Oil & Gas Geology ›› 2022, Vol. 43 ›› Issue (1): 229-240.doi: 10.11743/ogg20220119
• Methods and Technologies • Previous Articles Next Articles
Haiyan Zhu1(), Xinqin Xu1, Anhai Zhong2, Qinxi Zhang3
Received:
2020-07-20
Revised:
2021-12-01
Online:
2022-02-01
Published:
2022-01-28
CLC Number:
Haiyan Zhu, Xinqin Xu, Anhai Zhong, Qinxi Zhang. Numerical simulation of evenly propagating hydraulic fractures with smaller cluster spacing in the horizontal well YYP1 for deep shale oil in the Shengli Oilfield[J]. Oil & Gas Geology, 2022, 43(1): 229-240.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Model parameters of Well YYP1, Shengli Oilfield"
层位 | 岩性 | E/GPa | K/(10-3μm2) | Φ/% | |||||
---|---|---|---|---|---|---|---|---|---|
隔层4 | 泥岩 | 23 | 0.20 | 0.005 | 4.2 | 51.8 | 69.40 | 75.50 | 85.50 |
储层3 | 白云岩 | 25 | 0.27 | 1.200 | 6.0 | 51.8 | 66.60 | 73.99 | 87.20 |
隔层3 | 泥岩 | 22 | 0.23 | 0.005 | 2.8 | 51.8 | 65.60 | 71.50 | 88.90 |
储层2 | 泥灰岩 | 27 | 0.25 | 2.850 | 3.0 | 51.8 | 63.62 | 69.65 | 89.50 |
隔层2 | 泥岩 | 23 | 0.24 | 0.004 | 6.0 | 51.8 | 67.10 | 72.50 | 90.50 |
储层1 | 灰岩 | 25 | 0.21 | 3.000 | 3.5 | 51.8 | 67.40 | 74.80 | 90.91 |
隔层1 | 泥质灰岩 | 22 | 0.22 | 0.010 | 2.0 | 51.8 | 70.50 | 76.80 | 91.50 |
1 | 胥云,雷群,陈铭,等. 体积改造技术理论研究进展与发展方向[J]. 石油勘探与开发,2018,45(5):874-887. |
Xu Yun, Lei Qun, Chen Ming, et al. Progress and development of volume stimulation techniques[J]. Petroleum Exploration and Development,2018,45(5):874-887. | |
2 | Miller C, Waters G, Rylander E. Evaluation of production log data from horizontal wells drilled in organic shales[C]// SPE. North American Unconventional Gas Conference and Exhibition.The Woodlands, Texas, USA,2011:SPE⁃144326⁃MS. |
3 | 郑有成,范宇,雍锐,等. 页岩气密切割分段+高强度加砂压裂新工艺[J]. 天然气工业,2019,39(10):76-81. |
Zheng Youcheng, Fan Yu, Yong Rui,et al. A new fracturing technology of intensive stage + high⁃intensity proppant injection for shale gas reservoirs[J]. Natural Gas Industry,2019,39(10):76-81. | |
4 | Lolon E, Hamidieh K, Weijers L,et al. Evaluating the relationship between well parameters and production using multivariate statistical models: a middle bakken and three forks case history[C]// SPE. SPE hydraulic fracturing technology conference. The Woodlands, Texas, USA,2016:SPE⁃179171⁃MS. |
5 | Guo Jianchun, Lu Qianli, Zhu Haiyan,et al. Perforating cluster space optimization method of horizontal well multi⁃stage fracturing in extremely thick unconventional gas reservoir[J]. Journal of Natural Gas Science and Engineering, 2015,26(9):1648-1662. |
6 | 孙元伟,程远方,时凤霞,等. 致密气藏压裂水平井产能分析及压裂优化设计[J]. 新疆石油地质,2018,39(6): 727-731. |
Sun Yuanwei, Cheng Yuanfang, Shi Fengxia, et al. Productivity analysis and fracturing design optimization of fractured horizontal well in tight gas reservoirs[J]. Xinjiang Petroleum Geology,2018,39(6): 727-731. | |
7 | 赵金洲,许文俊,李勇明,等. 低渗透油气藏水平井分段多簇压裂簇间距优化新方法[J]. 天然气工业,2016,36(10):63-69. |
Zhao Jinzhou, Xu Wenjun, Li Yongming,et al. A new method for cluster spacing optimization of multi⁃cluster staged fracturing in horizontal wells of low⁃permeability oil and gas reservoirs[J]. Natural Gas Industry, 2016,36(10): 63-69. | |
