Oil & Gas Geology ›› 2023, Vol. 44 ›› Issue (6): 1499-1514.doi: 10.11743/ogg20230613
• Petroleum Geology • Previous Articles Next Articles
Zhensheng SHI1(), Shengxian ZHAO2, Tianqi ZHOU1, Shasha SUN1, Yuan YUAN3, Chenglin ZHANG2, Bo LI2, Ling QI1
Received:
2023-03-03
Revised:
2023-06-30
Online:
2023-12-01
Published:
2023-12-20
CLC Number:
Zhensheng SHI, Shengxian ZHAO, Tianqi ZHOU, Shasha SUN, Yuan YUAN, Chenglin ZHANG, Bo LI, Ling QI. Types and genesis of horizontal bedding of marine gas-bearing shale and its significance for shale gas: A case study of the Wufeng-Longmaxi shale in southern Sichuan Basin, China[J]. Oil & Gas Geology, 2023, 44(6): 1499-1514.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Types of lamina, lamina set, and bed of the Wufeng-Longmaxi shale in southern Sichuan Basin"
基本地层单元 | 组成 | 粒序 | ||
---|---|---|---|---|
纹层 | 泥纹层 | 粒径<3.9 μm的颗粒含量>50 % | ||
粉砂纹层 | 粒径>3.9 μm的颗粒含量>50 % | |||
纹层组 | 泥纹层组 | 泥纹层 | 均质状/正粒序/反粒序 | |
粉砂纹层组 | 粉砂纹层 | 均质状/正粒序/反粒序 | ||
层 | 递变层 | 正递变层 | 粉砂纹层组/泥纹层组 | 正粒序 |
反递变型 | 粉砂纹层组/泥纹层组 | 反粒序 | ||
复合递变层 | 粉砂纹层组/泥纹层组 | 正粒序/反粒序 | ||
交互递变层 | 粉砂纹层组和泥纹层组 | 正粒序 | ||
均质层 | 粉砂层 | 粉砂纹层/粉砂纹层组 | 均质状 | |
泥质层 | 泥纹层/泥纹层组 | 均质状 | ||
砂-泥交互层 | 泥纹层和粉砂纹层 | 交互状 |
Table 2
Types and characteristics of the horizontal bedding of the Wufeng-Longmaxi shale in southern Sichuan Basin"
类型 | 成层性 | 矿物组成 | 组构 | 成因 | 示意图 | 长宁双河剖面实例 |
---|---|---|---|---|---|---|
递变型 | 多个粉砂纹层水平叠置,单个粉砂纹层构成正递变层、反递变层或复合递变层 | 方解石、白云石、微晶石英、黏土矿物及其他 | 砂-泥混杂堆积,杂基支撑 | 低能泥质浊流成因,流体流速<15 cm/s,体积浓度<0.5 % | ||
砂-泥递变型 | 粉砂纹层和泥纹层水平互层,二者构成正递变层或交互递变层 | 粉砂纹层主要由白云石、方解石和黏土矿物组成,泥纹层主要由微晶石英构成 | 粉砂纹层呈颗粒支撑结构 | 低能泥质浊流成因,正递变层流体流速<15 cm/s,交互递变层,流体流速15 ~ 25 cm/s | ||
砂-泥互层型 | 粉砂纹层和泥纹层水平互层,粉砂纹层无粒序变化 | 粉砂纹层由方解石、黏土矿物和碎屑石英等组成,泥纹层主要由微晶石英构成 | 粉砂纹层呈颗粒支撑结构 | 陆棚深水等深流成因,水流速度15 ~ 25 cm/s | ||
书页型 | 泥纹层构成,偶夹断续状或条带状粉砂纹层 | 泥纹层主要为微晶石英,粉砂纹层主要为方解石和白云石 | 整体呈书页状 | 远洋悬浮沉降成因,静水环境 |
Table 3
Shale permeability of the horizontal bedding of diverse types in the Wufeng-Longmaxi shale in southern Sichuan Basin"
层理类型 | 剖面或井号 | 层位或深度/m | 样品号 | 水平渗透率/(10-3μm2) | 垂直渗透率/(10-3μm2) | 水平渗透率/垂直渗透率 |
---|---|---|---|---|---|---|
递变型水平层理 | 长宁双河 | 五峰组 | 4-2-1 | 0.001 490 | 0.000 124 | 12.02 |
长宁双河 | 五峰组 | 5-34-2 | 0.000 210 | 0.000 117 | 1.79 | |
长宁双河 | 五峰组 | 4-16-1 | 0.000 313 | 0.001 548 | 0.20 | |
砂-泥递变型水平层理 | 长宁双河 | 龙马溪组 | 8-33 | 0.000 584 | 0.000 777 | 0.75 |
长宁双河 | 龙马溪组 | 8-29 | 0.000 402 | 0.032 293 | 0.01 | |
砂-泥互层型水平层理 | 阳101H3-8 | 3 774.50 | Y-1 | 0.003 510 | 0.001 890 | 1.86 |
阳101H3-8 | 3 775.37 | Y-2 | 0.005 600 | 0.002 660 | 2.11 | |
阳101H3-8 | 3 776.20 | Y-3 | 0.004 570 | 0.001 320 | 3.46 | |
书页型水平层理 | 阳101H3-8 | 3 782.48 | Y-4 | 0.004 570 | 0.000 077 | 59.74 |
阳101H3-8 | 3 783.52 | Y-5 | 0.005 850 | 0.000 555 | 10.54 | |
长宁双河 | 龙马溪组 | 8-31-2 | 0.002 291 | 0.000 351 | 6.53 | |
长宁双河 | 龙马溪组 | 8-10-1 | 0.223 540 | 0.025 925 | 8.62 |
1 | 施振生, 邱振. 海相细粒沉积层理类型及其油气勘探开发意义[J]. 沉积学报, 2021, 39(1): 181-196. |
