Oil & Gas Geology ›› 2024, Vol. 45 ›› Issue (2): 553-564.doi: 10.11743/ogg20240218
• Methods and Technologies • Previous Articles Next Articles
Mingxing BAI1,2(), Zhichao ZHANG1,2(), Qiaozhen CHEN3, Long XU4, Siyu DU1,2, Yexin LIU1,2
Received:
2023-09-12
Revised:
2024-03-19
Online:
2024-04-30
Published:
2024-04-30
Contact:
Zhichao ZHANG
E-mail:bai510714@163.com;1209712605@qq.com
CLC Number:
Mingxing BAI, Zhichao ZHANG, Qiaozhen CHEN, Long XU, Siyu DU, Yexin LIU. Advances in research on CO2 replacement for natural gas hydrate exploitation[J]. Oil & Gas Geology, 2024, 45(2): 553-564.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Performance of replacement with different phases of CO2 in enhancing NGH recovery[1,27]"
相态类型 | 分析技术 | 水合物介质 | 温度/K | 压力/MPa | CH4采收率/% | 文献来源 |
---|---|---|---|---|---|---|
液态CO2 | GC | 冰粒/纯水 | 263.0/275.0 | 9.0 | 14.0/40.3 | Lee等[ |
液态CO2 | Raman | 纯水 | 273.2 | 3.6/5.4/6.0 | 37.6/27.0/29.0 | Ota等[ |
液态CO2 | GC | 纯水 | 283.5 | 4.5/5.0 | 20.6/18.1 | 张凤琦等[ |
液态CO2 | GC | 石英砂+水 | 282.2 | 6.0 ~ 8.0 | 13.0 ~ 45.0 | Zhang等[ |
液态CO2 | GC | 石英砂+盐水 | 275.2 | 4.1 ~ 4.2 | 26.0 ~ 33.0 | Yuan等[ |
液态CO2 | GC | 石英砂+盐水 | 280.2 | 4.2 | 35.0 | Yuan等[ |
液态CO2 | GC | 石英砂+SDS溶液 | 281.2 | 5.0 | 18.6 | Zhou等[ |
液态CO2 | GC | 石英砂+盐水 | 273.2 | 4.0 | 26.4 | Wang[ |
液态CO2 | Raman+SEM | 纯水 | 277.0 | 6.0 | 11.4 | Falenty等[ |
液态CO2 | NMR | 砂岩+盐水 | 273.2 | 8.3 | 59.0 | Kvamme等[ |
CO2乳液 | GC | 石英砂+SDS溶液 | 281.2 | 5.0 | 27.1 | Zhou等[ |
CO2乳液 | GC | 石英砂+水 | 281.0 | 5.0 | 27.1 | 周锡堂等[ |
超临界CO2 | GC | 石英砂+冰颗粒/盐水 | 275.2 | 7.5 | 37.5 | Deusner等[ |
超临CO2 | GC | 石英砂+冰颗粒/盐水 | 275.2/281.2/283.2 | 13.0 | 3.4/40.7/10.7 | Deusner等[ |
Table 2
Performance of replacement with mixed CO2+H2 gas in enhancing NGH recovery[1,27]"
混合气比例 | 分析技术 | 水合物介质 | 温度/K | 压力/MPa | CH4采收率/% | 文献来源 |
---|---|---|---|---|---|---|
72 %CO2 + 28 %H2 | GC | 砂岩+咸水 | 275.6 | 5.0 | 28.0 | Wang等[ |
55 %CO2 + 45 %H2 | GC | 砂岩+咸水 | 275.6 | 5.0 | 47.0 | Wang等[ |
36 %CO2 + 64 %H2 | GC | 砂岩+咸水 | 275.6 | 5.0 | 25.0 | Wang等[ |
18 %CO2 + 82 %H2 | GC | 砂岩+咸水 | 275.6 | 5.0 | 70.0 | Xu等[ |
40 %CO2 + 60 %H2 | Raman+GC | 纯水 | 274.0 | 4.5 | 78.0 | Xu等[ |
40 %CO2 + 60 %H2 | Raman+GC | 纯水 | 274.0 | 4.5 | 48.1 | Ding等[ |
60.1 %CO2 + 39.9 %H2 | Raman+GC | 纯水 | 274.2 | 4.5 | 71.0 | Ding等[ |
60.1 %CO2 + 39.9 %H2 | Raman+GC | 纯水 | 274.2 | 6.0 | 32.0 | Sun等[ |
74 %CO2 + 26 %H2 | GC | 石英岩+咸水 | 276.0 | 3.6 | 52.4 | Sun等[ |
74 %CO2 + 26 %H2 | GC | 石英岩+咸水 | 276.0 | 3.6 | 46.0 | Sun等[ |
74 %CO2 + 26 %H2 | GC | 石英岩+咸水 | 276.0 | 3.6 | 41.4 | Sun等[ |
43 %CO2 + 57 %H2 | GC | 石英岩+咸水 | 276.0 | 3.7 | 61.0 | Sun等[ |
20 %CO2 + 80 %H2 | GC | 石英岩+咸水 | 276.0 | 3.7 | 58.0 | Sun等[ |
100 %H2 | GC | 石英岩+咸水 | 276.0 | 3.7 | 63.0 | Sun等[ |
74 %CO2 + 26 %H2 | GC | 石英砂+咸水 | 276.0 | 3.7 | 30.0 ~ 50.0 | Sun等[ |
40 %CO2 + 60 %H2 | GC | 石英砂+咸水 | 276.0 | 3.7 | 40.0 ~ 75.0 | Sun等[ |
22 %CO2 + 78 %H2 | GC | 石英砂+咸水 | 276.0 | 3.7 | 12.0 ~ 88.0 | Sun等[ |
22 %CO2 + 78 %H2 | GC | 石英砂+咸水 | 276.0 | 3.7 | 15.0 ~ 95.0 | Sun等[ |
