[1] 陈康,张金川,唐玄,等.湘鄂西地区下志留统龙马溪组页岩吸附能力主控因素[J].石油与天然气地质,2016,37(1):23-29. Chen Kang,Zhang Jinchuan,Tang Xuan.et al.Main controlling factors on shale adsorption capacity of the Lower Silurian Longmaxi Formation in western Hunan-Hubei area[J].Oil & Gas Geology,2016,37(1):23-29. [2] 王民,关莹,李传明,等.济阳坳陷沙河街组湖相页岩储层孔隙定性描述及全孔径定量评价[J].石油与天然气地质,2018,39(6):1107-1119. Wang Min,Guan Ying,Li Chuanming,et al.Qualitative description and ful pore size quantitative evaluation of pores in lacustrine shale reservoir of Shahejie Formation,Jiyang Depression[J].Oil & Gas Geology,2018,39(6):1107-1119. [3] 李文浩,卢双舫,薛海涛,等.江汉盆地新沟嘴组页岩油储层物性发育主控因素[J].石油与天然气地质,2016,37(1):56-61. Li Wenhao,Lu Shuangfang,Xue Haitao,et al.Major controlling factors of poroperm characteristics of shale oil reservoirs in the Xingouzui Formation,Jianghan Basin[J].Oil & Gas Geology,2016,37(1):56-61. [4] Wang S,Javadpour F,Feng Q.Molecular dynamics simulations of oil transport through inorganic nanopores in shale[J].Fuel,2016,171:74-86. [5] Wang S,Javadpour F,Feng Q.Fast mass transport of oil and supercritical carbon dioxide through organic nanopores in shale[J].Fuel,2016,181:741-58. [6] Yan B,Alfi M,Wang Y,et al.A new approach for the simulation of fluid flow in unconventional reservoirs through multiple permeability modeling[C]//SPE Annual Technical Conference and Exhibition,New Orleans,LA:SPE;2013. [7] Wu K,Chen Z,Li X,et al.A model for multiple transport mechanisms through nanopores of shale gas reservoirs with real gas effect-adsorption-mechanic coupling[J].International Journal of Heat and Mass Transfer,2016,93:408-26. [8] 邹才能,朱如凯,吴松涛,等.常规与非常规油气聚集类型、特征、机理及展望——以中国致密油和致密气为例[J].石油学报,2012,33(2):173-187. Zou Caineng,Zhu Rukai,Wu Songtao,et al.Types,characteristics,genesis and prospects of conventional and unconventional hydrocarbon accumulations:taking tight oil and tight gas in China as an instance[J].Acta Petrolei Sinica,2012,33(2):173-187. [9] Ambrose R J,Hartman R C,Diaz Campos M,et al.New pore-scale considerations for shale gas in place calculations[C]//SPE Unconventional Gas Conference.Pittsburgh,PA:SPE,2010. [10] Wu K,Chen Z,Li X,et al.Flow behavior of gas confined in nanoporous shale at high pressure:Real gas effect[J].Fuel,2017,205:173-183. [11] Wu K,Chen Z,Li X.Real gas transport through nanopores of varying cross-section type and shape in shale gas reservoirs[J].Chemical Engineering Journal,2015,281:813-825. [12] Mattia D,Calabro F.Explaining high flow rate of water in carbon nanotubes via solid-liquid molecular interactions[J].Microfluidics & Nanofluidics,2012;13:125-30. [13] Wang S,Feng Q,Javadpour F,et al.Oil adsorption in shale nanopores and its effect on recoverable oil-in-place[J].International Journal of Coal Geology,2015,147-148:9-24. [14] Afsharpoor A,Javadpour F.Liquid slip flow in a network of shale noncircular nanopores[J].Fuel,2016,180:580-90. [15] Whitby M,Quirke N.Fluid flow in carbon nanotubes and nanopipes[J].Nature Nanotechnology,2007,2(2):87-94. [16] Barrat J,Bocquet Lydéric.Large slip effect at a nonwetting fluid-solid interface[J].Physical Review Letters,1999,82(23):4671-4674. [17] Falk K,Sedlmeier F,Joly L,et al.Ultralow liquid/solid friction in carbon nanotubes:comprehensive theory for alcohols,alkanes,OMCTS,and water[J].Langmuir,2012,28(40):14261-72. [18] Mattia D.Explaining high flow rate of water in carbon nanotubes via solid-liquid molecular interactions[J].Microfluidics & Nanofluidics,2012,13(1):125-130. [19] Cui J,Sang Q,Li Y.Liquid permeability of organic nanopores in shale:Calculation and analysis[J].Fuel,2017,202:426-434. [20] Wang S,Javadpour F,Feng Q.Fast mass transport of oil and supercritical carbon dioxide through organic nanopores in shale[J].Fuel,2016,181:741-758. |