SHI Zhensheng, QIU Zhen. Main bedding types of marine fine-grained sediments and their significance for oil and gas exploration and development[J]. Acta Sedimentologica Sinica, 2021, 39(1): 181-196. | |
2 | 冯增昭. 沉积岩石学[M]. 2版. 北京: 石油工业出版社, 1994: 286-298. |
FENG Zengzhao. Sedimentary petrology[M]. 2nd ed. Beijing: Petroleum Industry Press, 1994: 286-298. | |
3 | 王红岩, 施振生, 孙莎莎, 等. 陆表海页岩沉积微相类型及微相分布模式——以川南地区五峰组—龙马溪组为例[J]. 石油勘探与开发, 2023, 50(1): 51-64. |
WANG Hongyan, SHI Zhensheng, SUN Shasha, et al. Microfacies types and distribution of epicontinental shale: A case study of the Wufeng-Longmaxi shale in southern Sichuan Basin, China[J]. Petroleum Exploration and Development, 2023, 50(1): 51-64. | |
4 | STOW D A V, TABREZ A R. Hemipelagites: processes, facies and model[J]. Geological Society, London, Special Publications, 1998, 129(1): 317-337. |
5 | 李志扬. 陆棚海泥岩的岩相特征及沉积过程——以晚白垩世北美西部内陆海道为例[J]. 沉积学报, 2021, 39(1): 168-180. |
LI Zhiyang. Facies characteristics and depositional processes of shelf mudstones: Examples from the Late Cretaceous western interior seaway of North America[J]. Acta Sedimentologica Sinica, 2021, 39(1): 168-180. | |
6 | SCHIMMELMANN A, LANGE C B, SCHIEBER J, et al. Varves in marine sediments: A review[J]. Earth-Science Reviews, 2016, 159: 215-246. |
7 | ANDERSON R Y, DEAN W E. Lacustrine varve formation through time[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1988, 62(1/4): 215-235. |
8 | ZOLITSCHKA B, FRANCUS P, OJALA A E K, et al. Varves in lake sediments-a review[J]. Quaternary Science Reviews, 2015, 117: 1-41. |
9 | BOUMA A H, KUENEN P H, SHEPARD F P. Sedimentology of some flysch deposits: A graphic approach to facies interpretation[M]. Amsterdam: Elsevier, 1962. |
10 | STOW D A V, SHANMUGAM G. Sequence of structures in fine-grained turbidites: Comparison of recent deep-sea and ancient flysch sediments[J]. Sedimentary Geology, 1980, 25(1/2): 23-42. |
11 | PIPER D J W. Turbidite muds and silts on deep sea fans and abyssal plains[M]//STANLEY D J, KELLING G. Sedimentation in Submarine Canyons, Fans and Trenches. Stroudsburg: Dowden, Hutchinson & Ross, 1978: 163-176. |
12 | KOMAR P D. The hydraulic interpretation of turbidites from their grain sizes and sedimentary structures[M]//STOW D A V. Deep-Water Turbidite Systems. Gent: The International Association of Sedimentologists, 1991: 41-53. |
13 | SUMNER E J, TALLING P J, AMY L A, et al. Facies architecture of individual basin-plain turbidites: Comparison with existing models and implications for flow processes[J]. Sedimentology, 2012, 59(6): 1850-1887. |
14 | TALLING P J, MASSON D G, SUMNER E J, et al. Subaqueous sediment density flows: Depositional processes and deposit types[J]. Sedimentology, 2012, 59(7): 1937-2003. |
15 | STOW D A V, BOWEN A J. Origin of lamination in deep sea, fine-grained sediments[J]. Nature, 1978, 274(5669): 324-328. |
16 | JONES K P N, MCCAVE I N, WEAVER P P E. Textural and dispersal patterns of thick mud turbidites from the Madeira Abyssal plain[J]. Marine Geology, 1992, 107(3): 149-173. |
