Oil & Gas Geology ›› 2023, Vol. 44 ›› Issue (4): 1044-1053.doi: 10.11743/ogg20230419
• Methods and Technologies • Previous Articles Next Articles
Wei HU1,2(), Ting XU2, Yang YANG1,2, Zengmin LUN1,2, Zongyu LI3, Zhijiang KANG2, Ruiming ZHAO3, Shengwen MEI3
Received:
2022-12-05
Revised:
2023-05-26
Online:
2023-08-01
Published:
2023-08-09
CLC Number:
Wei HU, Ting XU, Yang YANG, Zengmin LUN, Zongyu LI, Zhijiang KANG, Ruiming ZHAO, Shengwen MEI. Fluid phases and behaviors in ultra-deep oil and gas reservoirs, Tarim Basin[J]. Oil & Gas Geology, 2023, 44(4): 1044-1053.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Physical property parameters of volatile oil and mixed fluids under high pressure, Shunbei area, Tarim Basin"
流体类型 | 溶解气油 比/(m3/m3) | 地层流体 体积系数 | 地层流体饱和压力/MPa | 油罐油SARA族组分含量/% | AOP(沥青质 沉积起始 压力)/MPa | 沥青质最大 沉积量/% | |||
---|---|---|---|---|---|---|---|---|---|
饱和烃 | 芳香烃 | 胶质 | 沥青质 | ||||||
挥发油 | 193.6 | 1.474 | 32.0 | 55.2 | 12.3 | 6.8 | 2.7 | 38.9 | 4.5 |
凝析气(D1井) | 962.3 | 2.763 | 40.0 | 71.5 | 5.7 | 2.4 | 1.3 | — | — |
混合流体 | 781.2 | 3.513 | 39.3 | 67.4 | 13.7 | 7.3 | 4.2 | 50.8 | 18.9 |
Table 2
Comparison of high-pressure physical property parameters of three samples from Well D1 in No.4 fault zone, Shunbei area, Tarim Basin"
取样次序 | 取样点压力/MPa | 取样点温度/℃ | 取样深度/m | 露点压力/MPa | 气油比/(m3/m3) | 地露压差/MPa | 油罐油分子量/ (g/mol) | 油罐油密度(20℃)/(g/cm3) | 凝析油含量/ (g/cm3) | 最大反凝析液量百分数/% | 井流物组分含量/% | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C1+N2 | C2-C6+CO2 | C7+ | |||||||||||
1 | 56.56 | 148.3 | 4 500 | 37.17 | 1 119.0 | 53.38 | 119.0 | 0.749 6 | 634.7 | 16.96 | 76.24 | 13.21 | 7.14 |
2 | 60.17 | 148.3 | 4 500 | 38.40 | 1 012.0 | 52.15 | 148.0 | 0.786 6 | 696.1 | 17.68 | 76.30 | 13.79 | 9.90 |
3 | 58.27 | 148.3 | 4 500 | 40.00 | 962.3 | 50.55 | 151.6 | 0.787 8 | 865.1 | 19.24 | 77.68 | 9.55 | 12.77 |
Table 3
Comparison of high-pressure physical property parameters of three samples from Well D1 in No.4 fault zone, Shunbei area, Tarim Basin"
取样次序 | 取样点压力/MPa | 取样点温度/℃ | 取样深度/m | 露点压力/MPa | 气油比/ (m3/m3) | 地露 压差/MPa | 油罐油分子量/(g/mol) | 油罐油密度(20℃)/ (g/cm3) | 凝析油 含量/ (g/cm3) | 最大反凝析液量百分数/% | 井流物组分含量/% | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C1+N2 | C2-C6+CO2 | C7+ | |||||||||||
1 | 66.7 | 139 | 6100 | 47.19 | 1036.8 | 33.04 | 119.2 | 0.790 6 | 605.0 | 21.60 | 77.04 | 13.43 | 9.32 |
2 | 47.5 | 139 | 6100 | 45.50 | 1584.0 | 1.83 | 112.3 | 0.784 2 | 477.9 | 8.40 | 82.64 | 10.95 | 6.39 |
3 | 37.6 | 139 | 6100 | 29.25 | 1914.3 | 已反凝析 | 105.5 | 0.778 5 | 229.2 | 4.42 | 88.12 | 8.60 | 3.28 |
1 | 何治亮, 马永生, 朱东亚, 等. 深层-超深层碳酸盐岩储层理论技术进展与攻关方向[J]. 石油与天然气地质, 2021, 42(3): 533-546. |
HE Zhiliang, MA Yongsheng, ZHU Dongya, et al. Theoretical and technological progress and research direction of deep and ultra-deep carbonate reservoirs[J]. Oil & Gas Geology, 2021, 42(3): 533-546. | |
2 | 马永生, 何治亮, 赵培荣, 等. 深层—超深层碳酸盐岩储层形成机理新进展[J]. 石油学报, 2019, 40(12): 1415-1425. |
MA Yongsheng, HE Zhiliang, ZHAO Peirong, et al. A new progress in formation mechanism of deep and ultra-deep carbonate reservoir[J]. Acta Petrolei Sinica, 2019, 40(12): 1415-1425. | |
