Oil & Gas Geology ›› 2023, Vol. 44 ›› Issue (5): 1218-1230.doi: 10.11743/ogg20230511
• Petroleum Geology • Previous Articles Next Articles
Jin WU1,2(), Qingyong LUO1,2(), Ningning ZHONG1,2, Zilong FANG1,2, Jincai DUAN1,2, Wuji ZHANG1,2, Yaxin CUI1,2
Received:
2023-03-07
Revised:
2023-08-15
Online:
2023-10-19
Published:
2023-10-19
Contact:
Qingyong LUO
E-mail:wujin209579@163.com;qingyong.luo@cup.edu.cn
CLC Number:
Jin WU, Qingyong LUO, Ningning ZHONG, Zilong FANG, Jincai DUAN, Wuji ZHANG, Yaxin CUI. Organic petrology of shales in the Mesoproterozoic Xiamaling Formation in the northern part of North China[J]. Oil & Gas Geology, 2023, 44(5): 1218-1230.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
TOC content and pyrolytic and elemental parameters of shales of the Mesoproterozoic Xiamaling Formation in the northern part of North China[25]"
样品编号 | 采样类型 | TOC/% | S1/(mg/g) | S2/(mg/g) | (S1+S2)/(mg/g) | Tmax/℃ | HI/(mg/g) | VLM | EqRo/% | U含量/10-6 | Th含量/10-6 |
---|---|---|---|---|---|---|---|---|---|---|---|
XML-1 | 露头 | 8.48 | 0.96 | 34.25 | 35.21 | 434 | 404 | 0.56 | 0.42 | 2.49 | 7.70 |
XML-2 | 露头 | 2.19 | 0.50 | 7.03 | 7.53 | 432 | 321 | — | — | 1.93 | 6.14 |
XML-3 | 露头 | 4.30 | 0.71 | 15.85 | 16.56 | 434 | 368 | 0.53 | 0.39 | 2.81 | 5.74 |
XML-4 | 露头 | 14.10 | 1.66 | 62.73 | 64.39 | 442 | 445 | 0.54 | 0.39 | 2.69 | 8.59 |
XML-5 | 露头 | 5.80 | 0.45 | 18.96 | 19.41 | 441 | 327 | 0.58 | 0.44 | 2.45 | 10.20 |
XML-6 | 露头 | 4.56 | 0.72 | 21.50 | 22.22 | 439 | 472 | 0.60 | 0.46 | 3.01 | 6.11 |
XML-7 | 露头 | 2.84 | 0.23 | 8.94 | 9.17 | 440 | 315 | 0.48 | 0.33 | 2.91 | 5.22 |
Table 2
Random reflectance of vitrinite-like maceral particles and bituminite in the shale samples from the Mesoproterozoic Xiamaling Formation in the northern part of North China"
样品 编号 | 类镜质组颗粒随机反射率 | 沥青质体随机反射率 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
最小值/% | 最大值/% | 平均值/% | 标准偏差/% | 测点数/个 | 最小值/% | 最大值/% | 平均值/% | 标准偏差/% | 测点数/个 | |
XML-1 | 0.45 | 0.66 | 0.56 | 0.06 | 30 | 0.16 | 0.26 | 0.19 | 0.03 | 30 |
XML-2 | — | — | — | — | — | 0.15 | 0.37 | 0.24 | 0.06 | 30 |
XML-3 | 0.47 | 0.63 | 0.53 | 0.04 | 30 | 0.23 | 0.39 | 0.30 | 0.05 | 30 |
XML-4 | 0.48 | 0.60 | 0.54 | 0.03 | 30 | 0.28 | 0.36 | 0.31 | 0.02 | 30 |
XML-5 | 0.49 | 0.68 | 0.58 | 0.05 | 30 | 0.20 | 0.25 | 0.23 | 0.01 | 30 |
XML-6 | 0.47 | 0.68 | 0.60 | 0.06 | 30 | 0.21 | 0.23 | 0.25 | 0.03 | 30 |
XML-7 | 0.44 | 0.56 | 0.48 | 0.03 | 30 | 0.22 | 0.34 | 0.29 | 0.04 | 30 |
Table 4
Elemental composition of radioactive mineral particles of thucholite in the shales of the Mesoproterozoic Xiamaling Formation in the northern part of North China"
样品 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 独居石 | 锆石 | 钍石 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
元素 含量/% | O | 27.67 | 37.61 | 27.66 | 27.49 | 31.16 | 26.12 | 37.55 | 20.95 | nc | nc | nc |
Si | 0 | 12.19 | 0 | 0.04 | 0.14 | 0 | 5.58 | 9.14 | nc | 14.96 | 8.79 | |
P | 13.80 | 13.37 | 14.98 | 13.26 | 14.26 | 13.64 | 0 | 1.14 | 13.09 | nc | nc | |
Ca | 0 | 0 | 0 | 0 | 0.73 | 0 | 0 | 0.38 | nc | nc | nc | |
Y | 0 | 0 | 0 | 0 | 1.41 | 0 | 0 | 1.10 | nc | nc | nc | |
