Oil & Gas Geology ›› 2021, Vol. 42 ›› Issue (6): 1389-1400.doi: 10.11743/ogg20210613
• Petroleum Geology • Previous Articles Next Articles
Longhui Bai1(), Bo Liu1,*(), Yaao Chi1, Shichao Li2, Xun Wen1
Received:
2021-07-30
Online:
2021-12-28
Published:
2021-12-16
Contact:
Bo Liu
E-mail:bailonghui0302@163.com;liubo@nepu.edu.cn
CLC Number:
Longhui Bai, Bo Liu, Yaao Chi, Shichao Li, Xun Wen. 2D NMR studies of fluids in organic-rich shale from the Qingshankou Formation, Songliao Basin[J]. Oil & Gas Geology, 2021, 42(6): 1389-1400.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Organic geochemical parameters and mineral composition of shale samples from the Qingshankou Formation, Songliao Basin"
样品编号 | 深度/ m | TOC/ % | Tmax/ ℃ | S1/(mg·g-1) | S2/(mg·g-1) | PI | DCM | 矿物组分含量/% | |||||
石英 | 长石 | 方解石 | 白云石 | 黄铁矿+ 菱铁矿 | 粘土 | ||||||||
1 | 1 480.28 | 2.49 | 450 | 1.20 | 21.10 | 0.05 | 0.50 | 31.0 | 18.7 | 0.9 | 3.6 | 8.8 | 37.0 |
2 | 1 486.94 | 2.68 | 449 | 1.50 | 19.20 | 0.07 | 0.72 | 30.2 | 20.2 | 1.5 | 0 | 10.1 | 38.0 |
3 | 1 492.70 | 2.40 | 448 | 1.20 | 17.20 | 0.07 | 0.63 | 31.9 | 16.4 | 0 | 0 | 10.4 | 41.3 |
4 | 1 498.13 | 2.84 | 447 | 2.00 | 20.60 | 0.09 | 0.84 | 33.6 | 23.5 | 1.7 | 0 | 8.0 | 33.2 |
5 | 1 506.95 | 3.49 | 448 | 1.50 | 26.90 | 0.05 | 0.66 | 29.6 | 18.5 | 5.8 | 2.3 | 9.7 | 34.1 |
6 | 1 510.72 | 2.27 | 449 | 1.00 | 22.40 | 0.04 | 0.47 | 32.6 | 17.2 | 0 | 0 | 8.5 | 41.7 |
7 | 1 512.78 | 3.39 | 451 | 1.10 | 30.10 | 0.03 | 0.61 | 63.9 | 10.1 | 0 | 2.1 | 2.9 | 52.6 |
8 | 1 524.64 | 1.81 | 447 | 2.20 | 14.90 | 0.13 | 0.88 | 31.4 | 10.5 | 1.3 | 4.8 | 21.2 | 30.9 |
9 | 1 527.86 | 3.41 | 449 | 1.80 | 25.70 | 0.07 | 0.77 | 39.2 | 10.7 | 0 | 0 | 6.9 | 43.1 |
10 | 2 046.55 | 4.10 | 445 | 4.63 | 25.28 | 0.15 | — | 35.8 | 9.0 | 3.4 | 12.1 | 2.0 | 37.7 |
11 | 2 055.80 | 2.56 | 438 | 2.56 | 16.68 | 0.13 | — | 32.2 | 10.1 | 0 | 2.0 | 9.0 | 46.7 |
Table 2
Heterogeneous 1H compounds detected by 2D NMR"
样品编号 | 抽提前 | 抽提后 | |||||||||||
样品质量/g | 总化合物量/μL | 类固体有机质含量/(μL·g-1) | 轻质烃含量/(μL·g-1) | 羟基化合物/(μL·g-1) | 水含量/(μL·g-1) | 样品质量/ g | 总化合物量/μL | 类固体含量有机质/(μL·g-1) | 轻质烃含量/(μL·g-1) | 羟基化合物含量/(μL·g-1) | 水含量/(μL·g-1) | ||
1 | 20.62 | 863 | 6.2 | 1.7 | 15.3 | 18.6 | 19.4 | 645 | 4.0 | 1.6 | 20.3 | 7.4 | |
2 | 20.79 | 853 | 5.9 | 2.3 | 15.5 | 17.3 | 19.9 | 653 | 3.3 | 1.3 | 24.5 | 3.7 | |
3 | 20.68 | 987 | 5.0 | 2.2 | 22.4 | 18.1 | 20.0 | 696 | 3.4 | 1.5 | 24.9 | 5.0 | |
4 | 20.98 | 730 | 6.5 | 3.1 | 12.5 | 12.7 | 20.0 | 564 | 1.7 | 1.3 | 20.4 | 4.7 | |
5 | 20.96 | 803 | 7.8 | 2.4 | 13.2 | 14.9 | 20.0 | 602 | 3.1 | 1.3 | 23.7 | 2.2 | |
6 | 20.86 | 871 | 7.4 | 1.9 | 18.5 | 14.1 | 20.0 | 780 | 6.7 | 1.1 | 27.8 | 3.5 | |
7 | 20.50 | 1 006 | 9.1 | 2.2 | 23.1 | 14.7 | 19.7 | 814 | 7.5 | 2.1 | 28.3 | 3.4 | |
8 | 20.41 | 869 | 4.5 | 3.9 | 19.1 | 15.1 | 19.0 | 798 | 1.4 | 2.2 | 33.8 | 4.6 | |
9 | 20.96 | 961 | 7.6 | 3.3 | 17.7 | 17.3 | 19.5 | 723 | 4.3 | 1.4 | 27.9 | 3.4 |
1 | 邹才能, 杨智, 崔景伟, 等. 页岩油形成机制、地质特征及发展对策[J]. 石油勘探与开发, 2013, 40 (1): 14- 27. |