Table 3
Performance of mixed CO2+N2 replacement in enhancing CH4 recovery from NGHs[1,27]"
混合气比例 | 分析技术 | 水合物介质 | 温度/K | 压力/MPa | CH4采收率/% | 文献来源 |
---|---|---|---|---|---|---|
10 %CO2+90 %N2 | NMR+DSC | 多孔硅胶+水 | 274.00 | 11.5/14.6/18.6 | 77.0/80.0/79.0 | Lee等[ |
10 %CO2+90 %N2 | GC | 纯水+SDS溶液 | 298.20 | 9.1 | 41.0 | Pandey等[ |
14.6 %CO2+85.4 %N2 | GC | 硅砂+水 | 273.30 | 4.2 | 53.3 | Yang等[ |
19 %CO2+81 %N2 | GC | 石英砂+冰粒 | 274.20 | 15.8 | 6.1 | 王曦等[ |
20 %CO2+80 %N2 | Raman+NMR | 粉末冰颗粒 | 274.20 | 12.0 | 85.0 | Park等[ |
20 %CO2+80 %N2 | SEM | 黏土+水 | 273.20 | 15.0 | 85.0 | Koh等[ |
20 %CO2+80 %N2 | NMR+GC | 多孔硅胶+水 | 273.00 | 10.0 | 42.0 | Cha等[ |
20 %CO2+80 %N2 | GC | 玻璃珠+水 | 275.20 | 9.8 | 49.2 | Koh等[ |
20 %CO2+80 %N2 | GC | 玻璃珠+水 | 274.00 | 9.5 | 39.3 | Youn等[ |
22 %CO2+78 %N2 | GC | 石英砂+盐水 | 273.20 | 5.0 | 36.9 | Liu等[ |
23 %CO2+77 %N2 | Raman+GC | 石英砂+水 | 281.00 | 10.0 | 90.0 | Schicks等[ |
25 %CO2+75 %N2 | GC | 砂土+水 | 274.20 | 10.0 | 25.0 | Liu等[ |
25 %CO2+75 %N2 | GC | 高岭石+水 | 274.20 | 10.0 | 24.5 | 潘栋彬等[ |
25 %CO2+75 %N2 | GC | 伊利石+水 | 274.20 | 10.0 | 25.0 | 潘栋彬等[ |
25 %CO2+75 %N2 | GC | 蒙脱石+水 | 274.20 | 10.0 | 18.2 | 潘栋彬等[ |
28 %CO2+72 %N2 | GC+CCD | 纯水+SDS溶液 | 284.20 | 9.0 | 13.2 | Niu等[ |
40 %CO2+60 %N2 | NMR+GC | 多孔硅胶+水 | 274.00 | 10.0 | 51.0 | Mok等[ |
50 %CO2+50 %N2 | Raman+CCD+GC | 纯水 | 273.90 | 5.0/6.7 | 8.3/17.7 | Zhou等[ |
53 %CO2+47 %N2 | GC | 石英砂+冰粒 | 274.15 | 2.1/3.4 | 12.6/19.0 | 王曦等[ |
53 %CO2+47 %N2 | GC | 纯水 | 279.15 | 8.0 | 52.4 | Ouyang等[ |
53 %CO2+47 %N2 | GC | 石英砂+热水 | 274.15 | 14.0 | 91.6 | 操原[ |
59 %CO2+41 %N2 | GC | 石英砂+水 | 277.15 | 7.0 | 40.8 | Yasue等[ |
60 %CO2+40 %N2 | GC | 石英砂+水 | 277.15/280.15 | 7.0 | 30.0 | Masuda等[ |
60 %CO2+40 %N2 | Raman+FTIR+GC | 纯水 | 274.00 | 4.5 | 73.4 | Xu等[ |
75 %CO2+25 %N2 | GC | 石英砂+冰粒 | 275.15 | 3.0 | 41.4 | Li等[ |
75 %CO2+25 %N2 | GC | 石英砂+水 | 275.65 | 4.8 | 68.8 | Tupsakhare等[ |
75 %CO2+25 %N2 | Raman+CCD+GC | 纯水 | 274.00 | 2.6/3.1/3.5 | 9.5/12.6/17.9 | Zhou等[ |
87.6 %CO2+12.4 %N2 | GC | 石英砂+水 | 277.15 | 8.9 | 46.3 | Mu等[ |
1 | 王佳贤, 刘昌岭, 宁伏龙, 等. CO2-CH4置换水合物开采方法及其强化技术研究进展[J]. 海洋地质与第四纪地质, 2023, 43(1): 190-204. |
WANG Jiaxian, LIU Changling, NING Fulong, et al. Technological research progress on CO2-CH4 replacement for hydrate exploitation and enhancement[J]. Marine Geology & Quaternary Geology, 2023, 43(1): 190-204. | |
2 | MARIA G A. Natural gas recovery from hydrate compounds using CO2 replacement strategies: Experimental study on thermal stimulation[J]. Energy Procedia, 2018, 148: 647-654. |
3 | 吴传芝, 赵克斌, 孙长青, 等. 天然气水合物基本性质与主要研究方向[J]. 非常规油气, 2018, 5(4): 92-99. |
WU Chuanzhi, ZHAO Kebin, SUN Changqing, et al. Basic characteristics and major research fields of natural gas hydrate[J]. Unconventional Oil & Gas, 2018, 5(4): 92-99. | |
4 | SLOAN E D Jr, KOH C A. Clathrate hydrates of natural gases[M]. 3rd ed. Boca Raton: CRC Press, 2007. |
5 | 张金华, 方念乔, 魏伟, 等. 天然气水合物成藏条件与富集控制因素[J]. 中国石油勘探, 2018, 23(3): 35-46. |
