Oil & Gas Geology ›› 2024, Vol. 45 ›› Issue (3): 593-599.doi: 10.11743/ogg20240301
• Academician Forum • Previous Articles Next Articles
Zhijun JIN1,2(), Chuan ZHANG1, Xiaofeng WANG2, Xiang LI1
Received:
2024-06-05
Online:
2024-06-30
Published:
2024-07-01
CLC Number:
Zhijun JIN, Chuan ZHANG, Xiaofeng WANG, Xiang LI. A pathway to China’s energy transition in a carbon neutrality vision[J]. Oil & Gas Geology, 2024, 45(3): 593-599.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Proportions of energy types in the energy mix under different energy transition pathways in the U.S."
能源结构占比/% | ||||||
---|---|---|---|---|---|---|
2020年 | 2050年 | |||||
能源类型 | 现实情景 | 参考情景 | 快速电气化情景 | 慢速电气化情景 | 可再生能源受限情景 | 100 %可再生能源情景 |
石油 | 38.66 | 38.89 | 15.13 | 21.21 | 15.47 | 0.01 |
天然气 | 33.34 | 39.31 | 9.98 | 10.13 | 20.76 | 0.03 |
煤炭 | 12.41 | 4.91 | 0.42 | 0.21 | 0.08 | 0.00 |
核能 | 8.86 | 4.50 | 7.94 | 7.61 | 32.43 | 0.00 |
水能 | 1.08 | 1.11 | 1.53 | 1.27 | 1.22 | 1.46 |
地热能 | 0.05 | 0.06 | 0.08 | 0.06 | 0.61 | 0.15 |
生物质能 | 3.59 | 3.64 | 17.58 | 14.61 | 14.00 | 16.79 |
太阳能 | 0.52 | 1.97 | 16.77 | 13.96 | 5.65 | 28.55 |
风能 | 1.49 | 5.61 | 30.57 | 30.94 | 9.78 | 53.01 |
化石能源合计 | 84.41 | 83.11 | 25.53 | 31.55 | 36.31 | 0.04 |
非化石能源合计 | 15.59 | 16.89 | 74.47 | 68.45 | 63.69 | 99.96 |
Table 2
Annualized investments under different energy transition pathways in the U.S."
2020年 | 2050年 | |||||
---|---|---|---|---|---|---|
合计 | 0.46 | 0.59 | 1.41 | 1.71 | 1.30 | 1.98 |
投资项目 | 现实情景 | 参考情景 | 快速电气化情景 | 慢速电气化情景 | 可再生能源受限情景 | 100 %可再生能源情景 |
可再生能源电厂 | 0.04 | 0.08 | 0.33 | 0.37 | 0.16 | 0.61 |
其他,包括天然气碳捕集与 封存(CCS)发电 | 0.13 | 0.11 | 0.09 | 0.08 | 0.11 | 0.09 |
石油产品运输 | 0.03 | 0.02 | 0.03 | 0.01 | 0 | 0 |
核能电厂 | 0.02 | 0.02 | 0.02 | 0.03 | 0.15 | 0 |
天然气基础设施 | 0.06 | 0.06 | 0.04 | 0.03 | 0.03 | 0.03 |
天然气和电力制氢、合成燃料 | 0 | 0 | 0.02 | 0.08 | 0.02 | 0.21 |
电网电池 | 0.01 | 0 | 0.46 | 0.01 | 0.01 | 0.02 |
电力传输与分配 | 0.16 | 0.29 | 0.28 | 0.39 | 0.41 | 0.53 |
增量末端使用投资 | 0 | 0 | 0.03 | 0.23 | 0.29 | 0.28 |
CO2运输/储存和直接空气捕获 | 0 | 0 | 0 | 0.39 | 0.06 | 0.06 |
生物转化工厂 | 0.01 | 0.01 | 0.11 | 0.09 | 0.06 | 0.15 |
Table 3
Energy supply under different energy transition pathways in the U.S."
