Oil & Gas Geology ›› 2022, Vol. 43 ›› Issue (2): 477-488.doi: 10.11743/ogg20220219
• Methods and Technologies • Previous Articles
Jianfeng Wang1,2,3(), Chao Yang4, Yuke Liu5, Yongqiang Xiong1,3()
Received:
2020-11-19
Revised:
2022-01-20
Online:
2022-04-01
Published:
2022-03-11
Contact:
Yongqiang Xiong
E-mail:wangjianfeng@gig.ac.cn;xiongyq@gig.ac.cn
CLC Number:
Jianfeng Wang, Chao Yang, Yuke Liu, Yongqiang Xiong. Review on the application of nanoindentation to study of shale mechanical property[J]. Oil & Gas Geology, 2022, 43(2): 477-488.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | 唐颖, 邢云, 李乐忠,等. 页岩储层可压裂性影响因素及评价方法[J]. 地学前缘(中国地质大学(北京):北京大学), 2012, 19(5): 356-363. |
Tang Ying, Xing Yun, Li Lezhong, et al. Influence factors and evaluation methods of gas shale fracability[J]. Earth Science Frontiers(China University of Geoscience (Beijing):Peking University), 2012, 19(5):356-363. | |
2 | 袁俊亮, 邓金根, 张定宇,等. 页岩气储层可压裂性评价技术 [J]. 石油学报, 2013, 34(3): 523-527. |
Yuan Junliang, Deng Jingen, Zhang Dingyu, et al. Fracturing evaluation of shale gas reservoirs[J]. Acta petroleum Sinica, 2013, 34 (3): 523-527. | |
3 | 邹才能, 杨智, 朱如凯,等. 中国非常规油气勘探开发与理论技术进展 [J] . 地质学报, 2015, 89(6): 979-1007. |
Zou Caineng, Yang Zhi, Zhu Rukai, et al. Progress in China’s unconventional oil and gas exploration and development and theoretical technologies[J]. Acta Geologica Sinica, 2015, 89 (6): 979-1007. | |
4 | 王濡岳, 胡宗全, 董立,等. 页岩气储层表征评价技术进展与思考[J].石油与天然气地质, 2021, 42(1):54-65. |
Wang Ruyue, Hu Zongquan, Dong Li, et al. Advancement and trends of shale gas reservoir characterization and evaluation[J]. Oil & Gas Geology, 2021, 42(1):54-65. | |
5 | 蔡勋育, 赵培荣, 高波,等. 中国石化页岩气“十三五”发展成果与展望[J]. 石油与天然气地质, 2021, 42(1):16-27. |
Cai Xunyu, Zhao Peirong, Gao Bo, et al. Sinopec’s shale gas development achievements during the “Thirteenth Five⁃Year Plan” period and outlook for the future[J]. Oil & Gas Geology, 2021, 42(1):16-27. | |
6 | 马永生, 黎茂稳, 蔡勋育,等. 中国海相深层油气富集机理与勘探开发:研究现状、关键技术瓶颈与基础科学问题[J].石油与天然气地质, 2020, 41(4):655-672. |
Ma Yongsheng, Li Maowen, Cai Xunyu, et al. Mechanisms and exploitation of deep marine petroleum accumulations in China: Advances, technological bottlenecks and basic scientific problems[J]. Oil & Gas Geology, 2020, 41(4):655-672. | |
7 | Mighani S, Bernabé Y, Boulenouar A, et al. Creep deformation in vaca Muerta Shale from nanoindentation to triaxial experiments[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(8): 7842-7868. |
8 | Yang C, Xiong Y Q, Wang J F, et al. Mechanical characterization of shale matrix minerals using phase⁃positioned nanoindentation and nano⁃dynamic mechanical analysis[J]. International Jour⁃nal of Coal Geology, 2020, 229,103571. |
9 | 柳宇柯. 高演化阶段页岩有机质纳米孔隙、化学结构与力学性能研究[D]. 广州:中国科学院大学(中国科学院广州地球化学研究所), 2019. |
Liu Yuke. Nanopore development, chemical structure and mechanical properties of organic matter in highly matured shale[D]. Guangzhou:University of Chinese Academy of Sciences (Guangzhou Institute of Geochemistry, Chinese Academy of Sciences), 2019. | |
10 | Bandyopadhyay K. Seismic anisotropy: Geological causes and its implications to reservoir geophysics[D]. Palo Alto: Stanford University. 2009. |
11 | Bobko C, F⁃J Ulm. The nano⁃mechanical morphology of shale[J]. Mechanics of Materials, 2008, 40(4-5): 318-337. |
12 | Emmanuel S, Day⁃Stirrat R J. A framework for quantifying size dependent deformation of nano⁃scale pores in mudrocks[J]. Journal of Applied Geophysics, 2012, 86, 29-35. |
13 | Oliver W C, Pharr G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J]. Journal of Materials Research, 1992, 7(6): 1564-1583. |