17 | STOW D, SMILLIE Z. Distinguishing between deep-water sediment facies: Turbidites, contourites and hemipelagites[J]. Geosciences, 2020, 10(2): 68. |
18 | SANSOM P. Hybrid turbidite-contourite systems of the Tanzanian margin[J]. Petroleum Geoscience, 2018, 24(3): 258-276. |
19 | REBESCO M, HERNÁNDEZ-MOLINA F J, VAN ROOIJ D, et al. Contourites and associated sediments controlled by deep-water circulation processes: State-of-the-art and future considerations[J]. Marine Geology, 2014, 352: 111-154. |
20 | STOW D A V, FAUGÈRES J C, HOWE J A, et al. Bottom currents, contourites and deep-sea sediment drifts: Current state-of-the-art[J]. Geological Society, London, Memoirs, 2002, 22(1): 7-20. |
21 | FAUGÈRES J C, STOW D A V. Bottom-current-controlled sedimentation: A synthesis of the contourite problem[J]. Sedimentary Geology, 1993, 82(1/4): 287-297. |
22 | SCHIEBER J, SOUTHARD J, THAISEN K. Accretion of mudstone beds from migrating floccule ripples[J]. Science, 2007, 318(5857): 1760-1763. |
23 | SCHIEBER J, SOUTHARD J B. Bedload transport of mud by floccule ripples—direct observation of ripple migration processes and their implications[J]. Geology, 2009, 37(6): 483-486. |
24 | YAWAR Z, SCHIEBER J. On the origin of silt laminae in laminated shales[J]. Sedimentary Geology, 2017, 360: 22-34. |
25 | SHI Zhensheng, ZHOU Tianqi, WANG Hongyan, et al. Depositional structures and their reservoir characteristics in the Wufeng-Longmaxi shale in southern Sichuan Basin, China[J]. Energies, 2022, 15(5): 1618. |
26 | 董大忠, 施振生, 孙莎莎, 等. 黑色页岩微裂缝发育控制因素——以长宁双河剖面五峰组—龙马溪组为例[J]. 石油勘探与开发, 2018, 45(5): 763-774. |
DONG Dazhong, SHI Zhensheng, SUN Shasha, et al. Factors controlling microfractures in black shale: A case study of Ordovician Wufeng Formation-Silurian Longmaxi Formation in Shuanghe Profile, Changning area, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2018, 45(5): 763-774. | |
27 | 施振生, 赵圣贤, 赵群, 等. 川南地区下古生界五峰组-龙马溪组含气页岩岩心裂缝特征及其页岩气意义[J]. 石油与天然气地质, 2022, 43(5): 1087-1101. |
SHI Zhensheng, ZHAO Shengxian, ZHAO Qun, et al. Fractures in cores from the Lower Paleozoic Wufeng-Longmaxi shale in southern Sichuan Basin and their implications for shale gas exploration[J]. Oil & Gas Geology, 2022, 43(5): 1087-1101. | |
28 | 施振生, 邱振, 董大忠, 等. 四川盆地巫溪2井龙马溪组含气页岩细粒沉积纹层特征[J]. 石油勘探与开发, 2018, 45(2): 339-348. |
SHI Zhensheng, QIU Zhen, DONG Dazhong, et al. Laminae characteristics of gas-bearing shale fine-grained sediment of the Silurian Longmaxi Formation of Well Wuxi 2 in Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2018, 45(2): 339-348. | |
29 | 王红岩, 施振生, 孙莎莎, 等. 四川盆地及周缘志留系龙马溪组一段深层页岩储层特征及其成因[J]. 石油与天然气地质, 2021, 42(1): 66-75. |
WANG Hongyan, SHI Zhensheng, SUN Shasha, et al. Characterization and genesis of deep shale reservoirs in the first Member of the Silurian Longmaxi Formation in southern Sichuan Basin and its periphery[J]. Oil & Gas Geology, 2021, 42(1): 66-75. | |