La | 14.16 | 4.69 | 12.84 | 15.60 | 8.80 | 11.16 | 0 | 0 | 11.08 | nc | nc | |
Ce | 32.01 | 25.03 | 32.71 | 34.76 | 23.22 | 30.27 | 0 | 0 | 23.05 | nc | nc | |
Pr | 1.51 | 0 | 1.73 | 0.63 | 2.43 | 2.67 | 0 | 0 | nc | nc | nc | |
Nd | 8.62 | 7.11 | 10.07 | 5.93 | 8.95 | 12.38 | 0 | 0 | 9.43 | nc | nc | |
Sm | 0 | 0 | 0 | 0 | 0.87 | 0 | 0 | 0 | nc | nc | nc | |
Th | 2.23 | 0 | 0 | 2.29 | 6.80 | 0 | 56.87 | 67.29 | 5.27 | nc | 69.88 | |
U | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | nc | nc | nc | |
Zr | 0 | 0 | 0 | 0 | 1.22 | 0 | 0 | 0 | nc | 47.38 | nc | |
Hf | 0 | 0 | 0 | 0 | 0 | 2.92 | 0 | 0 | nc | nc | nc | |
总含量 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | — | — | — | |
矿物颗粒 | 独居石 | 独居石 | 独居石 | 独居石 | 独居石 | 独居石 | 钍石 | 钍石 | — | — | — |
1 | LUO Qingyong, GEORGE S C, XU Yaohui, et al. Organic geochemical characteristics of the Mesoproterozoic Hongshuizhuang Formation from northern China: Implications for thermal maturity and biological sources[J]. Organic Geochemistry, 2016, 99: 23-37. |
2 | 王铁冠. 燕山地区震旦亚界油苗的原生性及其石油地质意义[J]. 石油勘探与开发, 1980, 7(2): 34-52. |
WANG Tieguan. The originality of sub-Sinian oil seedlings in Yanshan area and its petroleum geological significance[J]. Petroleum Exploration and Development, 1980, 7(2): 34-52. | |
3 | 王晓梅, 张水昌, 王华建, 等. 烃源岩非均质性及其意义——以中国元古界下马岭组页岩为例[J]. 石油勘探与开发, 2017, 44(1): 32-39. |
WANG Xiaomei, ZHANG Shuichang, WANG Huajian, et al. Significance of source rock heterogeneities: A case study of Mesoproterozoic Xiamaling Formation shale in North China[J]. Petroleum Exploration and Development, 2017, 44(1): 32-39. | |
4 | ZHANG Shuichang, WANG Xiaomei, HAMMARLUND E U, et al. Orbital forcing of climate 1.4 billion years ago[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(12): E1406-E1413. |
5 | ZHANG Shuichang, WANG Xiaomei, WANG Huajian, et al. Sufficient oxygen for animal respiration 1,400 million years ago[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(7): 1731-1736. |
6 | SUMMONS R E, POWELL T G, BOREHAM C J. Petroleum geology and geochemistry of the Middle Proterozoic McArthur Basin, northern Australia: Ⅲ. Composition of extractable hydrocarbons[J]. Geochimica et Cosmochimica Acta, 1988, 52(7): 1747-1763. |
7 | CRICK I H, BOREHAM C J, COOK A C, et al. Petroleum geology and geochemistry of Middle Proterozoic McArthur Basin, northern Australia II: Assessment of source rock potential[J]. AAPG Bulletin, 1988, 72(12): 1495-1514. |
8 | CRICK I H. Petrological and maturation characteristics of organic matter from the Middle Proterozoic McArthur Basin, Australia[J]. Australian Journal of Earth Sciences, 1992, 39(4): 501-519. |
9 | CHAKRABORTY P P. Facies architecture and sequence development in a Neoproterozoic carbonate ramp: Lakheri Limestone Member, Vindhyan Supergroup, Central India[J]. Precambrian Research, 2004, 132(1/2): 29-53. |
10 | DAYAL A M, MANI D, MADHAVI T, et al. Organic geochemistry of the Vindhyan sediments: Implications for hydrocarbons[J]. Journal of Asian Earth Sciences, 2014, 91: 329-338. |