14 | Oliver W C, Pharr G M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology[J]. Journal of Materials Research, 2004, 19(1): 3-20. |
15 | 林兰英, 秦理哲, 傅峰. 微观力学表征技术的发展及其在木材科学领域中的应用[J]. 林业科学, 2015, 51(2): 121-8. |
Lin Lanying, Qin Lizhe, Fu Feng. Development of micromechanical technology and application on wood science[J]. Scientia Silvae Sinicae, 2015, 51 (2): 121-8. | |
16 | Constantinides G, F⁃J Ulm. The nanogranular nature of C-S-H [J]. Journal of the Mechanics and Physics of Solids, 2007,55(1): 64-90. |
17 | F⁃J Ulm, Vandamme M, Bobko C, et al. Statistical indentation techniques for hydrated nanocomposites: Concrete, bone, and shale[J]. Journal of the American Ceramic Society, 2007, 90(9): 2677-2692. |
18 | Zhu W, Hughes J J, Bicanic N, et al. Nanoindentation mapping of mechanical properties of cement paste and natural rocks[J]. Materials Characterization, 2007, 58(11-12): 1189-1198. |
19 | Deirieh A, Ortega J A, Ulm F J, et al. Nanochemomechanical assessment of shale: A coupled WDS⁃indentation analysis[J]. Acta Geotechnica, 2012, 7(4): 271-295. |
20 | Bennett K C, Berla L A, Nix W D, et al. Instrumented nanoindentation and 3D mechanistic modeling of a shale at multiple scales[J]. Acta Geotechnica,2015, 10(1): 1-14. |
21 | Alstadt K N, Katti K S, Katti D R. Nanoscale morphology of kerogen and in situ nanomechanical properties of Green River Oil Shale[J]. Journal of Nanomechanics and Micromechanics, 2015, 6(1): 04015003. |
22 | Liu K, Ostadhassan M, Bubach B. Applications of nano⁃indentation methods to estimate nanoscale mechanical properties of shale reservoir rocks[J]. Journal of Natural Gas Science and Engineering, 2016, 35, 1310-1319. |
23 | Zeszotarski J C, Chromik R R. Vinci R P,et al. Imaging and mechanical property measurements of kerogen via nanoindentation[J]. Geochimica et Cosmochimica Acta, 2004, 68(20): 4113-4119. |
24 | Sorelli L, Constantinides G, F⁃J Ulm, et al. The nano⁃mechanical signature of Ultra High Performance Concrete by statistical nanoindentation techniques[J]. Cement and Concrete Research, 2008, 38(12): 1447-1456. |
25 | Veytskin Y B, Tammina V K, Bobko C P, et al. Micromechanical characterization of shales through nanoindentation and energy dispersive x⁃ray spectrometry[J]. Geomechanics for Energy & the Environment, 2017, 9: 21-35. |
26 | Kumar V, Curtis M E, Gupta N, et al. Estimation of elastic properties of organic matter in Woodford Shale through nanoindentation measurement[C]//SPE Canadian Unconventional Resources Conference. Calgary:SPE,2012: 162778. |
27 | Kumar V, Sondergeld C H, Rai C S. Nano to macro mechanical characterization of shale[C]//SPE annual technical conference and exhibition. San Antonin: SPE,2012: 159804. |
28 | Zargari S, Prasad M, Mba K C, et al. Organic maturity, elastic properties, and textural characteristics of self resourcing reservoirs [J]. Geophysics, 2013, 78(4):D223-D235. |
29 | Zargari S, Wilkinson T M, Packard C E, et al. Effect of thermal maturity on elastic properties of kerogen[J]. Geophysics, 2016, 81(2):M17-M22. |
30 | Abedi S, Slim M, F⁃J Ulm. Nanomechanics of organic⁃rich shales: The role of thermal maturity and organic matter content on texture[J]. Acta Geotechnica, 2016, 1-13. |
31 | Gupta I, Sondergeld C, Rai C. Applications of nanoIndentation for reservoir characterization in shales[C]//52nd US Rock Mechanics/Geomechanics Symposium. OnePetro: 2018. |
32 | Liu K, Ostadhassan M, Bubach B, et al. Nano⁃dynamic mechanical analysis (nano⁃DMA) of creep behavior of shales: Bakken ca⁃se study[J]. Journal of Materials Science, 2017, 53(6): 4417-4432. |