30 | 胡宗全, 杜伟, 朱彤, 等. 四川盆地及其周缘五峰组-龙马溪组细粒沉积的层序地层与岩相特征[J]. 石油与天然气地质, 2022, 43(5): 1024-1038. |
HU Zongquan, DU Wei, ZHU Tong, et al. Sequence stratigraphy and lithofacies characteristics of fine-grained deposits of Wufeng-Longmaxi formations in the Sichuan Basin and on its periphery[J]. Oil & Gas Geology, 2022, 43(5): 1024-1038. | |
31 | 施振生, 董大忠, 王红岩, 等. 含气页岩不同纹层及组合储集层特征差异性及其成因——以四川盆地下志留统龙马溪组一段典型井为例[J]. 石油勘探与开发, 2020, 47(4): 829-840. |
SHI Zhensheng, DONG Dazhong, WANG Hongyan, et al. Reservoir characteristics and genetic mechanisms of gas-bearing shales with different laminae and laminae combinations: A case study of Member 1 of the Lower Silurian Longmaxi shale in Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2020, 47(4): 829-840. | |
32 | MIDDLETON G V. Experiments on density and turbidity currents: Ⅲ. Deposition of sediment[J]. Canadian Journal of Earth Sciences, 1967, 4(3): 475-505. |
33 | MCANALLY W H, FRIEDRICHS C, HAMILTON D, et al. Management of fluid mud in estuaries, bays, and lakes. I: Present state of understanding on character and behavior[J]. Journal of Hydraulic Engineering, 2007, 133(1): 9-22. |
34 | TRAN D, STROM K. Suspended clays and silts: Are they Independent or dependent fractions when it comes to settling in a turbulent suspension?[J]. Continental Shelf Research, 2017, 138: 81-94. |
35 | STERNBERG R W, BERHANE I, OGSTON A S. Measurement of size and settling velocity of suspended aggregates on the northern California continental shelf[J]. Marine Geology, 1999, 154(1/4): 43-53. |
36 | COUSSOT P. Mudflow rheology and dynamics[M]. London: Routledge, 1997: 272. |
37 | JEONG S W, LOCAT J, LEROUEIL S, et al. Rheological properties of fine-grained sediment: The roles of texture and mineralogy[J]. Canadian Geotechnical Journal, 2010, 47(10): 1085-1100. |
38 | BAAS J H, BEST J L, PEAKALL J, et al. A phase diagram for turbulent, transitional, and laminar clay suspension flows[J]. Journal of Sedimentary Research, 2009, 79(4): 162-183. |
39 | BAAS J H, BEST J L, PEAKALL J E. Depositional processes, bedform development and hybrid bed formation in rapidly decelerated cohesive (mud-sand) sediment flows[J]. Sedimentology, 2011, 58(7): 1953-1987. |
40 | HAMPTON M. Competence of fine-grained debris flows[J]. Journal of Sedimentary Research, 1975, 45(4): 834-844. |
41 | CUTHBERTSON A J S, DONG Ping, DAVIES P A. Non-equilibrium flocculation characteristics of fine-grained sediments in grid-generated turbulent flow[J]. Coastal Engineering, 2010, 57(4): 447-460. |
42 | LOWE D R. Sediment gravity flows; Ⅱ, Depositional models with special reference to the deposits of high-density turbidity currents[J]. Journal of Sedimentary Research, 1982, 52(1): 279-297. |
43 | MACQUAKER J H S, BENTLEY S J, BOHACS K M. Wave-enhanced sediment-gravity flows and mud dispersal across continental shelves: Reappraising sediment transport processes operating in ancient mudstone successions[J]. Geology, 2010, 38(10): 947-950. |