11 | FEDOROV D L. The stratigraphy and hydrocarbon potential of the Riphean-Vendian (Middle-Late Proterozoic) succession on the Russian platform[J]. Journal of Petroleum Geology, 1997, 20(2): 205-221. |
12 | ZDANAVICIUTE O, LAZAUSKIENE J. Hydrocarbon migration and entrapment in the Baltic Syneclise[J]. Organic Geochemistry, 2004, 35(4): 517-527. |
13 | LUO Qingyong, ZHONG Ningning, QIN Jing, et al. Thucholite in Mesoproterozoic shales from northern north China: Occurrence and indication for thermal maturity[J]. International Journal of Coal Geology, 2014, 125: 1-9. |
14 | LUO Genming, HALLMANN C, XIE Shucheng, et al. Comparative microbial diversity and redox environments of black shale and stromatolite facies in the Mesoproterozoic Xiamaling Formation[J]. Geochimica et Cosmochimica Acta, 2015, 151: 150-167. |
15 | WANG Xiaomei, ZHAO Wenzhi, ZHANG Shuichang, et al. The aerobic diagenesis of Mesoproterozoic organic matter[J]. Scientific Reports, 2018, 8(1): 13324. |
16 | ZHANG Shuichang, WANG Xiaomei, WANG Huajian, et al. The oxic degradation of sedimentary organic matter 1400 Ma constrains atmospheric oxygen levels[J]. Biogeosciences, 2017, 14(8): 2133-2149. |
17 | CANFIELD D E, ZHANG Shuichang, WANG Huajian, et al. A Mesoproterozoic iron formation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(17): E3895-E3904. |
18 | SHI Miao, YU Bingsong, ZHANG Jinchuan, et al. Evolution of organic pores in marine shales undergoing thermocompression: A simulation experiment using hydrocarbon generation and expulsion[J]. Journal of Natural Gas Science and Engineering, 2018, 59: 406-413. |
19 | SONG Dongjun, Jincai TUO, ZHANG Mingfeng, et al. Hydrocarbon generation potential and evolution of pore characteristics of Mesoproterozoic shales in North China: Results from semi-closed pyrolysis experiments[J]. Journal of Natural Gas Science and Engineering, 2019, 62: 171-183. |
20 | 王鹏威, 刘忠宝, 张殿伟, 等. 川东地区二叠系海相页岩有机质富集对有机质孔发育的控制作用[J]. 石油与天然气地质, 2023, 44(2): 379-392. |
WANG Pengwei, LIU Zhongbao, ZHANG Dianwei, et al. Control of organic matter enrichment on organic pore development in the Permian marine organic-rich shale, eastern Sichuan Basin[J]. Oil & Gas Geology, 2023, 44(2): 379-392. | |
21 | 秦婧, 钟宁宁, 齐雯, 等. 华北北部洪水庄组有机岩石学[J]. 石油与天然气地质, 2010, 31(3): 367-374. |
QIN Jing, ZHONG Ningning, QI Wen, et al. Organic petrology of the Hongshuizhuang Formation in northern North China[J]. Oil & Gas Geology, 2010, 31(3): 367-374. | |
22 | 刘岩, 钟宁宁, 田永晶, 等. 中国最老古油藏——中元古界下马岭组沥青砂岩古油藏[J]. 石油勘探与开发, 2011, 38(4): 503-512. |
LIU Yan, ZHONG Ningning, TIAN Yongjing, et al. The oldest oil accumulation in China: Meso-Proterozoic Xiamaling Formation bituminous sandstone reservoirs[J]. Petroleum Exploration and Development, 2011, 38(4): 503-512. | |
23 | WANG Hongzhen, QIAO Xiufu. Proterozoic stratigraphy and tectonic framework of China[J]. Geological Magazine, 1984, 121(6): 599-614. |
24 | 柳永清, 刘晓文, 李寅. 燕山中、新元古代裂陷槽构造旋回层序研究──兼论裂陷槽构造旋回概念及级序的划分[J]. 地球学报, 1997, 18(2): 142-149. |
LIU Yongqing, LIU Xiaowen, LI Yin. Tectonic cyclic sequences in the Mesoproterozoic and Neoproterozoic aulacogen of Yanshan-A concept of aulacogen tectonic cycle and its hierarchy[J]. Acta Geoscientica Sinica, 1997, 18(2): 142-149. | |