能源消耗量/(1012 kJ) | ||||||
---|---|---|---|---|---|---|
能源消耗类型 | 2020年 | 2050年 | ||||
现实情景 | 参考情景 | 快速电气化情景 | 慢速电气化情景 | 可再生能源受限情景 | 100 %可再生能源情景 | |
电能 | 14 009 | 17 663 | 25 202 | 21 041 | 25 202 | 25 202 |
氢能 | 897 | 939 | 3 550 | 2 643 | 3 550 | 3 550 |
蒸汽 | 4 661 | 5 234 | 5 161 | 5 173 | 5 161 | 5 161 |
管道天然气 | 13 364 | 12 724 | 3 017 | 6 509 | 3 017 | 3 017 |
管道天然气原料 | 150 | 321 | 321 | 321 | 321 | 321 |
汽油 | 17 925 | 13 821 | 743 | 5 843 | 743 | 743 |
柴油 | 8 536 | 8 205 | 991 | 3 826 | 991 | 991 |
喷气燃料 | 3 072 | 4 039 | 2 734 | 2 734 | 2 734 | 2 734 |
液化石油气 | 848 | 919 | 208 | 499 | 208 | 208 |
液化石油气原料 | 3 096 | 4 400 | 4 400 | 4 400 | 4 400 | 4 400 |
其他石油 | 5 006 | 5 810 | 3 338 | 3 955 | 3 338 | 3 338 |
石油化工原料 | 769 | 1 433 | 1 433 | 1 433 | 1 433 | 1 433 |
生物质和废弃物 | 664 | 716 | 698 | 690 | 698 | 698 |
煤炭和焦煤 | 920 | 1 031 | 234 | 264 | 234 | 234 |
1 | 鄢琼伟, 陈浩. GDP与能源消费之间的关系研究[J]. 中国人口·资源与环境, 2011, 21(7): 13-19. |
YAN Qiongwei, CHEN Hao. Research on the relationship between GDP and energy consumption[J]. China Population Resources and Environment, 2011, 21(7): 13-19. | |
2 | Energy Institute. Energy institute statistical review of world energy[R]. [S.l.]: [s.n.], 2023. |
3 | 李洪言, 赵朔, 林傲丹, 等. 2019年全球能源供需分析——基于《BP世界能源统计年鉴(2020)》[J]. 天然气与石油, 2020, 38(6): 122-130. |
LI Hongyan, ZHAO Shuo, LIN Aodan, et al. Analysis on world energy supply & demand in 2019—Based on BP statistical review of world energy (2020)[J]. Natural Gas and Oil, 2020, 38(6): 122-130. | |
4 | 王铃. IEA发布《2022年全球二氧化碳排放》报告[J]. 石油炼制与化工, 2023, 54(6): 110. |
WANG Ling. IEA releases the 2022 Global Carbon Dioxide Emissions report[J]. Petroleum Processing and Petrochemicals, 2023, 54(6): 110. | |
5 | 巢清尘, 张永香, 高翔, 等. 巴黎协定——全球气候治理的新起点[J]. 气候变化研究进展, 2016, 12(1): 61-67. |
CHAO Qingchen, ZHANG Yongxiang, GAO Xiang, et al. Paris agreement: A new start for global governance on climate[J]. Climate Change Research, 2016, 12(1): 61-67. | |
6 | 丁仲礼, 张涛. 碳中和: 逻辑体系与技术需求[M]. 北京: 科学出版社, 2022. |
DING Zhongli, ZHANG Tao. Carbon neutrality: Logic system and technical requirements[M]. Beijing: Science Press, 2022. | |
7 | 金之钧, 江亿, 戴民汉, 等. 碳中和概论[M]. 北京: 北京大学出版社, 2023. |
JIN Zhijun, JIANG Yi, DAI Minhan, et al. Introduction to carbon neutrality[M]. Beijing: Peking University Press, 2023. | |
8 | 金之钧, 张谦, 朱如凯, 等. 中国陆相页岩油分类及其意义[J]. 石油与天然气地质, 2023, 44(4): 801-819. |
JIN Zhijun, ZHANG Qian, ZHU Rukai, et al. Classification of lacustrine shale oil reservoirs in China and its significance[J]. Oil & Gas Geology, 2023, 44(4): 801-819. | |
9 | 王超, 孙福全, 许晔. 世界主要经济体碳中和战略剖析及启示[J]. 世界科技研究与发展, 2023, 45(2): 129-138. |
WANG Chao, SUN Fuquan, XU Ye. Analysis of carbon neutral strategy of the world’s major economies and its enlightenment[J]. World Sci-Tech R & D, 2023, 45(2): 129-138. | |
10 | 简尊吉, 朱建华, 王小艺, 等. 我国陆地生态系统碳汇的研究进展和提升挑战与路径[J]. 林业科学, 2023, 59(3): 12-20. |
