天付, 熊冉, 韦东晓, 等. 浅议储层地质研究中的CT技术[J]. CT理论与应用研究, 2018, (2): 213- 226. |
Zhang TF , Xiong R , Wei DX , et al. The discussion on CT technique application in reservoirs geology[J]. CT Theory and Applications, 2018, 27 (2): 213- 226. | |
25 | Anselmetti F S , Luthi S , Eberli G P . Quantitative characterization of carbonate pore systems by digital image analysis[J]. AAPG Bulletin, 1998, 82 (10): 1815- 1836. |
[1] | Pengyuan HAN, Wenlong DING, Debin YANG, Juan ZHANG, Hailong MA, Shenghui WANG. Characteristics of the S80 strike-slip fault zone and its controlling effects on the Ordovician reservoirs in the Tahe oilfield, Tarim Basin [J]. Oil & Gas Geology, 2024, 45(3): 770-786. |
[2] | Yanqiu ZHANG, Honghan CHEN, Xiepei WANG, Peng WANG, Danmei SU, Zhou XIE. Assessment of connectivity between source rocks and strike-slip fault zone in the Fuman oilfield, Tarim Basin [J]. Oil & Gas Geology, 2024, 45(3): 787-800. |
[3] | Wenlong DING, Yuntao LI, Jun HAN, Cheng HUANG, Laiyuan WANG, Qingxiu MENG. Methods for high-precision tectonic stress field simulation and multi-parameter prediction of fracture distribution for carbonate reservoirs and their application [J]. Oil & Gas Geology, 2024, 45(3): 827-851. |
[4] | Zicheng CAO, Lu YUN, Lixin QI, Haiying LI, Jun HAN, Feng GENG, Bo LIN, Jingping CHEN, Cheng HUANG, Qingyan MAO. A major discovery of hydrocarbon-bearing layers over 1,000-meter thick in well Shunbei 84X, Shunbei area, Tarim Basin and its implications [J]. Oil & Gas Geology, 2024, 45(2): 341-356. |
[5] | Debin YANG, Xinbian LU, Dian BAO, Fei CAO, Yan WANG, Ming WANG, Runcheng XIE. New insights into the genetic types and characteristics of the Ordovician marine fault-karst carbonate reservoirs in the northern Tarim Basin [J]. Oil & Gas Geology, 2024, 45(2): 357-366. |
[6] | Changjian ZHANG, Debin YANG, Lin JIANG, Yingbing JIANG, Qi CHANG, Xuejian MA. Characteristics and origin of over-dissolution residual fault-karst reservoirs in the northern Tahe oilfield, Tarim Basin [J]. Oil & Gas Geology, 2024, 45(2): 367-383. |
[7] | Tongwen JIANG, Xingliang DENG, Peng CAO, Shaoying CHANG. Storage space types and water-flooding efficiency for fault-controlled fractured oil reservoirs in Fuman oilfield, Tarim Basin [J]. Oil & Gas Geology, 2024, 45(2): 542-552. |
[8] | Yuemeng NIU, Jun HAN, Yixin YU, Cheng Huang, Bo Lin, Fan YANG, Lang YU, Junyu CHEN. Igneous rock intrusions in the western Shunbei area, Tarim Basin: Characteristics and coupling relationships with faults [J]. Oil & Gas Geology, 2024, 45(1): 231-242. |
[9] | San ZHANG, Qiang JIN, Jinxiong SHI, Mingyi HU, Mengyue DUAN, Yongqiang LI, Xudong ZHANG, Fuqi CHENG. Filling patterns and reservoir property of the Ordovician buried-river karst caves in the Tabei area, Tarim Basin [J]. Oil & Gas Geology, 2023, 44(6): 1582-1594. |
[10] | Wei HU, Ting XU, Yang YANG, Zengmin LUN, Zongyu LI, Zhijiang KANG, Ruiming ZHAO, Shengwen MEI. Fluid phases and behaviors in ultra-deep oil and gas reservoirs, Tarim Basin [J]. Oil & Gas Geology, 2023, 44(4): 1044-1053. |
[11] | Tan ZHANG, Wei YAO, Yongqiang ZHAO, Yushuang ZHOU, Jiwen HUANG, Xinyu FAN, Yu LUO. Time scale and denudation thickness calculation of Carboniferous Kalashayi Formation in the Bamai area, Tarim Basin [J]. Oil & Gas Geology, 2023, 44(4): 1054-1066. |
[12] | Honghui GUO, Jianwei FENG, Libin ZHAO. Characteristics of passive strike-slip structure and its control effect on fracture development in Bozi-Dabei area, Tarim Basin [J]. Oil & Gas Geology, 2023, 44(4): 962-975. |
[13] | Bin LI, Xingxing ZHAO, Guanghui WU, Jianfa HAN, Baozhu GUAN, Chunguang SHEN. Differential hydrocarbon accumulation model of the Ordovician in Tazhong Ⅱ block, Tarim Basin [J]. Oil & Gas Geology, 2023, 44(2): 308-320. |
[14] | Hongbo ZHANG, Yushuang ZHOU, Xuguang SHA, Shang DENG, Xiangcun SHEN, Zhongzheng JIANG. Development characteristics and evolution mechanism of the uplifted segment of the No. 5 strike-slip fault zone in Shunbei area, Tarim Basin [J]. Oil & Gas Geology, 2023, 44(2): 321-334. |
[15] | Xingguo SONG, Shi CHEN, Zhou XIE, Pengfei KANG, Ting LI, Minghui YANG, Xinxin LIANG, Zijun PENG, Xukai SHI. Strike-slip faults and hydrocarbon accumulation in the eastern part of Fuman oilfield, Tarim Basin [J]. Oil & Gas Geology, 2023, 44(2): 335-349. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||