25 | WU Jin, LI Hao, GOODARZI F, et al. Geochemistry and depositional environment of the Mesoproterozoic Xiamaling shales, northern North China[J]. Journal of Petroleum Science and Engineering, 2022, 215(Part B): 110730. |
26 | 乔秀夫, 高林志, 张传恒. 中朝板块中、新元古界年代地层柱与构造环境新思考[J]. 地质通报, 2007, 26(5): 503-509. |
QIAO Xiufu, GAO Linzhi, ZHANG Chuanheng. New idea of the Meso- and Neoproterozoic chronostratigraphic chart and tectonic environment in Sino-Korean Plate[J]. Geological Bulletin of China, 2007, 26(5): 503-509. | |
27 | 潘建国, 曲永强, 马瑞, 等. 华北地块北缘中新元古界沉积构造演化[J]. 高校地质学报, 2013, 19(1): 109-122. |
PAN Jianguo, QU Yongqiang, MA Rui, et al. Sedimentary and tectonic evolution of the Meso-Neoproterozoic strata in the northern margin of the north China block[J]. Geological Journal of China Universities, 2013, 19(1): 109-122. | |
28 | 张琴, 周琛, 田寒云, 等. 华北龙山地区青白口系混积岩层序地层格架及发育模式[J]. 石油与天然气地质, 2022, 43(4): 792-803. |
ZHANG Qin, ZHOU Chen, TIAN Hanyun, et al. Sequence stratigraphic framework and model of mixed siliciclastic-carbonate rocks in the Qingbaikouan System, Longshan area, North China[J]. Oil & Gas Geology, 2022, 43(4): 792-803. | |
29 | 王铁冠, 钟宁宁, 王春江, 等. 冀北坳陷下马岭组底砂岩古油藏成藏演变历史与烃源剖析[J]. 石油科学通报, 2016, 1(1): 24-37. |
WANG Tieguan, ZHONG Ningning, WANG Chunjiang, et al. Source beds and oil entrapment-alteration histories of fossil-oil-reservoirs in the Xiamaling Formation basal sandstone, Jibei Depression[J]. Petroleum Science Bulletin, 2016, 1(1): 24-37. | |
30 | 高林志, 张传恒, 史晓颖, 等. 华北古陆下马岭组归属中元古界的锆石SHRIMP年龄新证据[J]. 科学通报, 2008, 53(21): 2617-2623. |
GAO Linzhi, ZHANG Chuanheng, SHI Xiaoying, et al. New evidence of zircon SHRIMP age of Xiamaling Formation in North China ancient land belongs to Mesoproterozoic[J]. Chinese Science Bulletin, 2008, 53(21): 2617-2623. | |
31 | 高林志, 张传恒, 史晓颖, 等. 华北青白口系下马岭组凝灰岩锆石SHRIMP U-Pb定年[J]. 地质通报, 2007, 26(3): 249-255. |
GAO Linzhi, ZHANG Chuanheng, SHI Xiaoying, et al. Zircon SHRIMP U-Pb dating of the tuff bed in the Xiamaling Formation of the Qingbaikouan System in North China[J]. Geological Bulletin of China, 2007, 26(3): 249-255. | |
32 | WANG Xiaomei, ZHANG Shuichang, WANG Huajian, et al. Oxygen, climate and the chemical evolution of a 1 400 million year old tropical marine setting[J]. American Journal of Science, 2017, 317(8): 861-900. |
33 | 张惠民. 中国前寒武纪岩石的磁性地层学研究[J]. 前寒武纪研究进展, 2000, 23(1): 22-34. |
ZHANG Huimin. Magnetostratigraphy of Precanbrian rocks in China[J]. Progress in Precambrian Research, 2000, 23(1): 22-34. | |
34 | ZHANG Shuanhong, ZHAO Yue, SANTOSH M. Mid-Mesoproterozoic bimodal magmatic rocks in the northern North China craton: Implications for magmatism related to breakup of the Columbia supercontinent[J]. Precambrian Research, 2012, 222/223: 339-367. |
35 | 马奎, 王铜山, 胡素云, 等. 铀对古老烃源岩有机质生烃影响——以华北花园地区下马岭组元古界烃源岩为例[J]. 东北石油大学学报, 2017, 41(2): 35-43, 120. |
MA Kui, WANG Tongshan, HU Suyun, et al. Effect of radioactive uranium on the hydrocarbon generation of organic matter in the ancient source rocks: Case study of Proterozoic Xiamaling hydrocarbon source rocks in Xiahuayuan district of North China[J]. Journal of Northeast Petroleum University, 2017, 41(2): 35-43, 120. | |