JIAN Zunji, ZHU Jianhua, WANG Xiaoyi, et al. Research progress and the enhancement challenges and pathways of carbon sinks in China’s terrestrial ecosystems[J]. Scientia Silvae Sinicae, 2023, 59(3): 12-20. | |
11 | 黄晶. 碳捕集利用与封存 (CCUS) 技术发展的几点研判[J]. 中国人口·资源与环境, 2023, 33(1): 100. |
HUANG Jing. Some understanding of the research on the development of carbon capture, utilization, and storage (CCUS) technology[J]. China Population Resources and Environment, 2023, 33(1): 100. | |
12 | International Carbon Action Partnership. Emissions trading worldwide: Status report 2020[R]. Berlin: International Carbon Action Partnership, 2020. |
13 | LARSON E, GREIG C, JENKINS J, et al. Net-zero America: Potential pathways, infrastructure, and impacts[R]. Princeton, NJ: Princeton University, 2021. |
14 | 于贵瑞, 郝天象, 朱剑兴. 中国碳达峰、碳中和行动方略之探讨[J]. 中国科学院院刊, 2022, 37(4): 423-434. |
YU Guirui, HAO Tianxiang, ZHU Jianxing. Discussion on action strategies of China’s carbon peak and carbon neutrality[J]. Bulletin of Chinese Academy of Sciences, 2022, 37(4): 423-434. | |
15 | 舒印彪, 张丽英, 张运洲, 等. 我国电力碳达峰、碳中和路径研究[J]. 中国工程科学, 2021, 23(6): 1-14. |
SHU Yinbiao, ZHANG Liying, ZHANG Yunzhou, et al. Carbon peak and carbon neutrality path for China’s power industry[J]. Strategic Study of CAE, 2021, 23(6): 1-14. | |
16 | 江亿, 胡姗. 屋顶光伏为基础的农村新型能源系统战略研究[J]. 气候变化研究进展, 2022, 18(3): 272-282. |
JIANG Yi, HU Shan. Research on the development strategy of production and consumption integrated roof-top PV system in rural China[J]. Climate Change Research, 2022, 18(3): 272-282. |
[1] | Caineng ZOU, Dazhong DONG, Wei XIONG, Guoyou FU, Qun ZHAO, Wen LIU, Weiliang KONG, Qin ZHANG, Guangyin CAI, Yuman WANG, Feng LIANG, Hanlin LIU, Zhen QIU. Advances, challenges, and countermeasures in shale gas exploration of underexplored plays, sequences and new types in China [J]. Oil & Gas Geology, 2024, 45(2): 309-326. |
[2] | Xinxu DONG, Xinghai ZHOU, Kun LI, Renhai PU, Aiguo WANG, Yunwen GUAN, Peng ZHANG. Seismic sedimentological characterization of an offshore area with sparse well control under the constraint of a high-resolution stratigraphic framework: A case study of the Paleogene Huagang Formation in block X of the central anticlinal zone in the Xihu Sag, East China Sea Basin [J]. Oil & Gas Geology, 2024, 45(1): 293-308. |
[3] | Jin WU, Qingyong LUO, Ningning ZHONG, Zilong FANG, Jincai DUAN, Wuji ZHANG, Yaxin CUI. Organic petrology of shales in the Mesoproterozoic Xiamaling Formation in the northern part of North China [J]. Oil & Gas Geology, 2023, 44(5): 1218-1230. |
[4] | Yingzhao ZHANG, Wei ZOU, Zhongyun CHEN, Yiming JIANG, Hui DIAO. The mechanism of “convergence ahead of accumulation” and its geological significance for gas reservoirs in Paleogene Huagang Formation across the central inverted structural zone of Xihu Depression, East China Sea Shelf Basin [J]. Oil & Gas Geology, 2023, 44(5): 1256-1269. |