ZHANG Jinhua, FANG Nianqiao, WEI Wei, et al. Accumulation conditions and enrichment controlling factors of natural gas hydrate reservoirs[J]. China Petroleum Exploration, 2018, 23(3): 35-46. | |
6 | 梁金强, 王宏斌, 苏新, 等. 南海北部陆坡天然气水合物成藏条件及其控制因素[J]. 天然气工业, 2014, 34(7): 128-135. |
LIANG Jinqiang, WANG Hongbin, SU Xin, et al. Natural gas hydrate formation conditions and the associated controlling factors in the northern slope of the South China Sea[J]. Natural Gas Industry, 2014, 34(7): 128-135. | |
7 | 毛雪莲, 朱继田, 宋鹏, 等. 琼东南盆地深水区天然气水合物稳定域分布特征与预测[J]. 海洋地质前沿, 2021, 37(10): 58-63. |
MAO Xuelian, ZHU Jitian, SONG Peng, et al. Preliminary study on the distribution pattern of gas hydrate stability zone in the deep-water areas of Qiongdongnan Basin[J]. Marine Geology Frontiers, 2021, 37(10): 58-63. | |
8 | WANG Xiaohui, SUN Yifei, WANG Yunfei, et al. Gas production from hydrates by CH4-CO2/H2 replacement[J]. Applied Energy, 2017, 188: 305-314. |
9 | WANG Xiaohui, LI Fengguang, XU Yuxi, et al. Elastic properties of hydrate-bearing sandy sediment during CH4-CO2 replacement[J]. Energy Conversion and Management, 2015, 99: 274-281. |
10 | WANG Yi, LI Xiaosen, LI Gang, et al. Experimental investigation into methane hydrate production during three-dimensional thermal stimulation with five-spot well system[J]. Applied Energy, 2013, 110: 90-97. |
11 | FENG Jingchun, LI Gang, LI Xiaosen, et al. Evolution of hydrate dissociation by warm brine stimulation combined depressurization in the South China Sea[J]. Energies, 2013, 6(10): 5402-5425. |
12 | KONNO Y, MASUDA Y, HARIGUCHI Y, et al. Key factors for depressurization-induced gas production from oceanic methane hydrates[J]. Energy & Fuels, 2010, 24(3): 1736-1744. |
13 | ZHAO Jiafei, XU Kun, SONG Yongchen, et al. A review on research on replacement of CH4 in natural gas hydrates by use of CO2 [J]. Energies, 2012, 5(2): 399-419. |
14 | TAN Zhongfu, PAN Ge, LIU Pingkuo. Focus on the development of natural gas hydrate in China[J]. Sustainability, 2016, 8(6): 520. |
15 | EJIKE C E. Assessment of hazards in gas hydrates recovery[J]. Open Journal of Yangtze Oil and Gas, 2019, 4(4): 231-239. |
16 | DORNAN P, ALAVI S, WOO T K. Free energies of carbon dioxide sequestration and methane recovery in clathrate hydrates[J]. Journal of Chemical Physics, 2007, 127(12): 124510. |
17 | OTA M, ABE Y, WATANABE M, et al. Methane recovery from methane hydrate using pressurized CO2 [J]. Fluid Phase Equilibria, 2005, 228/229: 553-559. |
18 | 万义钊, 吴能友, 胡高伟, 等. 南海神狐海域天然气水合物降压开采过程中储层的稳定性[J]. 天然气工业, 2018, 38(4): 117-128. |
WAN Yizhao, WU Nengyou, HU Gaowei, et al. Reservoir stability in the process of natural gas hydrate production by depressurization in the Shenhu area of the South China Sea[J]. Natural Gas Industry, 2018, 38(4): 117-128. | |
19 | MISYURA S Y, DONSKOY I G. Dissociation kinetics of methane hydrate and CO2 hydrate for different granular composition[J]. Fuel, 2020, 262: 116614. |