8 | Daneshy, Ali A J, Thompson T,et al. Fracture shadowing: a direct method for determination of the reach and propagation pattern of hydraulic fractures in horizontal wells[C]//SPE. The SPE hydraulic fracturing technology conference, The Woodlands, Texas, USA,2012: SPE-151980-MS. |
9 | 尹建,郭建春,曾凡辉. 水平井分段压裂射孔间距优化方法[J]. 石油钻探技术,2012,40(5):67-71. |
Yin Jian, Guo Jianchun, Zeng Fanhui. Perforation spacing optimization for staged fracturing of horizontal well[J]. Petroleum Dril⁃ling Techniques,2012,40(5):67-71. | |
10 | 尚立涛,张燕明,王业晗,等.致密油气储层综合可压裂性解释方法在鄂尔多斯盆地的应用[J].石油地质与工程,2021,35(4):38–42. |
Shang Litao, Zhang Yanming, Wang Yehan, et al. Application of comprehensive fracturing interpretation method of tight oil and gas reservoir in Ordos basin[J]. Petroleum Geology & Engineering, 2021, 35(4): 38–42. | |
11 | 王欢,计秉玉,廖新维,等.致密油藏体积压裂水平井压力特征[J].断块油气田,2020,27(2):217-223. |
Wang Huan, Ji Bingyu, Liao Xinwei,et al.Pressure characteristics for volume-fractured horizontal well in tight oil reservoirs[J].Fault-Block Oil and Gas Field,2020,27(2):217-223. | |
12 | 刘学伟.页岩储层水力压裂支撑裂缝导流能力影响因素[J].断块油气田,2020,27(3):394-398. |
Liu Xuewei.Influencing factors of hydraulic propped fracture conductivity in shale reservoir[J].Fault-Block Oil and Gas Field,2020,27(3):394-398. | |
13 | 刘威.固井滑套多簇体积压裂在大牛地气田致密砂岩气藏的应用[J].石油地质与工程,2021,35(3):101–104. |
Liu Wei. Application of cementing sliding sleeve multi cluster volume fracturing in tight sandstone gas reservoir of Daniudi gas field [J]. Petroleum Geo⁃logy & Engineering, 2021, 35(3):101–104. | |
14 | 傅建斌.考虑多因素影响的致密气藏压裂井产能预测方法[J].断块油气田,2021,28(2):156-161. |
Fu Jianbin.Productivity prediction method of fractured wells in tight gas reservoir considering multi factors[J].Fault-Block Oil and Gas Field,2021,28(2):156-161. | |
15 | 黎明,韩丰华,王肃,等. 安棚深层系致密砂岩油藏水平井压裂参数优化设计研究[J].石油地质与工程,2020,34(2):104–108. |
Li Ming, Han Fenghua, Wang Su, et al. Optimal design of horizontal well fracturing parameters in Anpeng deep tight sandstone reservoir[J]. Petroleum Geology & Engineering, 2020, 34(2): 104–108. | |
16 | 赵志恒,郑有成,范宇,等.页岩储集层水平井段内多簇压裂技术应用现状及认识[J].新疆石油地质,2020,41(4):499-504. |
Zhao Zhiheng, Zheng Youcheng, Fan Yu,et al.Application and cognition of multi⁃cluster fracturing technology in horizontal wells in shale reservoirs[J]. Xinjiang Petroleum Geology,2020,41(4):499-504. | |
17 | 陈志明,陈昊枢,廖新维,等.致密油藏压裂水平井缝网系统评价方法——以准噶尔盆地吉木萨尔地区为例[J].石油与天然气地质,2020,41(6):1288-1298. |
Chen Zhiming, Chen Haoshu, Liao Xinwei,et al.Evaluation of fracture networks along fractured horizontal wells in tight oil reservoirs:A case study of Jimusar oilfield in the Junggar Basin[J].Oil & Gas Geology,2020,41(6):1288-1298. | |
18 | 承宁,郭旭洋,魏璞,等. 水平井分段分簇压裂缝间干扰和段间干扰建模:以昌吉油田吉7 井区八道湾组油藏为例[J]. 新疆石油地质,2021,42(4):437-443. |
Cheng Ning, Guo Xuyang, Wei Pu, et al. Inter⁃fracture and inter⁃section interference modeling for staged and clustered fracturing stimulation in horizontal wells: a case study on reservoirs of Badaowan formation in wellblock Ji 7 in Changji oilfield[J]. Xinjiang Petroloeum Geology, 2021,42(4):437-443. | |