Zou Caineng , Yang Zhi , Cui Jingwei , et al. Formation mechanism, geological characteristic and development strategy of nonmarine shale oil in China[J]. Petroleum Exploration and Development, 2013, 40 (1): 14- 27. | |
2 | 姜在兴, 张文昭, 梁超, 等. 页岩油储层基本特征及评价要素[J]. 石油学报, 2014, 35 (1): 184- 197. |
Jiang Zaixing , Zhang Wenzhao , Liang Chao , et al. Characteristic and evaluation elements of shale oil reservoir[J]. Acta Petroleum Since, 2014, 35 (1): 184- 197. | |
3 | 孙龙德, 刘合, 何文渊, 等. 大庆古龙页岩油重大科学问题与研究路径探析[J]. 石油勘探与开发, 2021, 48 (03): 453- 463. |
Sun Longde , Liu He , He Wenyuan , et al. An analysis of major scientific problems and research paths of Gulong shale oil in Da-qing Oilfield, NE China[J]. Petroleum Exploration and Development, 2021, 48 (03): 453- 463. | |
4 | 贾承造, 庞雄奇, 宋岩. 论非常规油气成藏机理: 油气自封闭作用与分子间作用力[J]. 石油勘探与开发, 2021, 48 (03): 437- 452. |
Jia Chengzao , Pang Xiongqi , Song Yan . The mechanism of unconventional hydrocarbon formation: Hydrocarbon self-containment and intermolecular forces[J]. Petroleum Exploration and Development, 2021, 48 (03): 437- 452. | |
5 | 柳波, 何佳, 吕延防, 等. 页岩油资源评价指标与方法--以松辽盆地北部青山口组页岩油为例[J]. 中南大学学报, 2014, 45 (11): 3846- 3853. |
Liu Bo , He jia , Lu Yanfang , et al. Parameters and method for shale oil assessment: Taking Qinshankou Formation shale oil of Northern Songliao Basin[J]. Journal of Central south University (Since and Technology), 2014, 45 (11): 3849- 3853. | |
6 | 周磊, 王永诗, 于雯泉, 等. 基于物性上、下限计算的致密砂岩储层分级评价-以苏北盆地高邮凹陷阜宁组一段致密砂岩为例[J]. 石油与天然气地质, 2019, 40 (6): 1308- 1316, 1323. |
Zhou Lei , Wang Yongshi , Yu Wenquan , et al. Classification assessment of tight sandstone reservoir based on calculation of lower and upper limits of physical properties-A case study of the tight sandstone reservoir in the 1st member of Funing Formation in Gaoyou Sag, North Jiangsu Basin[J]. Oil & Gas Geology, 2019, 40 (6): 1308- 1316, 1323. | |
7 | 牛小兵, 冯胜斌, 刘飞, 等. 低渗透致密砂岩储层中石油微观赋存状态与油源关系--以鄂尔多斯盆地三叠系延长组为例[J]. 石油与天然气地质, 2013, 34 (03): 288- 293. |
Niu Xiaobing , Feng Shengbin , Liu Fei , et al. Microscopic occurrence of oil in tight sandstones and its relation with oil sources-a case study from the Upper Triassic Yanchang Formation, Ordos Basin[J]. Oil & Gas Geology, 2013, 34 (03): 288- 293. | |
8 | Birdwell J E. , Washburn K E . Multivariate analysis relating oil shale geochemical properties to NMR relaxometry[J]. Energy & Fuels, 2015, 29 (4): 2234- 2243. |
9 | 顾兆斌, 刘卫, 孙佃庆, 等. 基于核磁共振二维谱技术识别储层流体类型[J]. 西安石油大学学报(自然科学版), 2010, 32 (005): 83- 86. |
Gu Zhaobin , Liu Wei , Sun Dianqing , et al. Identify reservoir fluid types with two dimensional NMR techniques[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2010, 32 (5): 83- 87. | |
10 |
Liu B , Bai L , Chi Y , et al. Geochemical characterization and quantitative evaluation of shale oil reservoir by two-dimensional nuclear magnetic resonance and quantitative grain fluorescence on extract: A case study from the Qingshankou Formation in Southern Songliao Basin, northeast[J]. Marine and Petroleum Geology, 2019, 109, 561- 573.