20 | STANWIX P L, RATHNAYAKE N M, DE OBANOS F P P, et al. Characterising thermally controlled CH4-CO2 hydrate exchange in unconsolidated sediments[J]. Energy & Environmental Science, 2018, 11(7): 1828-1840. |
21 | PHIRANI J, MOHANTY K K. Kinetic simulation of CO2 flooding of methane hydrates[C]//SPE Annual Technical Conference and Exhibition, Florence, 2010. London: Society of Petroleum Engineers, 2010: SPE-134178-MS. |
22 | KOMAI T, YAMAMOTO Y, OHGA K. Dynamics of reformation and replacement of CO2 and CH4 gas hydrates[J]. Annals of the New York Academy of Sciences, 2000, 912(1): 272-280. |
23 | LEE B R, KOH C A, SUM A K. Quantitative measurement and mechanisms for CH4 production from hydrates with the injection of liquid CO2 [J]. Physical Chemistry Chemical Physics, 2014, 16(28): 14922-14927. |
24 | MU Liang, VON SOLMS N. Hydrate thermal dissociation behavior and dissociation enthalpies in methane-carbon dioxide swapping process[J]. The Journal of Chemical Thermodynamics, 2018, 117: 33-42. |
25 | MOK J, CHOI W, SEO Y. Time-dependent observation of a cage-specific guest exchange in sI hydrates for CH4 recovery and CO2 sequestration[J]. Chemical Engineering Journal, 2020, 389: 124434. |
26 | 王菲菲. 二氧化碳置换甲烷水合物微观实验研究[D]. 武汉: 中国地质大学, 2015. |
WANG Feifei. Micro-experimental study on replacement of CH4 hydrate by use of CO2 [D]. Wuhan: China University of Geosciences, 2015. | |
27 | DING Yalong, XU Chungang, YU Yisong, et al. Methane recovery from natural gas hydrate with simulated IGCC syngas[J]. Energy, 2017, 120: 192-198. |
28 | OTA M, MOROHASHI K, ABE Y, et al. Replacement of CH4 in the hydrate by use of liquid CO2 [J]. Energy Conversion and Management, 2005, 46(11/12): 1680-1691. |
29 | OTA M, SAITO T, AIDA T, et al. Macro and microscopic CH4-CO2 replacement in CH4 hydrate under pressurized CO2 [J]. AIChE Journal, 2007, 53(10): 2715-2721. |
30 | 张凤琦, 陈国兴, 郭开华, 等. 液态二氧化碳置换整形甲烷水合物过程特性[J]. 过程工程学报, 2018, 18(3): 639-645. |
ZHANG Fengqi, CHEN Guoxing, GUO Kaihua, et al. Process characteristics on replacement of bulk-methane hydrates with liquid cardon dioxide[J]. The Chinese Journal of Process Engineering, 2018, 18(3): 639-645. | |
31 | ZHANG Yu, XIONG Lijun, LI Xiaosen, et al. Replacement of CH4 in hydrate in porous sediments with liquid CO2 injection[J]. Chemical Engineering & Technology, 2014, 37(12): 2022-2029. |
32 | YUAN Qing, SUN Changyu, LIU Bei, et al. Methane recovery from natural gas hydrate in porous sediment using pressurized liquid CO2 [J]. Energy Conversion and Management, 2013, 67: 257-264. |
33 | ZHOU Xitang, FAN Shuanshi, LIANG Deqing, et al. Determination of appropriate condition on replacing methane from hydrate with carbon dioxide[J]. Energy Conversion and Management, 2008, 49(8): 2124-2129. |
34 | FALENTY A, QIN J, SALAMATIN A N, et al. Fluid composition and kinetics of the in situ replacement in CH4-CO2 hydrate system[J]. The Journal of Physical Chemistry C, 2016, 120(48): 27159-27172. |