44 | BENNETT M R, DOYLE P, MATHER A E. Dropstones: Their origin and significance[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1996, 121(3/4): 331-339. |
45 | SCHIEBER J. Mud re-distribution in epicontinental basins-Exploring likely processes[J]. Marine and Petroleum Geology, 2016, 71: 119-133. |
46 | TALLING P J. Hybrid submarine flows comprising turbidity current and cohesive debris flow: Deposits, theoretical and experimental analyses, and generalized models[J]. Geosphere, 2013, 9(3): 460-488. |
47 | MCCAVE I N, JONES K P N. Deposition of ungraded muds from high-density non-turbulent turbidity currents[J]. Nature, 1988, 333(6170): 250-252. |
48 | NORMARK W R, PIPER D J W, POSAMENTIER H, et al. Variability in form and growth of sediment waves on turbidite channel levees[J]. Marine Geology, 2002, 192(1/3): 23-58. |
49 | BOULESTEIX K, POYATOS-MORÉ M, HODGSON D M, et al. Fringe or background: Characterizing deep-water mudstones beyond the basin-floor fan sandstone pinchout[J]. Journal of Sedimentary Research, 2020, 90(12): 1678-1705. |
50 | PIPER D J W. Turbidite origin of some laminated mudstones[J]. Geological Magazine, 1972, 109(2): 115-126. |
51 | STOW D A V, BOWEN A J. A physical model for the transport and sorting of fine-grained sediment by turbidity currents[J]. Sedimentology, 1980, 27(1): 31-46. |
52 | STOW D A V. Fine-grained sediments in deep water: An overview of processes and facies models[J]. Geo-Marine Letters, 1985, 5(1): 17-23. |
53 | STOW D A V, FAUGÈRES J C. Chapter 13 contourite facies and the facies model[J]. Developments in Sedimentology, 2008, 60: 223-256. |
54 | STOW D A V, LOVELL J P B. Contourites: Their recognition in modern and ancient sediments[J]. Earth-Science Reviews, 1979, 14(3): 251-291. |
55 | STOW D A V, HUC A Y, BERTRAND P. Depositional processes of black shales in deep water[J]. Marine and Petroleum Geology, 2001, 18(4): 491-498. |
56 | 管全中, 董大忠, 张华玲, 等. 富有机质页岩生物成因石英的类型及其耦合成储机制——以四川盆地上奥陶统五峰组—下志留统龙马溪组为例[J]. 石油勘探与开发, 2021, 48(4): 700-709. |
GUAN Quanzhong, DONG Dazhong, ZHANG Hualing, et al. Types of biogenic quartz and its coupling storage mechanism in organic-rich shales: A case study of the Upper Ordovician Wufeng Formation to Lower SiLurian Longmaxi Formation in the Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2021, 48(4): 700-709. | |
57 | 卢龙飞, 秦建中, 申宝剑, 等. 中上扬子地区五峰组—龙马溪组硅质页岩的生物成因证据及其与页岩气富集的关系[J]. 地学前缘, 2018, 25(4): 226-236. |
LU Longfei, QIN Jianzhong, SHEN Baojian, et al. The origin of biogenic silica in siliceous shale from Wufeng-Longmaxi Formation in the Middle and Upper Yangtze region and its relationship with shale gas enrichment[J]. Earth Science Frontiers, 2018, 25(4): 226-236. | |
58 | 周晓峰, 郭伟, 李熙喆, 等. 四川盆地五峰组-龙马溪组有机质类型与有机孔配置的放射虫硅质页岩岩石学证据[J]. 中国石油大学学报(自然科学版), 2022, 46(5): 12-22. |