19 | Cheng Y. Mechanical interaction of multiple fractures- exploring impacts of the selection of the spacing/number of perforation clusters on horizontal shale⁃gas wells[J]. SPE Journal, 2012,17(4):992-1001. |
20 | Zhu Haiyan, Jin Xiaochun, Guo Jianchun,et al. Coupled flow,stress and damage modelling of interactions between hydraulic fractures and natural fractures in shale gas reservoirs[J]. Oil Gas and Coal Technology, 2016,13(4):359-390. |
21 | Camanho P P, Davila C G, De Moura M F. Numerical simulation of mixed-mode progressive delamination in composite materials[J]. Journal of Composite Materials, 2003, 37(16):1415-1438. |
22 | Li Yang, Deng Jingen, Liu Wei,et al. Numerical simulation of li⁃mited⁃entry multi⁃cluster fracturing in horizontal well[J]. Journal of Petroleum Science & Engineering, 2017,152:443-455. |
23 | Kumar D, Ghassemi A. A three⁃dimensional analysis of simulta⁃neous and sequential fracturing of horizontal wells[J]. Journal of Petroleum Science and Engineering, 2016,146:1006-1025. |
24 | 李杨,邓金根,刘伟,等. 水平井分段多簇限流压裂数值模拟[J]. 断块油气田,2017,24(1):69-73. |
Li Yang, Deng Jingen, Liu Wei,et al. Numerical simulation of li⁃mited entry technique in multi⁃stage and multi⁃cluster horizontal well fracturing[J]. Fault⁃Block Oil & Gas Field,2017,24(1):69-73. | |
25 | Zhu Haiyan, Zhao Xing, Guo Jianchun,et al. Coupled flow⁃stress⁃damage simulation of deviated⁃wellbore fracturing in hard⁃rock[J]. Journal of Natural Gas Science and Engineering,2015,26(9):711-724. |
26 | 连志龙,张劲,吴恒安,等. 水力压裂扩展的流固耦合数值模拟研究[J]. 岩土力学,2008 (11):3021-3026. |
Lian Zhilong, Zhang Jing, Wu Hengan,et al. A simulation study of hydraulic fracturing propagation with a solid⁃fluid coupling model[J]. Rock and Soil Mechanics, 2008(11):3021-3026. | |
27 | Zhu Haiyan, Zhang Xudong, Guo Jianchun,et al. Stress field interference of hydraulic fractures in layered formation[J]. Geomechanics and Engineering,2015,9(5):645-667. |
28 | Zhu Haiyan, Wang Heng, Tang Xuanhe,et al. Hydraulic fracture propagation in sand⁃mudstone interbedded reservoir integrated wi⁃th different fluid flow of multi⁃perforated fractures[C]// ARMA-CUPB Geothermal International Conference. Beijing: 2019. |
[1] | Huimin LIU, Youshu BAO, Maowen LI, Zheng LI, Lianbo WU, Rifang ZHU, Dayang WANG, Xin WANG. Geochemical parameters for evaluating shale oil enrichment and mobility: A case study of shales in the Bakken Formation, Williston Basin and the Shahejie Formation, Jiyang Depression [J]. Oil & Gas Geology, 2024, 45(3): 622-636. |
[2] | Xiugang PU, Jiangchang DONG, Gongquan CHAI, Shunyao SONG, Zhannan SHI, Wenzhong HAN, Wei ZHANG, Delu XIE. Enrichment model of high-abundance organic matter in shales in the 2nd member of the Paleogene Kongdian Formation, Cangdong Sag, Bohai Bay Basin [J]. Oil & Gas Geology, 2024, 45(3): 696-709. |
[3] | Rui FANG, Yuqiang JIANG, Changcheng YANG, Haibo DENG, Chan JIANG, Haitao HONG, Song TANG, Yifan GU, Xun ZHU, Shasha SUN, Guangyin CAI. Occurrence states and mobility of shale oil in different lithologic assemblages in the Jurassic Lianggaoshan Formation, Sichuan Basin [J]. Oil & Gas Geology, 2024, 45(3): 752-769. |
