Oil & Gas Geology ›› 2019, Vol. 40 ›› Issue (3): 616-625.doi: 10.11743/ogg20190316
• Petroleum Development and Engineering • Previous Articles Next Articles
Su Jianzheng, Li Fengxia, Zhou Tong
Received:
2019-03-20
Revised:
2019-03-31
Online:
2019-06-28
Published:
2019-04-26
CLC Number:
Su Jianzheng, Li Fengxia, Zhou Tong. Hydraulic fracture propagation behavious and geometry under supercritical CO2 fracturing in shale reservoirs[J]. Oil & Gas Geology, 2019, 40(3): 616-625.
[1] Beckwith R.Hydraulic fracturing:The fuss,the facts,the future[J].Journal of Petroleum Technology,2010,62:34-40. [2] Peng P,Ling K,He J,et al.Shale gas reservoir treatment by a CO2-based technology[J].Journal of Natural Gas Science & Engineering,2015,26:1595-1606. [3] 王志刚.涪陵焦石坝地区页岩气水平井压裂改造实践与认识[J].石油与天然气地质,2014,35(3):425-430. Wang Zhigang.Practice and cognition of shale gas horizontal well fracturing stimulation in Jiaoshiba of Fuling area[J].Oil and Gas Geology,2014,35(3):425-430. [4] Liu L,Zhu W,Wei C,et al.Microcrack-based geomechanical mo-deling of rock-gas interaction during supercritical CO2 fracturing[J].Journal of Petroleum Science and Engineering,2018,164:91-102. [5] Scanlon B R,Reedy R C,Nicot J P.Comparison of water use for hydraulic fracturing for unconventional oil and gas versus conventio-nal oil[J].Environmental Science & Technology,2014,48(20):12386-12393. [6] Wang H,Li G,Shen Z.A feasibility analysis on shale gas exploitation with supercritical carbon dioxide[J].Energy Sources,Part A:Recovery,Utilization,and Environmental Effects,2012,34(15):1426-1435. [7] Jackson R E,Gorody A W,Mayer B,et al.Groundwater protection and unconventional gas extraction:The critical need for field-based hydrogeological research[J].Ground Water,2013,51(4):488-510. [8] Jung J W,Espinoza D N,Santamarina J C.Properties and phenomena relevant to CH4-CO2 replacement in hydrate-bearing sediments[J].Journal of Geophysical Research Atmospheres,2010,115:155-162. [9] Heller R,Zoback M.Adsorption of methane and CO2 on gas shale and puremineral samples[J].Journal of Unconventional Oil & Gas Resources,2014,8:14-24. [10] Dehghanpour H,Zubair H A,Chhabra A,et al.Liquid intake of organic shales[J].Energy Fuels,2012,26:5750-5758. [11] Friehauf K E,Sharma M M.Fluid selection for energized hydraulic fractures[R].SPE Annual Technical Conference and Exhibition,2019. [12] Gupta A P,Gupta A,Langlinais J.Feasibility of supercritical CO2 as a drilling fluid for deep underbalanced drilling operation[R].SPE Annual Technical Conferenceand Exhibition,2005. [13] Kizaki A,Tanaka H,Ohashi K,et al.Hydraulic fracturing in Inadagranite and Ogino tuff with supercritical CO2[C]//ISRM regional symposium-7thAsian rock mechanics symposium.International Society for Rock Mechanics,2012. [14] Chen Y,Nagaya Y,Ishida T.Observations of fractures induced by hydraulic fracturing in anisotropic granite[J].Rock Mechanics and Rock Engineering,2015,48:1455-1461. [15] Inui S,Ishida T,Nagaya Y,et al.AE monitoring of hydraulic fracturing experiment in granite blocks using supercritical CO2,water and viscous oil[C]//48th US rock mechanics/geomechanics symposium.American RockMechanics Association,2014. [16] Zou