ZHOU Xiaofeng, GUO Wei, LI Xizhe, et al. Mutual relation between organic matter types and pores with petrological evidence of radiolarian siliceous shale in Wufeng-Longmaxi Formation, Sichuan Basin[J]. Journal of China University of Petroleum(Edition of Natural Science), 2022, 46(5): 12-22. | |
59 | 赵建华, 金之钧, 金振奎, 等. 四川盆地五峰组—龙马溪组含气页岩中石英成因研究[J]. 天然气地球科学, 2016, 27(2): 377-386. |
ZHAO Jianhua, JIN Zhijun, JIN Zhenkui, et al. The genesis of quartz in Wufeng-Longmaxi gas shales, Sichuan Basin[J]. Natural Gas Geoscience, 2016, 27(2): 377-386. | |
60 | SHI Zhensheng, WANG Hongyan, SUN Shasha, et al. Graptolite zone calibrated stratigraphy and topography of the Late Ordovician-Early Silurian Wufeng-Lungmachi shale in Upper Yangtze area, South China[J]. Arabian Journal of Geosciences, 2021, 14(3): 213. |
61 | MACQUAKER J H S, KELLER M A, DAVIES S J. Algal blooms and “marine snow”: Mechanisms that enhance preservation of organic carbon in ancient fine-grained sediments[J]. Journal of Sedimentary Research, 2010, 80(11): 934-942. |
62 | ZOU Caineng, QIU Zhen, POULTON S W, et al. Ocean euxinia and climate change “double whammy” drove the Late Ordovician mass extinction[J]. Geology, 2018, 46(6): 535-538. |
63 | SHI Zhensheng, ZHAO Shengxian, ZHOU Tianqi, et al. Mineralogy and geochemistry of the Upper Ordovician and Lower Silurian Wufeng-Longmaxi shale on the Yangtze platform, south China: Implications for provenance analysis and shale gas sweet-spot interval[J]. Minerals, 2022, 12(10): 1190. |
64 | 王红岩, 施振生, 孙莎莎. 四川盆地及周缘奥陶系五峰组—志留系龙马溪组页岩生物地层及其储集层特征[J]. 石油勘探与开发, 2021, 48(5): 879-890. |
WANG Hongyan, SHI Zhensheng, SUN Shasha. Biostratigraphy and reservoir characteristics of the Ordovician Wufeng-Silurian Longmaxi shale in the Sichuan Basin and surrounding areas, China[J]. Petroleum Exploration and Development, 2021, 48(5): 879-890. |
[1] | Dongfeng HU, Zhihong WEI, Ruobing LIU, Xiangfeng WEI, Wei WANG, Qingbo WANG. Discovery of the Qijiang shale gas field in a structurally complex region on the southeastern margin of the Sichuan Basin and its implications [J]. Oil & Gas Geology, 2023, 44(6): 1418-1429. |
[2] | Ruikang BIAN, Chuanxiang SUN, Haikuan NIE, Zhujiang LIU, Wei DU, Pei LI, Ruyue WANG. Types, characteristics, and exploration targets of deep shale gas reservoirs in the Wufeng-Longmaxi formations, southeastern Sichuan Basin [J]. Oil & Gas Geology, 2023, 44(6): 1515-1529. |
[3] | Yong LI, Zhitong ZHU, Peng WU, Chenzhou SHEN, Jixian GAO. Pressure evolution of gas-bearing systems in the Upper Paleozoic tight reservoirs at the eastern margin of the Ordos Basin [J]. Oil & Gas Geology, 2023, 44(6): 1568-1581. |
[4] | Yan ZHOU, Siyi FU, Tao ZHANG, Hongde CHEN, Zhongtang SU, Juntao ZHANG, Chenggong ZHANG, Ziming LIU, Xiaoyu HAN. Tectono-sedimentary evolution, paleo-geographic reconstruction and play fairway delineation of the Lower Paleozoic, Ordos Basin [J]. Oil & Gas Geology, 2023, 44(2): 264-275. |