3 | 王奥, 李菊花, 郑斌. 多孔介质中凝析气相态特征[J]. 大庆石油地质与开发, 2021, 40(1): 61-67. |
WANG Ao, LI Juhua, ZHENG Bin. Study on the phase behaviors of the condensate gas in porous media[J]. Petroleum Geology & Oilfield Development in Daqing, 2021, 40(1): 61-67. | |
4 | 马永生, 黎茂稳, 蔡勋育, 等. 中国海相深层油气富集机理与勘探开发: 研究现状、关键技术瓶颈与基础科学问题[J]. 石油与天然气地质, 2020, 41(4): 655-672, 683. |
MA Yongsheng, LI Maowen, CAI Xunyu, et al. Mechanisms and exploitation of deep marine petroleum accumulations in China: Advances, technological bottlenecks and basic scientific problems[J]. Oil & Gas Geology, 2020, 41(4): 655-672, 683. | |
5 | QI Zhilin, LIANG Baosheng, DENG Ruijian, et al. Phase behavior study in the deep gas-condensate reservoir with low permeability[C]//EUROPEC/EAGE Conference and Exhibition. London: SPE, 2007: SPE-107315-MS. |
6 | CHEN Chengsheng, WANG Yunpeng, BEAGLE J R, et al. Reconstruction of the evolution of deep fluids in light oil reservoirs in the Central Tarim Basin by using PVT simulation and basin modeling[J]. Marine and Petroleum Geology, 2019, 107: 116-126. |
7 | MURGICH J, MERINO-GARCIA D, ANDERSEN S I, et al. Molecular mechanics and microcalorimetric investigations of the effects of molecular water on the aggregation of asphaltenes in solutions[J]. Langmuir, 2002, 18(23): 9080-9086. |
8 | THARANIVASAN A K, YARRANTON H W, TAYLOR S D. Asphaltene precipitation from crude oils in the presence of emulsified water[J]. Energy & Fuels, 2012, 26(11): 6869-6875. |
9 | 国家能源局. 油气藏流体取样方法: [S]. 北京: 石油工业出版社, 2015. |
National Energy Administration. Sampling procedures for hydrocarbon reservoir fluids: [S]. Beijing: Petroleum Industry Press, 2015. | |
10 | STRUCHKOV I A, ROGACHEV M K, KALININ E S, et al. Laboratory investigation of asphaltene-induced formation damage[J]. Journal of Petroleum Exploration and Production Technology, 2019, 9(2): 1443-1455. |
11 | LEI Hao, YANG Shenglai, QIAN Kun, et al. Experimental investigation and application of the asphaltene precipitation envelope[J]. Energy & Fuels, 2015, 29(11): 6920-6927. |
12 | MEHANA M, ABRAHAM J, FAHES M. The impact of asphaltene deposition on fluid flow in sandstone[J]. Journal of Petroleum Science and Engineering, 2019, 174: 676-681. |
13 | 王志坚. 深层-超深层异常高压油藏工艺技术对策[J]. 油气地质与采收率, 2020, 27(5): 126-133. |
WANG Zhijian. Technological strategies for deep and ultra-deep reservoirs with abnormally high pressure[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(5): 126-133. | |
14 | PRAKOSO A, PUNASE A, ROGEL E, et al. Effect of asphaltene characteristics on its solubility and overall stability[J]. Energy & Fuels, 2018, 32(6): 6482-6487. |
15 | ZANGANEH P, DASHTI H, AYATOLLAHI S. Comparing the effects of CH4, CO2, and N2 injection on asphaltene precipitation and deposition at reservoir condition: A visual and modeling study[J]. Fuel, 2018, 217: 633-641. |
16 | 汤勇, 龙科吉, 王皆明, 等. 凝析气藏型储气库多周期注采过程中流体相态变化特征[J]. 石油勘探与开发, 2021, 48(2): 337-346. |