36 | PETERSEN H I, SCHOVSBO N H, NIELSEN A T. Reflectance measurements of zooclasts and solid bitumen in Lower Paleozoic shales, southern Scandinavia: Correlation to vitrinite reflectance[J]. International Journal of Coal Geology, 2013, 114: 1-18. |
37 | 吴朝东, 陈其英, 雷家锦. 湘西震旦—寒武纪黑色岩系的有机岩石学特征及其形成条件[J]. 岩石学报, 1999, 15(3): 453-462. |
WU Chaodong, CHEN Qiying, LEI Jiajin. The genesis factors and organic petrology of black shale series from the Upper Sinian to the Lower Cambrian, southwest of China[J]. Acta Petrologica Sinica, 1999, 15(3): 453-462. | |
38 | 李苗春, 丁海, 焦堃, 等. 湘西三岔地区牛蹄塘组黑色岩系有机岩石学特征[J]. 天然气地球科学, 2012, 23(6): 1077-1089. |
LI Miaochun, DING Hai, JIAO Kun, et al. Organic petrology of Niutitang Formation in Sancha, western Hunan Province, China[J]. Natural Gas Geoscience, 2012, 23(6): 1077-1089. | |
39 | 刘大锰, 金奎励, 艾天杰. 塔里木盆地海相烃源岩显微组分的分类及其岩石学特征[J]. 沉积学报, 1995, 13(S1): 124-133. |
LIU Dameng, JIN Kuili, AI Tianjie. A petrographic classification and organic petrological characteristics of macerals of the marine hydrocarbon source rocks in the Tarim Basin[J]. Acta Sedimentologica Sinica, 1995, 13(S1): 124-133. | |
40 | 王濡岳, 胡宗全, 龙胜祥, 等. 四川盆地上奥陶统五峰组-下志留统龙马溪组页岩储层特征与演化机制[J]. 石油与天然气地质, 2022, 43(2): 353-364. |
WANG Ruyue, HU Zongquan, LONG Shengxiang, et al. Reservoir characteristics and evolution mechanisms of the Upper Ordovician Wufeng-Lower Silurian Longmaxi shale, Sichuan Basin[J]. Oil & Gas Geology, 2022, 43(2): 353-364. | |
41 | LUO Qingyong, ZHANG Liang, ZHONG Ningning, et al. Thermal evolution behavior of the organic matter and a ray of light on the origin of vitrinite-like maceral in the Mesoproterozoic and Lower Cambrian black shales: Insights from artificial maturation[J]. International Journal of Coal Geology, 2021, 244: 103813. |
42 | 马新华, 闫海军, 陈京元, 等. 四川盆地安岳气田震旦系气藏叠合岩溶发育模式与主控因素[J]. 石油与天然气地质, 2021, 42(6): 1281-1294, 1333. |
MA Xinhua, YAN Haijun, CHEN Jingyuan, et al. Development patterns and constraints of superimposed karst reservoirs in Sinian Dengying Formation, Anyue Gas Field, Sichuan Basin[J]. Oil & Gas Geology, 2021, 42(6): 1281-1294, 1333. | |
43 | 罗情勇, 钟宁宁, 李美俊, 等. 前寒武纪—早古生代沉积岩显微组分分类、成因及演化[J]. 石油与天然气地质, 2023, 44(5). |
LUO Qingyong, ZHONG Ningning, LI Meijun, et al. Classfication, origins and evolution of macerals in the Precambrian-Eopaleozoin sedimentary rocks[J]. Oil & Gas Geology, 2023, 44(5). | |
44 | ALPERN B. Petrographie du kerogene[J]. Kerogene-Insoluble Organic Matter From Sedimentary Rocks, 1980: 339-384. |
45 | 王飞宇, 何萍, 程顶胜, 等. 下古生界高——过成熟烃源岩有机成熟度评价[J]. 天然气地球科学, 1994, 5(6): 1-14. |
WANG Feiyu, HE Ping, CHENG Dingsheng, et al. Evaluation of organic maturity of high-over-mature source rocks in Lower Paleozoic[J]. Natural Gas Geoscience, 1994, 5(6): 1-14. | |
46 | XIAO Xianming, WILKINS R W T, LIU Dehan, et al. Investigation of thermal maturity of Lower Palaeozoic hydrocarbon source rocks by means of vitrinite-like maceral reflectance—a Tarim Basin case study[J]. Organic Geochemistry, 2000, 31(10): 1041-1052. |