[5] | Zhijun Chen, Chunming Zhang, Yonghong He, Zhigang Wen, Fangxia Ma, Wei Li, Yiwen Gao, Yiguo Chen, Huiyuan Zhang, Dongtao Wei. Characteristics and geochemical indication of over-mature source rocks in the Paleozoic, Yingen-Ejinaqi Basin [J]. Oil & Gas Geology, 2022, 43(3): 682-695. |
[6] | Faqi He, Zhaoxiong Dong. Development potential of deep coalbed methane: A case study in the Daniudi gas field, Ordos Basin [J]. Oil & Gas Geology, 2022, 43(2): 277-285. |
[7] | Pengwei Wang, Xiao Chen, Zhongbao Liu, Wei Du, Donghui Li, Wujun Jin, Ruyue Wang. Reservoir pressure prediction for marine organic-rich shale: A case study of the Upper Ordovician Wufeng-Lower Silurian Longmaxi shale in Fuling shale gas field, NE Sichuan Basin [J]. Oil & Gas Geology, 2022, 43(2): 467-476. |
[8] | Ruyue Wang, Zongquan Hu, Tong Zhou, Hanyong Bao, Jing Wu, Wei Du, Jianhua He, Pengwei Wang, Qian Chen. Characteristics of fractures and their significance for reservoirs in Wufeng-Longmaxi shale, Sichuan Basin and its periphery [J]. Oil & Gas Geology, 2021, 42(6): 1295-1306. |
[9] | Chang Liu, Daomin Zhang, Chao Li, Yuanyuan Lu, Shanshan Yu, Mingqiang Guo. Upper Paleozoic tight gas sandstone reservoirs and main controls, Linxing block, Ordos Basin [J]. Oil & Gas Geology, 2021, 42(5): 1146-1158. |
[10] | Pang Yang, Zhanli Ren, Zhao Jianxin, Duc Nguyen Ai, Feng Yuexing, Kai Qi, Kun Wang. Tectonic evolution analysis constrained jointly by in-situ calcite U-Pb dating and apatite fission track for southwestern Ordos Basin [J]. Oil & Gas Geology, 2021, 42(5): 1189-1201. |
[11] | Guangyu He, Zicheng Cao, Zewei Yao, Tianqi Liao, Bo Lin. Paleozoic horst-twist superimposed fault-fracture body model in Gucheng area of Tarim Basin [J]. Oil & Gas Geology, 2021, 42(3): 587-594. |
[12] | Xin Cheng, Lihong Zhou, Yingchang Cao, Fengming Jin, Lixin Fu, Hongjun Li, Da Lou, Guanghui Yuan. Differential evolution and origin of high-quality reservoirs in the Lower Paleozoic carbonate buried hills in Dagang prospecting area, Huanghua Depression [J]. Oil & Gas Geology, 2021, 42(3): 673-689. |
[13] | Qian Chen, Xiangbin Yan, Chaoying Liu, Xiaoliang Wei, Zhe Cheng, Weijun Qin, Taiyuan Hong. Controlling effect of compaction upon organic matter pore development in shale: A case study on the Lower Paleozoic in southeastern Sichuan Basin and its periphery [J]. Oil & Gas Geology, 2021, 42(1): 76-85. |
[14] | Zhiyuan Lu, Zhiliang He, Chuan Yu, Xin Ye, Donghui Li, Wei Du, Haikuan Nie. Characteristics of shale gas enrichment in tectonically complex regions-A case study of the Wufeng-Longmaxi Formations of Lower Paleozoic in southeastern Sichuan Basin [J]. Oil & Gas Geology, 2021, 42(1): 86-97. |
[15] | Hongjian Zhu, Yiwen Ju, Yan Sun, Cheng Huang, Hongye Feng, Raza Ali, Kun Yu, Peng Qiao, Lei Xiao. Evolution characteristics and models of shale pores and fractures under tectonic deformation: A case study of the Lower Paleozoic marine shale in the Sichuan Basin and its periphery [J]. Oil & Gas Geology, 2021, 42(1): 186-200, 240. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||