[5] | Keqiang WU, Xinong XIE, Jianxiang PEI, Jianye REN, Li YOU, Tao JIANG, Yongbin QUAN. Deep architecture of hyperextended marginal basin and implications for hydrocarbon exploration:A case study of Qiongdongnan Basin [J]. Oil & Gas Geology, 2023, 44(3): 651-661. |
[6] | Zhenjun ZHU, Qi LI, Hehe CHEN, Jian LI, Weiping ZHANG, Fengfan YANG, Yingzhao ZHANG, Jun QIN, Fengxun LI, Shuaiqiang SHAN. Source-to-sink coupling and temporal-spatial evolution in the Lishui Sag of East China Sea Shelf Basin during the Paleocene [J]. Oil & Gas Geology, 2023, 44(3): 735-752. |
[7] | Lang YU, Yixin YU, Yiming JIANG, Wei ZOU, Shi Chen, Xianjun TANG, Xinxin LIANG, Xinjian HE, Dongxia CHEN. Characteristics and forming mechanisms of transform zone in the Tiantai slope, Xihu Sag, East China Sea Shelf Basin [J]. Oil & Gas Geology, 2023, 44(3): 753-763. |
[8] | Qin Zhang, Chen Zhou, Hanyun Tian, Xiaomin Zhu, Xinsong Wu, Zeping Song, Kai Wang. Sequence stratigraphic framework and model of mixed siliciclastic-carbonate rocks in the Qingbaikouan System, Longshan area, North China [J]. Oil & Gas Geology, 2022, 43(4): 792-803. |
[9] | Xian Liu, Jiawang Ge, Xiaoming Zhao, Guofeng Yin, Xuesong Zhou, Jianwei Wang, Maolin Dai, Li Sun, Tingen Fan. Time scale and quantitative identification of sequence boundaries for the Oligocene Huagang Formation in the Xihu Sag, East China Sea Shelf Basin [J]. Oil & Gas Geology, 2022, 43(4): 990-1004. |
[10] | Gongcheng Zhang, Ying Chen, Zengxue Li, Youchuan Li, Lei Lan, Shixiang Liu, Rui Sun. Theory on genesis of coaliferous petroleum in the China Sea [J]. Oil & Gas Geology, 2022, 43(3): 553-565. |
[11] | Tianjun Li, Zhilong Huang, Xiaobo Guo, Jing Zhao, Yiming Jiang, Sizhe Tan. Geochemical characteristics of crude oil from coal measure source rocks and fine oil-source correlation in the Pinghu Formation in Pingbei slope belt, Xihu Sag, East China Sea Shelf Basin [J]. Oil & Gas Geology, 2022, 43(2): 432-444. |
[12] | Maowen Li, Xiaoxiao Ma, Zhijun Jin, Zhiming Li, Qigui Jiang, Shiqiang Wu, Zheng Li, Zuxin Xu. Diversity in the lithofacies assemblages of marine and lacustrine shale strata and significance for unconventional petroleum exploration in China [J]. Oil & Gas Geology, 2022, 43(1): 1-25. |
[13] | Ye Jia, Shifa Zhu, Yi Yang, Huan Tong, Xiaomin Zhu. Occurrence, composition and origin of analcime in terrestrial lacustrine sedimentary rocks in China [J]. Oil & Gas Geology, 2021, 42(4): 949-962. |
[14] | Zhenxue Jiang, Xin Li, Xingmeng Wang, Guozhen Wang, Hengyuan Qiu, Deyu Zhu, Hongyang Jiang. Characteristic differences and controlling factors of pores in typical South China shale [J]. Oil & Gas Geology, 2021, 42(1): 41-53. |
[15] | Ying Chen, Yinxue Han, Lizeng Bian, Qingbo Zeng, Shuai Guo, Mo Ji, Dongsheng Yang, Longying Wang. Difference between eastern and western Paleogene sedimentary systems in deep waters off the northern South China Sea continental margin and its effect on source rock distribution [J]. Oil & Gas Geology, 2020, 41(5): 1028-1037. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||