47 | SANEI H, PETERSEN H I, SCHOVSBO N H, et al. Petrographic and geochemical composition of kerogen in the Furongian (U. Cambrian) Alum Shale, central Sweden: Reflections on the petroleum generation potential[J]. International Journal of Coal Geology, 2014, 132: 158-169. |
48 | KHAN I, ZHONG Ningning, LUO Qingyong, et al. Maceral composition and origin of organic matter input in Neoproterozoic-Lower Cambrian organic-rich shales of Salt Range Formation, Upper Indus Basin, Pakistan[J]. International Journal of Coal Geology, 2020, 217: 103319. |
49 | ELLSWORTH H V. (I) Thuchohte, a remarkable primary carbon mineral from the vicinity of Parry Sound, Ontario. (Ⅱ) Cyrtolite intergrowth associated with the Parry Sound thucholite[J]. American Mineralogist, 1928, 13(8): 419-441. |
50 | RASMUSSEN B, GLOVER J E, FOSTER C B. Polymerisation of hydrocarbons by radioactive minerals in sedimentary rocks: Diagenetic and economic significance[M]//PARNELL J, KUCHA H, LANDAIS P. Bitumens in Ore Deposits. Berlin: Springer, 1993: 490-509. |
51 | RASMUSSEN B, GLOVER J E, ALEXANDER R. Hydrocarbon rims on monazite in Permian-Triassic arenites, northern Perth Basin, Western Australia: Pointers to the former presence of oil[J]. Geology, 1989, 17(2): 115-118. |
52 | DAHL J, HALLBERG R, KAPLAN I R. The effects of radioactive decay of uranium on elemental and isotopic ratios of alum shale kerogen[J]. Applied Geochemistry, 1988, 3(6): 583-589. |
53 | ENGLAND G L, RASMUSSEN B, KRAPEŽ B, et al. The origin of uraninite, bitumen nodules, and carbon seams in Witwatersrand gold-uranium-pyrite ore deposits, based on a Permo-Triassic analogue[J]. Economic Geology, 2001, 96(8): 1907-1920. |
54 | FÖRSTER H J, HARLOV D E, MILKE R. Composition and Th-U-total Pb ages of huttonite and thorite from Gillespie’s Beach, south Island, New Zealand[J]. The Canadian Mineralogist, 2000, 38(3): 675-684. |
55 | PICKEL W, KUS J, FLORES D, et al. Classification of liptinite-ICCP System 1994[J]. International Journal of Coal Geology, 2017, 169: 40-61. |
[1] | Huimin LIU, Youshu BAO, Maowen LI, Zheng LI, Lianbo WU, Rifang ZHU, Dayang WANG, Xin WANG. Geochemical parameters for evaluating shale oil enrichment and mobility: A case study of shales in the Bakken Formation, Williston Basin and the Shahejie Formation, Jiyang Depression [J]. Oil & Gas Geology, 2024, 45(3): 622-636. |
[2] | Xiugang PU, Jiangchang DONG, Gongquan CHAI, Shunyao SONG, Zhannan SHI, Wenzhong HAN, Wei ZHANG, Delu XIE. Enrichment model of high-abundance organic matter in shales in the 2nd member of the Paleogene Kongdian Formation, Cangdong Sag, Bohai Bay Basin [J]. Oil & Gas Geology, 2024, 45(3): 696-709. |
[3] | Rui FANG, Yuqiang JIANG, Changcheng YANG, Haibo DENG, Chan JIANG, Haitao HONG, Song TANG, Yifan GU, Xun ZHU, Shasha SUN, Guangyin CAI. Occurrence states and mobility of shale oil in different lithologic assemblages in the Jurassic Lianggaoshan Formation, Sichuan Basin [J]. Oil & Gas Geology, 2024, 45(3): 752-769. |
[4] | Jun LI, Youlong ZOU, Jing LU. Well-log-based assessment of movable oil content in lacustrine shale oil reservoirs: A case study of the 2nd member of the Paleogene Funing Formation, Subei Basin [J]. Oil & Gas Geology, 2024, 45(3): 816-826. |