Yushi,Li Ning,Ma Xinfang,et al.Experimental study on the growth behavior of supercritical CO2-induced fractures in a layered tight sandstone formation[J].Journal of Natural Gas Science and Engineering,2018,49:145-156. [17] Zhou X,Burbey T J.Fluid effect on hydraulic fracture propagation behavior:A comparison between water and supercritical CO2-like fluid[J].Geofluids,2014,14(2):174-188. [18] Zhang X,Lu Y,Tang J,et al.Experimental study on fracture initiation and propagation in shale using supercritical carbon dioxide fracturing[J].Fuel,2016,190(15):370-378. [19] Wang J,Elsworth D,Wu Y,et al.The influence of fracturing fluids on fracturing processes:A comparison between water,oil and SC-CO2[J].Rock Mechanics and Rock Engineering,2018,51(1):299-313. [20] Wu K,Olson J E.A simplified three-dimensional displacement discontinuity method for multiple fracture simulations[J].International Journal of Fracture,2015,193(2):191-204. [21] 刘国威,李庆斌,左正.相场断裂模型分步算法在ABAQUS中的实现[J].岩石力学与工程学报,2016,35(5):1019-1030. Liu Guowei,Li Qingbin,Zuo Zheng.Implementation of a staggered algorithm for a phase field mpdel in ABAQUS[J].Chinese Journal of Rock Mechanics and Engineering,2016,35(5):1019-1030. [22] Xu G,Wong S W.Interaction of multiple non-planar hydraulic fractures in horizontal wells[C].International Petroleum Technology Conference,2013. [23] Zou Y S,Ma X F,Zhang S C,et al.Numerical investigation into the influence of bedding plane on hydraulic fracture network propagation in shale formations[J].Rock Mechanics and Rock Engineering,2016,49(9):3597-3614. [24] Ma X,Zhou T,Zou Y S.Experimental and numerical study of hydraulic fracture geometry in shale formations with complex geologic conditions[J].Journal of Structural Geology,2017,98:53-66. [25] 周彤,张士诚,邹雨时,等.四川盆地东北缘强应力大倾角页岩储层水力压裂裂缝形态[J].新疆石油地质,2016,37(3):336-341. Zhou Tong,Zhang Shicheng,Zou Yushi,et al.Hydraulic fracture geometry of shale gas reservoirs with strong tectonic stress and large dip angle in northeastern margin of Sichuan Basin[J].Xinjiang Petroleum Geolgoy,2016,37(3):336-341. [26] 王飞.位移不连续法及其在岩体工程中的应用[D].上海交通大学,2010. Wang Fei.Displacment discontinuity method and its application on rock engineering[D].Shanghai Jiao Tong University,2010. [27] 王在明.超临界二氧化碳钻井液特性研究[D].中国石油大学,2008. Wang Zaiming.Study on characteristics of supercritical carbon dioxide drilling fluid[D].China University of Petroleum,2008. [28] 里德R C,普劳斯尼茨J M.气体和液体性质[M].李芝芬,杨怡生,译.北京:石油工业出版社,1994. Reid R C,Prausnitz J M.Theproperties of gases and liquids[M].Li Zhifeng,Yang Yisheng,translated.Beijing:Petroleum Industry Press,1994. |
[1] | Jin LAI, Tianyu BAI, Lu XIAO, Fei ZHAO, Dong LI, Hongbin LI, Guiwen WANG, Ronghu ZHANG. Well-logging evaluation of in-situ stress fields and its geological and engineering significances [J]. Oil & Gas Geology, 2023, 44(4): 1033-1043. |
[2] | He LIU, Siwei MENG, Suling WANG, Kangxing DONG, Liu YANG, Jiaping TAO, Lihao LIANG. Mechanical characteristics and fracture propagation mechanisms of the Gulong shale [J]. Oil & Gas Geology, 2023, 44(4): 820-828. |