35 | KVAMME B, GRAUE A, BUANES T, et al. Storage of CO2 in natural gas hydrate reservoirs and the effect of hydrate as an extra sealing in cold aquifers[J]. International Journal of Greenhouse Gas Control, 2007, 1(2): 236-246. |
36 | ZHOU Xitang, FAN Shuanshi, LIANG Deqing, et al. Replacement of methane from quartz sand-bearing hydrate with carbon dioxide-in-water emulsion[J]. Energy & Fuels, 2008, 22(3): 1759-1764. |
37 | 周锡堂, 樊栓狮, 梁德青. CO2乳状液置换天然气水合物中CH4的动力学研究[J]. 天然气地球科学, 2013, 24(2): 259-264. |
ZHOU Xitang, FAN Shuanshi, LIANG Deqing. Kinetic research on replacement of methane in gas hydrate with carbon dioxide emulsion[J]. Natural Gas Geoscience, 2013, 24(2): 259-264. | |
38 | DEUSNER C, BIGALKE N, KOSSEL E, et al. Methane production from gas hydrate deposits through injection of supercritical CO2 [J]. Energies, 2012, 5(7): 2112-2140. |
39 | DING Yalong, WANG Huaqin, XU Chungang, et al. The effect of CO2 partial pressure on CH4 recovery in CH4-CO2 swap with simulated IGCC syngas[J]. Energies, 2020, 13(5): 1017. |
40 | DING Yalong, WANG Huaqin, XU Chungang, et al. The effect of CO2 partial pressure on CH4 recovery in CH4-CO2 swap with simulated IGCC syngas[J]. Energies, 2020, 13(5): 1017. |
41 | SUN Yifei, WANG Yunfei, ZHONG Jinrong, et al. Gas hydrate exploitation using CO2/H2 mixture gas by semi-continuous injection-production mode[J]. Applied Energy, 2019, 240: 215-225. |
42 | CAO Bojian, SUN Yifei, CHEN Hongnan, et al. An approach to the high efficient exploitation of nature gas hydrate and carbon sequestration via injecting CO2/H2 gas mixture with varying composition[J]. Chemical Engineering Journal, 2023, 455: 140634. |
43 | SUN Yifei, ZHONG Jinrong, LI Rui, et al. Natural gas hydrate exploitation by CO2/H2 continuous injection-production mode[J]. Applied Energy, 2018, 226: 10-21. |
44 | XU Chungang, CAI Jing, YU Yisong, et al. Research on micro-mechanism and efficiency of CH4 exploitation via CH4-CO2 replacement from natural gas hydrates[J]. Fuel, 2018, 216: 255-265. |
45 | WANG Yanhong, LANG Xuemei, FAN Shuanshi, et al. Review on enhanced technology of natural gas hydrate recovery by carbon dioxide replacement[J]. Energy & Fuels, 2021, 35(5): 3659-3674. |
46 | PARK Y, KIM D Y, LEE J W, et al. Sequestering carbon dioxide into complex structures of naturally occurring gas hydrates[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(34): 12690-12694. |
47 | KOH D Y, AHN Y H, KANG H, et al. One-dimensional productivity assessment for on-field methane hydrate production using CO2/N2 mixture gas[J]. AIChE Journal, 2015, 61(3): 1004-1014. |
48 | NIU Mengya, WU Guozhong, YIN Zhenyuan, et al. Effectiveness of CO2-N2 injection for synergistic CH4 recovery and CO2 sequestration at marine gas hydrates condition[J]. Chemical Engineering Journal, 2021, 420(Part 1): 129615. |
49 | LEE Y, KIM Y, LEE J, et al. CH4 recovery and CO2 sequestration using flue gas in natural gas hydrates as revealed by a micro-differential scanning calorimeter[J]. Applied Energy, 2015, 150: 120-127. |