33 | Mighani S, Taneja S, Sondergeld C H, et al. Nanoindentation creep measurements on shale[C]//49th US Rock Mechanics/Geomechanics Symposium. San Francisco: ARMA,2015: 148. |
34 | Sharma P, Prakash R, Abedi S. Effect of temperature on nano⁃and microscale creep properties of organic⁃rich shales[J]. Journal of Petroleum Science and Engineering, 2019, 175, 375-388. |
35 | Shi X, Jiang S, Yang L, et al. Modeling the viscoelasticity of shale by nanoindentation creep tests[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 127, 104210. |
36 | Wang J, Liu Y, Yang C, et al. Modeling the viscoelastic behavior of quartz and clay minerals in shale by nanoindentation creep tests[J].Geofluids, 2022, 2860077. |
37 | Kumar V, Sondergeld C, Rai C S. Effect of mineralogy and organic matter on mechanical properties of shale[J]. Interpretation, 2015, 3(3): SV9-SV15. |
38 | 时贤, 蒋恕, 卢双舫 等. 利用纳米压痕实验研究层理性页岩岩石力学性质——以渝东南酉阳地区下志留统龙马溪组为例[J].石油勘探与开发,2019,46(1):155-164. |
Shi Xian, Jiang Shu, Lu Shuangfang, et al. Investigation of mechanical properties of bedded shale by nanoindentation tests: A case study on Lower Silurian Longmaxi Formation of Youyang area in southeast Chongqing, China[J]. Petroleum Exploration and Development, 2019, 46(1): 155-164. | |
39 | Shukla P, Kumar V, Curtis M, et al. Nanoindentation studies on shales[C]//47th Us Rock Mechanics/Geomechanics Symposium. San Francisco: ARMA, 2013: 578. |
40 | Vandamme M, Ulm FJ. Nanogranular origin of concrete creep[J]. Proceedings of the National Academy of Sciences, 2009, 106(26): 10552-10557. |
41 | Kim J⁃Y, Lee J⁃J, Lee Y⁃H, et al. Surface roughness effect in instrumented indentation: A simple contact depth model and its verification[J]. Journal of Materials Research, 2011, 21(12): 2975-2978. |
42 | Abedi S, Slim M, Hofmann R, et al. Nanochemo⁃mechanical signature of organic⁃rich shales: A coupled indentation-EDX analysis[J]. Acta Geotechnica, 2016, 11(3): 559-572. |
43 | 刘圣鑫, 王宗秀, 张林炎,等. 基于纳米压痕的页岩微观力学性质分析[J].实验力学, 2018, 33(6): 957-68. |
Liu Shengxin, Wang zongxiu, Zhang Linyan, et al. Micromecha⁃nics properties analysis of shale based on nano⁃indentation[J]. Journal of Experimental mechanics, 2018, 33(6): 957-12. | |
44 | Ulm F J, Abousleiman Y. The nanogranular nature of shale[J]. Acta Geotechnica, 2006, 1(2): 77-88. |
45 | Liu K, Ostadhassan M, Bubach B, et al. Statistical grid nanoindentation analysis to estimate macro⁃mechanical properties of the Bakken Shale[J]. Journal of Natural Gas Science and Engineering, 2018, 53, 181-190. |
46 | Miller M, Bobko C, Vandamme M, et al. Surface roughness criteria for cement paste nanoindentation[J]. Cement and Concrete Research, 2008, 38(4): 467-476. |
47 | Institution B S. Metallic materials-Instrumented indentation test for hardness and materials parameters-Part 1: Test method-verifi⁃cation and calibration of testing machines [S]. Geneva :ISO, 2002:14577-1. |
48 | Larsson P L, Giannakopoulos A E, Sderlund E, et al. Analysis of Berkovich indentation[J]. International Journal of Solids & Struc⁃tures, 1996, 33(2): 221-248. |
49 | Liu K, Ostadhassan M, Bubach B. Application of nanoindentation to characterize creep behavior of oil shales[J]. Journal of Petroleum Science and Engineering, 2018, 167, 729-736. |
50 | Li C, Ostadhassan M, Abarghani A, et al. Multi⁃scale evaluation of mechanical properties of the Bakken Shale [J]. Journal of Materials Science, 2018, 54(3): 2133-2151. |
51 | 曾庆辉, 钱玲, 刘德汉,等. 富有机质的黑色页岩和油页岩的有机岩石学特征与生、排烃意义[J]. 沉积学报, 2006, (1): 113-122. |