doi: 10.1016/j.marpetgeo.2019.06.046 |
11 | Liu B , Sun J , Zhang Y , et al. Reservoir space and enrichment model of shale oil in the first member of Cretaceous Qingshankou Formation in the Changling sag, southern Songliao Basin, NE China[J]. Petroleum Exploration and Development, 2021, 48 (2): 1- 16. |
12 |
Li J , Jiang C , Wang M , et al. Adsorbed and free hydrocarbons in unconventional shale reservoir: A new insight from NMR T1-T2 maps[J]. Marine and Petroleum Geology, 2020, 116, 104311.
doi: 10.1016/j.marpetgeo.2020.104311 |
13 | Khatibi S. , Ostadhassan M. , Xie Z H. , et al. NMR relaxometry a new approach to detect geochemical properties of organic matter in tight shales[J]. Fuel, 2018, 235 (1): 167- 177. |
14 |
Rueslåtten H , Eidsemo T , Lehne K A , et al. The use of NMR spectroscopy to validate NMR logs from deeply buried reservoir sandstones[J]. Journal of Petroleum Science and Engineering, 1998, 19, 33- 43.
doi: 10.1016/S0920-4105(97)00033-8 |
15 |
Howard J J. , Kenyon W E. , Straley C . Proton magnetic resonance and pore size variations in reservoir sandstones[J]. SPE Formation Evaluation, 1993, 8 (03): 194- 200.
doi: 10.2118/20600-PA |
16 |
Gao Z , Hu Q . Wettability of Mississippian Barnett Shale samples at different depths: Investigations from directional spontaneous imbibition[J]. AAPG Bulletin, 2016, 100 (1): 101- 114.
doi: 10.1306/09141514095 |
17 | Wei Y , Qwab C , Yan S , et al. New scaling model of the spontaneous imbibition behavior of tuffaceous shale: Constraints from the tuff-hosted and organic matter-covered pore system[J]. Journal of Natural Gas Science and Engineering, 2020, 81103389. |
18 |
Bechtel A , Jia J , Strobl S , et al. Palaeoenvironmental conditions during deposition of the Upper Cretaceous oil shale sequences in the Songliao Basin (NE China): Implications from geochemical analysis[J]. Organic Geochemistry, 2012, 46, 76- 95.
doi: 10.1016/j.orggeochem.2012.02.003 |
19 |
Liu B , Wang H , Fu X , et al. Lithofacies and depositional setting of a highly prospective lacustrine shale oil succession from the Upper Cretaceous Qingshankou Formation in the Gulong sag, northe-rn Songliao Basin, northeast China[J]. AAPG Bulletin, 2019, 103 (2): 405- 432.
doi: 10.1306/08031817416 |
20 | 柳波, 刘阳, 刘岩, 等. 低熟页岩电加热原位改质油气资源潜力数值模拟--以松辽盆地南部中央坳陷区嫩江组一, 二段为例[J]. 石油实验地质, 2020, (4): 533- 544. |
Liu Bo , Liu Yang , Liu Yan , et al. Prediction of low-maturity shale oil produced by in situ conversion: a case study of the first and second members of Nenjiang Formation[J]. Petroleum Geology & Experiment, 2020, (4): 533- 544. | |
21 | Espitalie , Deroo G , Marquis F . Rock-Eval pyrolysis and its applications (Part One)[J]. Revue del'Institut Français du Pétrole, 1985, 40 (5): 563- 579. |
22 | Langford F F , Blanc-Valleron M M . Interpreting Rock-Eval pyrolysis data using graphs of pyrolizable hydrocarbons vs[J]. AAPG Bulletin, 1990, 74 (6): 799- 804. |
23 | Dahl B , Bojesen-Koefoed J , Holm A , et al. A new approach to interpreting Rock-Eval S2 and TOC data for kerogen quality assessment[J]. Organic Geochemistry, 2004, 35 (11): 1461- 1477. |
24 |
Fleury M , Romero-Sarmiento M . Characterization of shales using T1-T2 NMR maps[J]. Journal of Petroleum Science and Engineering, 2016, 137, 55- 62.