[5] | Xiaoyu DU, Zhijun JIN, Lianbo ZENG, Guoping LIU, Sen YANG, Xinping LIANG, Guoqing LU. Evaluation of natural fracture effectiveness in deep lacustrine shale oil reservoirs based on formation microresistivity imaging logs [J]. Oil & Gas Geology, 2024, 45(3): 852-865. |
[6] | Caineng ZOU, Dazhong DONG, Wei XIONG, Guoyou FU, Qun ZHAO, Wen LIU, Weiliang KONG, Qin ZHANG, Guangyin CAI, Yuman WANG, Feng LIANG, Hanlin LIU, Zhen QIU. Advances, challenges, and countermeasures in shale gas exploration of underexplored plays, sequences and new types in China [J]. Oil & Gas Geology, 2024, 45(2): 309-326. |
[7] | Zhe ZHAO, Bin BAI, Chang LIU, Lan WANG, Haiyan ZHOU, Yuxi LIU. Current status, advances, and prospects of CNPC’s exploration of onshore moderately to highly mature shale oil reservoirs [J]. Oil & Gas Geology, 2024, 45(2): 327-340. |
[8] | Bo LIU, Qi’an MENG, Xiaofei FU, Tiefeng LIN, Yunfeng BAI, Shansi TIAN, Jinyou ZHANG, Yao YAO, Xinyang CHENG, Zhao LIU. Composition of generated and expelled hydrocarbons and phase evolution of shale oil in the 1st member of Qingshankou Formation, Songliao Basin [J]. Oil & Gas Geology, 2024, 45(2): 406-419. |
[9] | Xiao HE, Maja ZHENG, Yong LIU, Qun ZHAO, Xuewen Shi, Zhenxue Jiang, Wei WU, Ya WU, Shitan NING, Xianglu TANG, Dadong LIU. Characteristics and differential origin of Qiongzhusi Formation shale reservoirs under the “aulacogen-uplift” tectonic setting, Sichuan Basin [J]. Oil & Gas Geology, 2024, 45(2): 420-439. |
[10] | Hequn GAO, Yuqiao GAO, Xipeng HE, Jun NIE. Rock mechanical properties and controlling factors for shale oil reservoirs in the second member of the Paleogene Funing Formation, Subei Basin [J]. Oil & Gas Geology, 2024, 45(2): 502-515. |
[11] | Liang SHI, Bojiang FAN, Zhonghou LI, Ziwei YU, Zijin LIN, Xinyang DAI. Migration differentiation of hydrocarbon components in the 7th member of the Triassic Yanchang Formation, central Ordos Basin [J]. Oil & Gas Geology, 2024, 45(1): 157-168. |
[12] | Yi ZHANG, Bin ZHANG, Banghua LIU, Jie LIU, Qiansheng WEI, Qi ZHANG, Hongjun LU, Pengyu ZHU, Rui WANG. Status quo and development trends of research on shale gas adsorption and seepage in shale gas reservoirs [J]. Oil & Gas Geology, 2024, 45(1): 256-280. |
[13] | Dujie HOU, Keqiang WU, Li YOU, Ziming ZHANG, Yajun LI, Xiaofeng XIONG, Min XU, Xiazhe YAN, Weihe CHEN, Xiong CHENG. Organic matter enrichment mechanisms of terrigenous marine source rocks in the Qiongdongnan Basin [J]. Oil & Gas Geology, 2024, 45(1): 31-43. |
[14] | Xiaoyi YANG, Chenglin LIU, Feilong WANG, Guoxiong LI, Dehao FENG, Taozheng YANG, Zhibin HE, Jiajia SU. Distribution and origin of overpressure in the Paleogene Dongying Formation in the southwestern sub-sag, Bozhong Sag, Bohai Bay Basin [J]. Oil & Gas Geology, 2024, 45(1): 96-112. |
[15] | Xusheng GUO, Xiaoxiao MA, Maowen LI, Menhui QIAN, Zongquan HU. Mechanisms for lacustrine shale oil enrichment in Chinese sedimentary basins [J]. Oil & Gas Geology, 2023, 44(6): 1333-1349. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||