Zeng Qinghui, Qian Ling, Liu Dehan, et al. Organic petrological study on hydrocarbon generation and expulsion from organic rich black shale and oil shale[J]. Acta sedimentogical sinica, 2006,(1): 113-122. | |
52 | Tian H, Pan L, Xiao X, et al. A preliminary study on the pore characterization of Lower Silurian black shales in the Chuandong thrust fold belt, southwestern China using low pressure N2 adsorption and FE⁃SEM methods[J]. Marine and Petroleum Geology, 2013, 48, 8-19. |
53 | 王飞宇, 关晶, 冯伟平,等. 过成熟海相页岩孔隙度演化特征和游离气量[J].石油勘探与开发, 2013, 40(6): 764-768. |
Wang Feiyu, Guan Jing, Feng Weiping, et al. Evolution of overmature marine shale porosity and implication to the free gas volume[J]. Petroleum Exploration and Development, 2013, 40(6): 764-768. | |
54 | Ahmadov R, Vanorio T, Mavko G. Confocal laser scanning and atomic⁃force microscopy in estimation of elastic properties of the organic⁃rich Bazhenov Formation[J]. The Leading Edge, 2009, 28(1): 18-23. |
55 | Eliyahu M, Emmanuel S, Day⁃Stirrat R J, et al. Mechanical prope⁃rties of organic matter in shales mapped at the nanometer scale[J]. Marine and Petroleum Geology, 2015, 59, 294-304. |
56 | Emmanuel S, Eliyahu M, Day⁃Stirrat R J, et al. Impact of thermal maturation on nano⁃scale elastic properties of organic matter in shales[J]. Marine and Petroleum Geology, 2016, 70, 175-84. |
57 | Prasad M, Mba K C, McEvoy T E, et al. Maturity and impedance analysis of organic‑rich shales[J]. SPE Reservoir Evaluation & Engineering, 2011, 14(5): 533-543. |
58 | Okiongbo K S, Aplin A C, Larter S R. Changes in typeⅡkerogen density as a function of maturity⁃evidence from the Kimmeri⁃dge clay formation[J]. Energy & Fuels, 2005,19(6):2495-2499. |
59 | Slim M, Abedi S, Bryndzia L T, et al. Role of organic matter on nanoscale and microscale creep properties of source rocks[J]. Journal of Engineering Mechanics, 2019, 145(1): 04018121. |
60 | Sone H, Zoback M D. Time⁃dependent deformation of shale gas reservoir rocks and its long⁃term effect on the in situ state of stress [J]. International Journal of Rock Mechanics & Miningences, 2014, 69, 120-132. |
61 | Shi X, Jiang S, Wang Z, et al. Application of nanoindentation technology for characterizing the mechanical properties of shale before and after supercritical CO2 fluid treatment[J]. Journal of CO2 Utilization, 2020, 37, 158-172. |
62 | Akrad O, Miskimins J, Prasad M.The effects of fracturing fluids on shale rock mechanical properties and proppant embedment[C]//SPE Annual Technical Conference and Exhibition.Denver:SPE, 2011: 146658. |
63 | Corapcioglu H, Miskimins J L, Prasad M. Fracturing fluid effects on young’s modulus and embedment in the niobrara formation[C]//SPE Annual Technical Conference and Exhibition.Amsterdam: SPE, 2014: 170835-MS. |
64 | Yang Z, Wang L, Chen Z, et al. Micromechanical characterization of fluid/shale interactions by means of nanoindentation[J]. SPE Reservoir Evaluation & Engineering, 2018, 21(2): 405-417. |
65 | Lu Y, Li Y, Wu Y, et al. Characterization of Shale Softening by Large Volume⁃Based Nanoindentation[J]. Rock Mechanics and Rock Engineering, 2019, 53(3): 1393-409. |
[1] | Huimin LIU, Youshu BAO, Maowen LI, Zheng LI, Lianbo WU, Rifang ZHU, Dayang WANG, Xin WANG. Geochemical parameters for evaluating shale oil enrichment and mobility: A case study of shales in the Bakken Formation, Williston Basin and the Shahejie Formation, Jiyang Depression [J]. Oil & Gas Geology, 2024, 45(3): 622-636. |
[2] | Xiugang PU, Jiangchang DONG, Gongquan CHAI, Shunyao SONG, Zhannan SHI, Wenzhong HAN, Wei ZHANG, Delu XIE. Enrichment model of high-abundance organic matter in shales in the 2nd member of the Paleogene Kongdian Formation, Cangdong Sag, Bohai Bay Basin [J]. Oil & Gas Geology, 2024, 45(3): 696-709. |