doi: 10.1016/j.petrol.2015.11.006 |
25 |
Gong L , Wang J , Gao S , et al. Characterization, controlling factors and evolution of fracture effectiveness in shale oil reservoirs[J]. Journal of Petroleum Science and Engineering, 2021, 203, 108655.
doi: 10.1016/j.petrol.2021.108655 |
26 |
Liu B , Yang Y , Li J , et al. Stress sensitivity of tight reservoirs and its effect on oil saturation: A case study of Lower Cretaceous tight clastic reservoirs in the Hailar Basin, Northeast China[J]. Journal of Petroleum Science and Engineering, 2020, 184, 106484.
doi: 10.1016/j.petrol.2019.106484 |
27 | 赵清民, 伦增珉, 章晓庆, 等. 页岩油注CO2动用机理[J]. 石油与天然气地质, 2019, 40 (6): 1333- 1338. |
Zhao Qingmin , Lun Zengmin , Zhang Xiaoqing , et al. Mechanism of shale oil mobilization under CO2 injection[J]. Oil &Gas Geology, 2019, 40 (6): 1333- 1338. | |
28 | 郎东江, 伦增珉, 吕成远, 等. 页岩油注二氧化碳提高采收率影响因素核磁共振实验[J]. 石油勘探与开发, 2021, 48 (03): 603- 612. |
Lang Dongjiang , Lun Zengmin , Lv Chengyuan , et al. Nuclear magnetic resonance experimental study of CO2 injection to enhance shale oil recovery[J]. Petroleum Exploration and Development, 2021, 48 (03): 603- 612. | |
29 |
张炜, 李义连, 郑艳, 等. 二氧化碳地质封存中的储存容量评估: 问题和研究进展[J]. 地球科学进展, 2008, (10): 1061- 1069.
doi: 10.3321/j.issn:1001-8166.2008.10.008 |
Zhang Wei , Li Yilian , Zheng Yan , et al. CO2 storage capacity estimation in geological sequestration: issus and Research Progress[J]. Advances in Earth Science, 2008, (10): 1061- 1069.
doi: 10.3321/j.issn:1001-8166.2008.10.008 |
|
30 |
Li C , Shen Y , Ge H , et al. Analysis of capillary rise in asymmetric branch-like capillary[J]. Fractals, 2016, 24 (2): 1650024.
doi: 10.1142/S0218348X16500249 |
31 |
Mmab C , Hg C , Ys C , et al. The effect of clay-swelling induced cracks on imbibition behavior of marine shale reservoirs[J]. Journal of Natural Gas Science and Engineering, 2020, 83, 103525.
doi: 10.1016/j.jngse.2020.103525 |
32 | 李进步, 卢双舫, 陈国辉, 等. 热解参数S1的轻烃与重烃校正及其意义-以渤海湾盆地大民屯凹陷E2 s4(2)段为例[J]. 石油与天然气地质, 2016, 37 (4): 538- 545. |
Li Jinbu , Lu Shuangfang , Chen guohui , et al. Correction of light and heavy hydrocarbon loss for residual hydrocarbon S1 andits significance to assessing resource potential of E2s4(2) member in Damintun Sag, Bohai Bay Basin[J]. Oil &Gas Geology, 2016, 37 (4): 538- 545. |
[1] | Huimin LIU, Youshu BAO, Maowen LI, Zheng LI, Lianbo WU, Rifang ZHU, Dayang WANG, Xin WANG. Geochemical parameters for evaluating shale oil enrichment and mobility: A case study of shales in the Bakken Formation, Williston Basin and the Shahejie Formation, Jiyang Depression [J]. Oil & Gas Geology, 2024, 45(3): 622-636. |
[2] | Xiugang PU, Jiangchang DONG, Gongquan CHAI, Shunyao SONG, Zhannan SHI, Wenzhong HAN, Wei ZHANG, Delu XIE. Enrichment model of high-abundance organic matter in shales in the 2nd member of the Paleogene Kongdian Formation, Cangdong Sag, Bohai Bay Basin [J]. Oil & Gas Geology, 2024, 45(3): 696-709. |
[3] | Rui FANG, Yuqiang JIANG, Changcheng YANG, Haibo DENG, Chan JIANG, Haitao HONG, Song TANG, Yifan GU, Xun ZHU, Shasha SUN, Guangyin CAI. Occurrence states and mobility of shale oil in different lithologic assemblages in the Jurassic Lianggaoshan Formation, Sichuan Basin [J]. Oil & Gas Geology, 2024, 45(3): 752-769. |