TANG Yong, LONG Keji, WANG Jieming, et al. Change of phase state during multi-cycle injection and production process of condensate gas reservoir based underground gas storage[J]. Petroleum Exploration and Development, 2021, 48(2): 337-346. | |
17 | 胡伟, 吕成远, 伦增珉, 等. 致密多孔介质中凝析气定容衰竭实验及相态特征[J]. 石油学报, 2019, 40(11): 1388-1395. |
HU Wei, Chengyuan LYU, Zengmin LUN, et al. Constant volume depletion experiment and phase characteristics of condensate gas in dense porous media[J]. Acta Petrolei Sinica, 2019, 40(11): 1388-1395. | |
18 | ABBASOV Z Y, FATALIYEV V M, HAMIDOV N N. The solubility of gas components and its importance in gas-condensate reservoir development[J]. Petroleum Science and Technology, 2017, 35(3): 249-256. |
19 | 朱忠谦. 牙哈凝析气藏二次注气抑制反凝析机理及相态特征[J]. 天然气工业, 2015, 35(5): 60-65. |
ZHU Zhongqian. Mechanism and phase behavior of retrograde condensation inhibition by secondary gas injection in the Yaha condensate gas reservoir[J]. Natural Gas Industry, 2015, 35(5): 60-65. | |
20 | SUBRAMANIAN S, SIMON S, SJÖBLOM J. Asphaltene precipitation models: A review[J]. Journal of Dispersion Science and Technology, 2016, 37(7): 1027-1049. |
21 | 雷浩. 低渗储层CO2驱油过程中沉淀规律及防治对策研究[D]. 北京: 中国石油大学(北京), 2017. |
LEI Hao. Deposition mechanisms and reservoir protection countermeasures of a low-permeability formation in CO2 flooding process[D]. Beijing: China University of Petroleum(Beijing), 2017. | |
22 | 刘建仪, 杨雪, 刘勇. 低渗砂岩油藏CO2驱相态及组分变化规律[J]. 特种油气藏, 2022, 29(6): 91-96. |
LIU Jianyi, YANG Xue, LIU Yong. Phase state and component change law of CO2 flooding in low-permeability sandstone reservoirs[J]. Special Oil & Gas Reserviors, 2022, 29(6): 91-96. | |
23 | 黄越义, 廖玉宏, 陈承声, 等. 塔里木盆地顺南1井和顺南4井油气相态演化的数值模拟与预测[J]. 石油与天然气地质, 2023, 44(1): 138-149. |
HUANG Yueyi, LIAO Yuhong, CHEN Chengsheng, et al. Numerical simulation and prediction of hydrocarbon phase evolution of wells Shunnan 1 and 4, Tarim Basin[J]. Oil & Gas Geology, 2023, 44(1): 138-149. | |
24 | 王启祥, 梁宝兴, 刘欢, 等. 呼探1井清水河组气藏流体相态特征及气藏类型[J]. 新疆石油地质, 2021, 42(6): 709-713. |
WANG Qixiang, LIANG Baoxing, LIU Huan, et al. Fluid phases and gas reservoirs of Qingshuihe formation in Well Hutan-1[J]. Xinjiang Petroleum Geology, 2021, 42(6): 709-713. |
[1] | Pengyuan HAN, Wenlong DING, Debin YANG, Juan ZHANG, Hailong MA, Shenghui WANG. Characteristics of the S80 strike-slip fault zone and its controlling effects on the Ordovician reservoirs in the Tahe oilfield, Tarim Basin [J]. Oil & Gas Geology, 2024, 45(3): 770-786. |
[2] | Yanqiu ZHANG, Honghan CHEN, Xiepei WANG, Peng WANG, Danmei SU, Zhou XIE. Assessment of connectivity between source rocks and strike-slip fault zone in the Fuman oilfield, Tarim Basin [J]. Oil & Gas Geology, 2024, 45(3): 787-800. |
[3] | Wenlong DING, Yuntao LI, Jun HAN, Cheng HUANG, Laiyuan WANG, Qingxiu MENG. Methods for high-precision tectonic stress field simulation and multi-parameter prediction of fracture distribution for carbonate reservoirs and their application [J]. Oil & Gas Geology, 2024, 45(3): 827-851. |
[4] | Zicheng CAO, Lu YUN, Lixin QI, Haiying LI, Jun HAN, Feng GENG, Bo LIN, Jingping CHEN, Cheng HUANG, Qingyan MAO. A major discovery of hydrocarbon-bearing layers over 1,000-meter thick in well Shunbei 84X, Shunbei area, Tarim Basin and its implications [J]. Oil & Gas Geology, 2024, 45(2): 341-356. |