50 | PANDEY J S, VON SOLMS N. Hydrate stability and methane recovery from gas hydrate through CH4-CO2 replacement in different mass transfer scenarios[J]. Energies, 2019, 12(12): 2309. |
51 | YANG Jinhai, OKWANANKE A, TOHIDI B, et al. Flue gas injection into gas hydrate reservoirs for methane recovery and carbon dioxide sequestration[J]. Energy Conversion and Management, 2017, 136: 431-438. |
52 | 王曦. CO2+N2混合气置换开采天然气水合物实验研究及过程模拟[D]. 广州: 华南理工大学, 2017. |
WANG Xi. Experimental research and process simulation of natural gas hydrate replacement production by injecting CO2+N2 mixture gas[D]. Guangzhou: South China University of Technology, 2017. | |
53 | KOH D Y, KANG H, KIM D O, et al. Recovery of methane from gas hydrates intercalated within natural sediments using CO2 and a CO2/N2 gas mixture[J]. ChemSusChem, 2012, 5(8): 1443-1448. |
54 | Minjun CHA, SHIN K, LEE H, et al. Kinetics of methane hydrate replacement with carbon dioxide and nitrogen gas mixture using in situ NMR spectroscopy[J]. Environmental Science & Technology, 2015, 49(3): 1964-1971. |
55 | CHATURVEDI K R, SINHA A S K, NAIR V C, et al. Enhanced carbon dioxide sequestration by direct injection of flue gas doped with hydrogen into hydrate reservoir: Possibility of natural gas production[J]. Energy, 2021, 227: 120521. |
56 | YOUN Y, Minjun CHA, KWON M, et al. One-dimensional approaches for methane hydrate production by CO2/N2 gas mixture in horizontal and vertical column reactor[J]. Korean Journal of Chemical Engineering, 2016, 33(5): 1712-1719. |
57 | LIU Bei, PAN Heng, WANG Xiaohui, et al. Evaluation of different CH4-CO2 replacement processes in hydrate-bearing sediments by measuring P-wave velocity[J]. Energies, 2013, 6(12): 6242-6254. |
58 | SCHICKS J M, STRAUCH B, HEESCHEN K U, et al. From microscale (400 μl) to macroscale (425 L): Experimental investigations of the CO2/N2-CH4 exchange in gas hydrates simulating the Iġnik Sikumi field trial[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(5): 3608-3620. |
59 | 潘栋彬. 海洋天然气水合物射流破碎与注CO2/N2置换联合开采研究[D]. 长春: 吉林大学, 2021. |
PAN Dongbin. Investigation on exploitation of marine gas hydrate by water jetting combined with CO2/N2 replacement[D]. Changchun: Jilin University, 2021. | |
60 | OUYANG Qian, FAN Shuanshi, WANG Yanhong, et al. Enhanced methane production efficiency with in situ intermittent heating assisted CO2 replacement of hydrates[J]. Energy & Fuels, 2020, 34(10): 12476-12485. |
61 | 操原. 二氧化碳与氮气混合气辅热联合置换开采天然气水合物实验研究[D]. 广州: 华南理工大学, 2018. |
CAO Yuan. Experimental study on gas hydrate exploitation by combining N2 and CO2 mixture replacement and heat injection[D]. Guangzhou: South China University of Technology, 2018. | |
62 | YASUE M, MASUDA Y, LIANG Yunfeng. Estimation of methane recovery efficiency from methane hydrate by the N2–CO2 gas mixture injection method[J]. Energy & Fuels, 2020, 34(5): 5236-5250. |