[3] | Rui FANG, Yuqiang JIANG, Changcheng YANG, Haibo DENG, Chan JIANG, Haitao HONG, Song TANG, Yifan GU, Xun ZHU, Shasha SUN, Guangyin CAI. Occurrence states and mobility of shale oil in different lithologic assemblages in the Jurassic Lianggaoshan Formation, Sichuan Basin [J]. Oil & Gas Geology, 2024, 45(3): 752-769. |
[4] | Jun LI, Youlong ZOU, Jing LU. Well-log-based assessment of movable oil content in lacustrine shale oil reservoirs: A case study of the 2nd member of the Paleogene Funing Formation, Subei Basin [J]. Oil & Gas Geology, 2024, 45(3): 816-826. |
[5] | Xiaoyu DU, Zhijun JIN, Lianbo ZENG, Guoping LIU, Sen YANG, Xinping LIANG, Guoqing LU. Evaluation of natural fracture effectiveness in deep lacustrine shale oil reservoirs based on formation microresistivity imaging logs [J]. Oil & Gas Geology, 2024, 45(3): 852-865. |
[6] | Caineng ZOU, Dazhong DONG, Wei XIONG, Guoyou FU, Qun ZHAO, Wen LIU, Weiliang KONG, Qin ZHANG, Guangyin CAI, Yuman WANG, Feng LIANG, Hanlin LIU, Zhen QIU. Advances, challenges, and countermeasures in shale gas exploration of underexplored plays, sequences and new types in China [J]. Oil & Gas Geology, 2024, 45(2): 309-326. |
[7] | Zhe ZHAO, Bin BAI, Chang LIU, Lan WANG, Haiyan ZHOU, Yuxi LIU. Current status, advances, and prospects of CNPC’s exploration of onshore moderately to highly mature shale oil reservoirs [J]. Oil & Gas Geology, 2024, 45(2): 327-340. |
[8] | Bo LIU, Qi’an MENG, Xiaofei FU, Tiefeng LIN, Yunfeng BAI, Shansi TIAN, Jinyou ZHANG, Yao YAO, Xinyang CHENG, Zhao LIU. Composition of generated and expelled hydrocarbons and phase evolution of shale oil in the 1st member of Qingshankou Formation, Songliao Basin [J]. Oil & Gas Geology, 2024, 45(2): 406-419. |
[9] | Xiao HE, Maja ZHENG, Yong LIU, Qun ZHAO, Xuewen Shi, Zhenxue Jiang, Wei WU, Ya WU, Shitan NING, Xianglu TANG, Dadong LIU. Characteristics and differential origin of Qiongzhusi Formation shale reservoirs under the “aulacogen-uplift” tectonic setting, Sichuan Basin [J]. Oil & Gas Geology, 2024, 45(2): 420-439. |
[10] | Hequn GAO, Yuqiao GAO, Xipeng HE, Jun NIE. Rock mechanical properties and controlling factors for shale oil reservoirs in the second member of the Paleogene Funing Formation, Subei Basin [J]. Oil & Gas Geology, 2024, 45(2): 502-515. |
[11] | Liang SHI, Bojiang FAN, Zhonghou LI, Ziwei YU, Zijin LIN, Xinyang DAI. Migration differentiation of hydrocarbon components in the 7th member of the Triassic Yanchang Formation, central Ordos Basin [J]. Oil & Gas Geology, 2024, 45(1): 157-168. |
[12] | Yi ZHANG, Bin ZHANG, Banghua LIU, Jie LIU, Qiansheng WEI, Qi ZHANG, Hongjun LU, Pengyu ZHU, Rui WANG. Status quo and development trends of research on shale gas adsorption and seepage in shale gas reservoirs [J]. Oil & Gas Geology, 2024, 45(1): 256-280. |
[13] | Xusheng GUO, Xiaoxiao MA, Maowen LI, Menhui QIAN, Zongquan HU. Mechanisms for lacustrine shale oil enrichment in Chinese sedimentary basins [J]. Oil & Gas Geology, 2023, 44(6): 1333-1349. |
[14] | Longde SUN, Xiaojun WANG, Zihui FENG, Hongmei SHAO, Huasen ZENG, Bo GAO, Hang JIANG. Formation mechanisms of nano-scale pores/fissures and shale oil enrichment characteristics for Gulong shale, Songliao Basin [J]. Oil & Gas Geology, 2023, 44(6): 1350-1365. |
[15] | Lijun MI, Jianyong XU, Wei LI. Shale oil resource potential in the Bohai Sea area [J]. Oil & Gas Geology, 2023, 44(6): 1366-1377. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||