[5] | Debin YANG, Xinbian LU, Dian BAO, Fei CAO, Yan WANG, Ming WANG, Runcheng XIE. New insights into the genetic types and characteristics of the Ordovician marine fault-karst carbonate reservoirs in the northern Tarim Basin [J]. Oil & Gas Geology, 2024, 45(2): 357-366. |
[6] | Changjian ZHANG, Debin YANG, Lin JIANG, Yingbing JIANG, Qi CHANG, Xuejian MA. Characteristics and origin of over-dissolution residual fault-karst reservoirs in the northern Tahe oilfield, Tarim Basin [J]. Oil & Gas Geology, 2024, 45(2): 367-383. |
[7] | Tongwen JIANG, Xingliang DENG, Peng CAO, Shaoying CHANG. Storage space types and water-flooding efficiency for fault-controlled fractured oil reservoirs in Fuman oilfield, Tarim Basin [J]. Oil & Gas Geology, 2024, 45(2): 542-552. |
[8] | Yuemeng NIU, Jun HAN, Yixin YU, Cheng Huang, Bo Lin, Fan YANG, Lang YU, Junyu CHEN. Igneous rock intrusions in the western Shunbei area, Tarim Basin: Characteristics and coupling relationships with faults [J]. Oil & Gas Geology, 2024, 45(1): 231-242. |
[9] | San ZHANG, Qiang JIN, Jinxiong SHI, Mingyi HU, Mengyue DUAN, Yongqiang LI, Xudong ZHANG, Fuqi CHENG. Filling patterns and reservoir property of the Ordovician buried-river karst caves in the Tabei area, Tarim Basin [J]. Oil & Gas Geology, 2023, 44(6): 1582-1594. |
[10] | Tan ZHANG, Wei YAO, Yongqiang ZHAO, Yushuang ZHOU, Jiwen HUANG, Xinyu FAN, Yu LUO. Time scale and denudation thickness calculation of Carboniferous Kalashayi Formation in the Bamai area, Tarim Basin [J]. Oil & Gas Geology, 2023, 44(4): 1054-1066. |
[11] | Honghui GUO, Jianwei FENG, Libin ZHAO. Characteristics of passive strike-slip structure and its control effect on fracture development in Bozi-Dabei area, Tarim Basin [J]. Oil & Gas Geology, 2023, 44(4): 962-975. |
[12] | Bin LI, Xingxing ZHAO, Guanghui WU, Jianfa HAN, Baozhu GUAN, Chunguang SHEN. Differential hydrocarbon accumulation model of the Ordovician in Tazhong Ⅱ block, Tarim Basin [J]. Oil & Gas Geology, 2023, 44(2): 308-320. |
[13] | Hongbo ZHANG, Yushuang ZHOU, Xuguang SHA, Shang DENG, Xiangcun SHEN, Zhongzheng JIANG. Development characteristics and evolution mechanism of the uplifted segment of the No. 5 strike-slip fault zone in Shunbei area, Tarim Basin [J]. Oil & Gas Geology, 2023, 44(2): 321-334. |
[14] | Xingguo SONG, Shi CHEN, Zhou XIE, Pengfei KANG, Ting LI, Minghui YANG, Xinxin LIANG, Zijun PENG, Xukai SHI. Strike-slip faults and hydrocarbon accumulation in the eastern part of Fuman oilfield, Tarim Basin [J]. Oil & Gas Geology, 2023, 44(2): 335-349. |
[15] | Jianzhang LIU, Zhongxian CAI, Changyu TENG, Heng ZHANG, Chen CHEN. Coupling relationship between formation of calcite veins and hydrocarbon charging in Middle-Lower Ordovician reservoirs in strike-slip fault zones within craton in Shunbei area, Tarim Basin [J]. Oil & Gas Geology, 2023, 44(1): 125-137. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||