63 | MASUDA Y. Methane recovery from hydrate-bearing sediments by N2-CO2 gas mixture injection: Experimental investigation on CO2-CH4 exchange ratio[C]//International Conference on Gas Hydrate (ICGH 2011), Edinburgh, Scotland, KingdomUnited, July 17-21, 2011. 2011. |
64 | LI Bing, XU Tianfu, ZHANG Guobiao, et al. An experimental study on gas production from fracture-filled hydrate by CO2 and CO2/N2 replacement[J]. Energy Conversion and Management, 2018, 165: 738-747. |
65 | TUPSAKHARE S S, CASTALDI M J. Efficiency enhancements in methane recovery from natural gas hydrates using injection of CO2/N2 gas mixture simulating in-situ combustion[J]. Applied Energy, 2019, 236: 825-836. |
66 | MU Liang, VON SOLMS N. Methane production and carbon capture by hydrate swapping[J]. Energy & Fuels, 2017, 31(4): 3338-3347. |
67 | 兰天庆, 马媛媛, 贡同, 等. 超临界状态CO2封存技术研究进展[J]. 应用化工, 2019, 48(6): 1451-1455, 1473. |
LAN Tianqing, MA Yuanyuan, GONG Tong, et al. Research progress on CO2 storage technology in supercritical state[J]. Applied Chemical Industry, 2019, 48(6): 1451-1455, 1473. | |
68 | 陈颖, 金吉能, 兰天庆. CO2置换联合地热开采陆域可燃冰-地质封存一体化技术[J]. 现代化工, 2021, 41(12): 69-73. |
CHEN Ying, JIN Jineng, LAN Tianqing. CO2 replacement combined with geothermal-mining land combustible ice-geological storage integrated technology[J]. Modern Chemical Industry, 2021, 41(12): 69-73. | |
69 | PRUESS K. Enhanced geothermal systems (EGS) using CO2 as working fluid—A novel approach for generating renewable energy with simultaneous sequestration of carbon[J]. Geothermics, 2006, 35(4): 351-367. |
70 | LIU Yongge, HOU Jian, ZHAO Haifeng, et al. A method to recover natural gas hydrates with geothermal energy conveyed by CO2 [J]. Energy, 2018, 144: 265-278. |
71 | 李清平, 周守为, 赵佳飞, 等. 天然气水合物开采技术研究现状与展望[J]. 中国工程科学, 2022, 24(3): 214-224. |
LI Qingping, ZHOU Shouwei, ZHAO Jiafei, et al. Research status and prospects of natural gas hydrate exploitation technology[J]. Strategic Study of CAE, 2022, 24(3): 214-224. | |
72 | GAJANAYAKE S M, GAMAGE R P, LI Xiaosen, et al. Natural gas hydrates-Insights into a paradigm-shifting energy resource[J]. Energy Reviews, 2023, 2(1): 100013. |
73 | ANDERSON B, BOSWELL R, COLLETT T S, et al. Review of the findings of the Iġnik Sikumi CO2-CH4 gashydrate exchange field trial[C]//Proceedings of the 8th International Conference on Gas Hydrates (ICG H8-2014), Beijing, 2014. Pittsburgh: National Energy Technology Laboratory, 2014: 1-17. |
74 | SCHODERBEK D, MARTIN K L, HOWARD J, et al. North slope hydrate fieldtrial: CO2/CH4 exchange[C]//OTC Arctic Technology Conference, Houston, 2012. Red Hook: Curran Associates, Inc., 2012: OTC-23725-MS. |
75 | BOSWELL R, SCHODERBEK D, COLLETT T S, et al. The Iġnik Sikumi field experiment, Alaska north slope: Design, operations, and implications for CO2-CH4 exchange in gas hydrate reservoirs[J]. Energy & Fuels, 2016, 31(1): 140-153. |
76 | LEE H, SEO Y, SEO Y T, et al. Recovering methane from solid methane hydrate with carbon dioxide[J]. Angewandte Chemie International Edition, 2003, 42(41): 5048-5051. |