[3] | Guowei Zheng, Zhiye Gao, Liliang Huang, Zhenxue Jiang, Wenjun He, Jiaqi Chang, Longfei Duan, Weihang Wei, Zhiwei Wang. Wettability of the Permian Fengcheng Formation shale in the Mahu Sag, Junggar Basin, and its main control factors [J]. Oil & Gas Geology, 2022, 43(5): 1206-1220. |
[4] | Xun Ge, Tonglou Guo, Yongsheng Ma, Guoli Wang, Maowen Li, Xiaoqun Yu, Peirong Zhao, Zhentao Wen, Peng Wang. Prediction of shale reservoir sweet spots of the Upper Ordovician Wufeng-Longmaxi Formations in Lintanchang area, southeastern margin of Sichuan Basin [J]. Oil & Gas Geology, 2022, 43(3): 633-647. |
[5] | Chao Guo, Qianping Zhao, Gang Liu, Shiyan Hao, Chao Gao, Jianbo Sun, Chao Liu, Yiyi Chen. Super-resolution imaging of thin sections for lacustrine shale reservoirs [J]. Oil & Gas Geology, 2021, 42(5): 1202-1209. |
[6] | Tao Jiang, Zhijun Jin, Guangxiang Liu, Zongquan Hu, Quanyou Liu, Zhongbao Liu, Pengwei Wang, Ruyue Wang, Tao Yang, Guanping Wang. Pore structure characteristics of shale reservoirs in the Ziliujing Formation in Yuanba area, Sichuan Basin [J]. Oil & Gas Geology, 2021, 42(4): 909-918. |
[7] | Jincai Zhang, Xin Fan, Zhiwen Huang, Zhongqun Liu, Yuanchang Qi. Assessment of anisotropic in-situ stressses in the Upper Triassic Xujiahe Formation reservoirs in Western Sichuan Depression of the Sichuan Basin [J]. Oil & Gas Geology, 2021, 42(4): 963-972. |
[8] | Zhongbao Liu, Zongquan Hu, Guangxiang Liu, Zhujiang Liu, Haotian Liu, Jingyu Hao, Pengwei Wang, Peng Li. Pore characteristics and controlling factors of continental shale reservoirs in the Lower Jurassic Ziliujing Formation, northeastern Sichuan Basin [J]. Oil & Gas Geology, 2021, 42(1): 136-145. |
[9] | Zhenxue Jiang, Xin Li, Xingmeng Wang, Guozhen Wang, Hengyuan Qiu, Deyu Zhu, Hongyang Jiang. Characteristic differences and controlling factors of pores in typical South China shale [J]. Oil & Gas Geology, 2021, 42(1): 41-53. |
[10] | Jincai Zhang, Yuanchang Qi. Impact of in-situ stresses on shale reservoir development and its countermeasures [J]. Oil & Gas Geology, 2020, 41(4): 776-783, 799. |
[11] | Bo Gao, Zhongbao Liu, Zhiguo Shu, Haotian Liu, Ruyue Wang, Zhiguang Jin, Guanping Wang. Reservoir characteristics and exploration of the Lower Cambrian shale gas in the Middle-Upper Yangtze area [J]. Oil & Gas Geology, 2020, 41(2): 284-294. |
[12] | Li Xiao, He Jianming, Yin Chao, Huang Beixiu, Li Guanfang, Zhang Zhaobin, Li Lihui. Characteristics of the shale bedding planes and their control on hydraulic fracturing [J]. Oil & Gas Geology, 2019, 40(3): 653-660. |
[13] | Gao Deli, Liu Kui. Progresses in shale gas well integrity research [J]. Oil & Gas Geology, 2019, 40(3): 602-615. |
[14] | Chen Fangwen, Zhao Hongqin, Wang Shuping, Lu Shuangfang, Wang Min, Ding Xue. Evaluation of movable shale oil reserves in the Es1L of the Raoyang sag, Jizhong Depression [J]. Oil & Gas Geology, 2019, 40(3): 593-601. |
[15] | Fang Haoqing, Guo Tiankui, Wang Yang, Zhai Naicheng, Qu Zhanqing. Experimental study of acid-fracturing-induced fracture permeability in shale in Fuling area,Sichuan Basin [J]. Oil & Gas Geology, 2018, 39(6): 1336-1342. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 290
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 542
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||