[4] | Jun LI, Youlong ZOU, Jing LU. Well-log-based assessment of movable oil content in lacustrine shale oil reservoirs: A case study of the 2nd member of the Paleogene Funing Formation, Subei Basin [J]. Oil & Gas Geology, 2024, 45(3): 816-826. |
[5] | Xiaoyu DU, Zhijun JIN, Lianbo ZENG, Guoping LIU, Sen YANG, Xinping LIANG, Guoqing LU. Evaluation of natural fracture effectiveness in deep lacustrine shale oil reservoirs based on formation microresistivity imaging logs [J]. Oil & Gas Geology, 2024, 45(3): 852-865. |
[6] | Zhe ZHAO, Bin BAI, Chang LIU, Lan WANG, Haiyan ZHOU, Yuxi LIU. Current status, advances, and prospects of CNPC’s exploration of onshore moderately to highly mature shale oil reservoirs [J]. Oil & Gas Geology, 2024, 45(2): 327-340. |
[7] | Hequn GAO, Yuqiao GAO, Xipeng HE, Jun NIE. Rock mechanical properties and controlling factors for shale oil reservoirs in the second member of the Paleogene Funing Formation, Subei Basin [J]. Oil & Gas Geology, 2024, 45(2): 502-515. |
[8] | Xusheng GUO, Xiaoxiao MA, Maowen LI, Menhui QIAN, Zongquan HU. Mechanisms for lacustrine shale oil enrichment in Chinese sedimentary basins [J]. Oil & Gas Geology, 2023, 44(6): 1333-1349. |
[9] | Longde SUN, Xiaojun WANG, Zihui FENG, Hongmei SHAO, Huasen ZENG, Bo GAO, Hang JIANG. Formation mechanisms of nano-scale pores/fissures and shale oil enrichment characteristics for Gulong shale, Songliao Basin [J]. Oil & Gas Geology, 2023, 44(6): 1350-1365. |
[10] | Lijun MI, Jianyong XU, Wei LI. Shale oil resource potential in the Bohai Sea area [J]. Oil & Gas Geology, 2023, 44(6): 1366-1377. |
[11] | Huimin LIU, Zheng LI, Youshu BAO, Shouchun ZHANG, Weiqing WANG, Lianbo WU, Yong WANG, Rifang ZHU, Zhengwei FANG, Shun ZHANG, Peng LIU, Min WANG. Geology of shales in prolific shale-oil well BYP5 in the Jiyang Depression, Bohai Bay Basin [J]. Oil & Gas Geology, 2023, 44(6): 1405-1417. |
[12] | Min WANG, Changqi YU, Junsheng FEI, Jinbu LI, Yuchen ZHANG, Yu YAN, Yan WU, Shangde DONG, Yulong TANG. Molecular dynamics simulation of shale oil adsorption in kerogen and its implications [J]. Oil & Gas Geology, 2023, 44(6): 1442-1452. |
[13] | Zhiming LI, Yahui LIU, Jinyi HE, Zhongliang SUN, Junying LENG, Chuxiong LI, Mengyao JIA, Ershe XU, Peng LIU, Maowen LI, Tingting CAO, Menhui QIAN, Feng ZHU. Limits of critical parameters for sweet-spot interval evaluation of lacustrine shale oil [J]. Oil & Gas Geology, 2023, 44(6): 1453-1467. |
[14] | Zhixiong FANG, Qiusheng XIAO, Dianwei ZHANG, Hongliang DUAN. Geological characteristics and exploration of continental fault-block shale oil reservoirs in the Subei Basin [J]. Oil & Gas Geology, 2023, 44(6): 1468-1478. |
[15] | Ming LI, Min WANG, Jinyou ZHANG, Yuchen ZHANG, Zhao LIU, Bin LUO, Congsheng BIAN, Jinbu LI, Xin WANG, Xinbin ZHAO, Shangde DONG. Evaluation of the compositions of lacustrine shale oil in China’s typical basins and its implications [J]. Oil & Gas Geology, 2023, 44(6): 1479-1498. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||