[1] | Bingyu JI, Jichao FANG, Shu YANG, Yong HU. Concept, method and prospect of molecular oil recovery [J]. Oil & Gas Geology, 2023, 44(1): 195-202. |
[2] | Bingyu Ji, Songqing Zheng, Hao Gu. On the development technology of fractured-vuggy carbonate reservoirs:A case study on Tahe oilfield and Shunbei oil and gas field [J]. Oil & Gas Geology, 2022, 43(6): 1459-1465. |
[3] | Li Zhang. Progress and research direction of EOR technology in eastern mature oilfields of Sinopec [J]. Oil & Gas Geology, 2022, 43(3): 717-723. |
[4] | Bingyu Ji, Youqi Wang, Li Zhang. Research on overall recovery rate variations of dynamically changing OOIP [J]. Oil & Gas Geology, 2020, 41(6): 1257-1262. |
[5] | Huanquan Sun. Hybrid thermal chemical recovery of thin extra-heavy oil reservoirs [J]. Oil & Gas Geology, 2020, 41(5): 1100-1106. |
[6] | Zhao Qingmin, Lun Zengmin, Zhang Xiaoqing, Lang Dongjiang, Wang Haitao. Mechanism of shale oil mobilization under CO2 injection [J]. Oil & Gas Geology, 2019, 40(6): 1333-1338. |
[7] | Wang Bo, Yao Hongxing, Wang Hongna, Zhao Yang, Li Mengxi, Hu Qiujia, Fan Meirong, Yang Chunli. Favorable and major geological controlling factors for coalbed methane accumulation and high production in the Chengzhuang Block,Qinshui Baisn [J]. Oil & Gas Geology, 2018, 39(2): 366-372. |
[8] | Zhang Shuxia, Liu Fan, Mu Baoquan. An experimental study on enhanced heavy oil recovery by steam flooding and chemical assisted steam flooding [J]. Oil & Gas Geology, 2017, 38(5): 1000-1004. |
[9] | Ji Bingyu, Wang Youqi, Nie Jun, Zhang Li, Yu Hongmin, He Yingfu. Research progress and application of EOR techniques in SINOPEC [J]. Oil & Gas Geology, 2016, 37(4): 572-576. |
[10] | Cao Weidong, Dai Tao, Yu Jinbiao, Lu Tongchao, Cheng Aijie, Xi Kaihua. A numerical simulation method of heterogeneous combination flooding [J]. Oil & Gas Geology, 2016, 37(4): 606-611. |
[11] | Ni Hongmei, Liu Yongjian, Li Panchi. Influence of oscillatory steam injection rate on performance of steam flooding [J]. Oil & Gas Geology, 2016, 37(3): 433-438. |
[12] | Zhang Benyan, Dang Wenbin, Wang Shaopeng, He Xuewen. CO2-EOR in Chang 8 tight sandstone reservoir of Honghe oilfield in Ordos Basin [J]. Oil & Gas Geology, 2016, 37(2): 272-275. |
[13] | Yan Jin, Shi Yunqing, Zheng Rongchen, Wang shuping. Quick evaluation methodology of infill drilling potential in tight sandstone gas reservoirs [J]. Oil & Gas Geology, 2016, 37(1): 125-128. |
[14] | Yang Zhongjian, Jia Suogang, Zhang Lihui, Dou Hongmei, Zeng Lijun, Zhu Xiuyu, He Jia, Yang Lu. Deep profile correction for redevelopment of high-temperature and high-salinity reservoirs and pilot test [J]. Oil & Gas Geology, 2015, 36(4): 681-687. |
[15] | Wang Qiang, Ji Bingyu, Nie Jun. Calculation methods of sweep efficiency under different viscosity ratios for polymer flooding process [J]. Oil & Gas Geology, 2014, 35(4): 551-555. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||