[4] | Ning LI, Ruilei LI, He MIAO, Kaifang CAO, Jun TIAN. Stepwise identification of favorable facies belts and reservoir sweet spots of deep intermediate-basic volcanic rocks in the Songliao Basin [J]. Oil & Gas Geology, 2024, 45(3): 801-815. |
[5] | Jun LI, Youlong ZOU, Jing LU. Well-log-based assessment of movable oil content in lacustrine shale oil reservoirs: A case study of the 2nd member of the Paleogene Funing Formation, Subei Basin [J]. Oil & Gas Geology, 2024, 45(3): 816-826. |
[6] | Xiaoyu DU, Zhijun JIN, Lianbo ZENG, Guoping LIU, Sen YANG, Xinping LIANG, Guoqing LU. Evaluation of natural fracture effectiveness in deep lacustrine shale oil reservoirs based on formation microresistivity imaging logs [J]. Oil & Gas Geology, 2024, 45(3): 852-865. |
[7] | Caineng ZOU, Dazhong DONG, Wei XIONG, Guoyou FU, Qun ZHAO, Wen LIU, Weiliang KONG, Qin ZHANG, Guangyin CAI, Yuman WANG, Feng LIANG, Hanlin LIU, Zhen QIU. Advances, challenges, and countermeasures in shale gas exploration of underexplored plays, sequences and new types in China [J]. Oil & Gas Geology, 2024, 45(2): 309-326. |
[8] | Zhe ZHAO, Bin BAI, Chang LIU, Lan WANG, Haiyan ZHOU, Yuxi LIU. Current status, advances, and prospects of CNPC’s exploration of onshore moderately to highly mature shale oil reservoirs [J]. Oil & Gas Geology, 2024, 45(2): 327-340. |
[9] | Bo LIU, Qi’an MENG, Xiaofei FU, Tiefeng LIN, Yunfeng BAI, Shansi TIAN, Jinyou ZHANG, Yao YAO, Xinyang CHENG, Zhao LIU. Composition of generated and expelled hydrocarbons and phase evolution of shale oil in the 1st member of Qingshankou Formation, Songliao Basin [J]. Oil & Gas Geology, 2024, 45(2): 406-419. |
[10] | Xiao HE, Maja ZHENG, Yong LIU, Qun ZHAO, Xuewen Shi, Zhenxue Jiang, Wei WU, Ya WU, Shitan NING, Xianglu TANG, Dadong LIU. Characteristics and differential origin of Qiongzhusi Formation shale reservoirs under the “aulacogen-uplift” tectonic setting, Sichuan Basin [J]. Oil & Gas Geology, 2024, 45(2): 420-439. |
[11] | Hequn GAO, Yuqiao GAO, Xipeng HE, Jun NIE. Rock mechanical properties and controlling factors for shale oil reservoirs in the second member of the Paleogene Funing Formation, Subei Basin [J]. Oil & Gas Geology, 2024, 45(2): 502-515. |
[12] | Liang SHI, Bojiang FAN, Zhonghou LI, Ziwei YU, Zijin LIN, Xinyang DAI. Migration differentiation of hydrocarbon components in the 7th member of the Triassic Yanchang Formation, central Ordos Basin [J]. Oil & Gas Geology, 2024, 45(1): 157-168. |
[13] | Yi ZHANG, Bin ZHANG, Banghua LIU, Jie LIU, Qiansheng WEI, Qi ZHANG, Hongjun LU, Pengyu ZHU, Rui WANG. Status quo and development trends of research on shale gas adsorption and seepage in shale gas reservoirs [J]. Oil & Gas Geology, 2024, 45(1): 256-280. |
[14] | Xusheng GUO, Xiaoxiao MA, Maowen LI, Menhui QIAN, Zongquan HU. Mechanisms for lacustrine shale oil enrichment in Chinese sedimentary basins [J]. Oil & Gas Geology, 2023, 44(6): 1333-1349. |
[15] | Longde SUN, Xiaojun WANG, Zihui FENG, Hongmei SHAO, Huasen ZENG, Bo GAO, Hang JIANG. Formation mechanisms of nano-scale pores/fissures and shale oil enrichment characteristics for Gulong shale, Songliao Basin [J]. Oil & Gas Geology, 2023, 44(6): 1350-1365. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||