Oil & Gas Geology ›› 2020, Vol. 41 ›› Issue (2): 423-433.doi: 10.11743/ogg20200218
• Petroleum Geology • Previous Articles Next Articles
Received:
2019-08-05
Online:
2020-04-01
Published:
2020-04-03
CLC Number:
Xiaolan Yang. Geochemical characteristics of the Mesozoic source rocks and the remaining resources in the Western Desert Basin, Egypt[J]. Oil & Gas Geology, 2020, 41(2): 423-433.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
The measured geothermal gradients(℃/km) of different layers in different depressions of the Western Desert Basin"
地层 | Faghur凹陷 | Ghazalat凹陷 | Shushan凹陷 | Matruh凹陷 | ||||||||
范围 | 平均 | 范围 | 平均 | 范围 | 平均 | 范围 | 平均 | |||||
新生界 | 24.9~32.8 | 28.9 | 24.1~29.5 | 26.8 | 33.9~34.4 | 34.2 | 31.5~32.8 | 32.2 | ||||
中生界 | 上白垩统 | 29.3~39.4 | 34.4 | 29.0~32.8 | 30.9 | 35.0~39.4 | 37.2 | 36.6~41.5 | 39.1 | |||
下白垩统 | 23.0~28.9 | 26.0 | 24.1~27.1 | 25.6 | 30.3~34.3 | 32.3 | 31.3~35.3 | 33.3 | ||||
侏罗系 | 23.0~29.1 | 26.1 | 24.9~26.7 | 25.8 | 29.8~30.0 | 29.9 | 30.8~31.4 | 31.1 | ||||
古生界 | 24.0~28.6 | 26.3 | 24.2~24.8 | 24.5 | 29.1~29.5 | 29.3 | 30.9~31.2 | 31.1 |
Table 2
The remaining resources of the Western Desert Basin"
层位 | 剩余可采资源量/108 t | 所占百分比/% | 主要分布领域 |
Abu Roash | 0.65 | 8 | Abu Gharadig凹陷 |
Bahariya | 0.90 | 11 | Faghur凹陷、Matruh凹陷、Abu Gharadig凹陷、 |
Kharita | 0.18 | 2 | Shushan凹陷、Matruh凹陷 |
Alamein | 0.18 | 2 | Alamein凹陷、Matruh凹陷 |
AEB | 1.28 | 16 | Abu Gharadig凹陷、Matruh凹陷、Faghur凹陷 |
侏罗系 | 1.97 | 24 | Shushan凹陷、Matruh凹陷、Faghur凹陷 |
古生界 | 2.99 | 37 | Matruh凹陷、Shushan凹陷和Abu Gharadig凹陷、Qattara隆起 |
合计 | 8.15 | 100 |
1 | IHS Energy Group.International petroleum exploration and production database.Englewood, Colorado, 2017. |
2 | Gazzar A M E , Moustafa A R , Bentham P . Structural evolution of the Abu Gharadig field area, Northern Western Desert, Egypt[J]. Journal of African Earth Sciences, 2016, 124, 340- 354. |
3 | Beialy S Y E , Atfy H S E , Zavada M S , et al. Palynological, palynofacies, paleoenvironmental and organic geochemical studies on the Upper Cretaceous succession of the GPTSW-7 well, North Western Desert, Egypt[J]. Marine and Petroleum Geology, 2010, 27 (2): 370- 385. |
4 | Shalaby M R , Hakimi M H , Abdullah W H . Organic geochemical characteristics and interpreted depositional environment of the Khatatba Formation, northern Western Desert, Egypt[J]. AAPG Bulletin, 2012, 96 (11): 2019- 2036. |
5 | Zobaa M K , Oboh-Ikuenobe F E , Ibrahim M I . The Cenomanian/Turonian oceanic anoxic event in the Razzak Field, north Western Desert, Egypt:Source rock potential and paleo environmental association[J]. Marine and Petroleum Geology, 2011, 28, 1475- 1482. |
6 | 孟元林, 申婉琪, 周新桂, 等. 东部盆地群下白垩统烃源岩特征与页岩气勘探潜力[J]. 石油与天然气地质, 2016, 36 (6): 893- 902. |
Meng Yuanlin , Shen Wanqi , Zhou Xingui , et al. Characteristics of the Lower Cretaceous source rocks and shale gas exploration potential of eastern basin group, NE China[J]. OIL & GAS GEOLOGY, 2016, 36 (6): 893- 902. | |
7 | Shalaby M R , Hakimi M H , Wan H A . Geochemical characteristics and hydrocarbon generation modeling of the Jurassic source rocks in the Shushan Basin, north Western Desert, Egypt[J]. Marine and Petroleum Geology, 2011, 28, 1611- 1624. |
8 | 蔡希源. 湖相烃源岩生排烃机制及生排烃效率差异性——以渤海湾盆地东营凹陷为例[J]. 石油与天然气地质, 2012, 33 (3): 329- 345. |
Cai Xiyuan . The mechanism of hydrocarbon generation and expulsion and the difference of hydrocarbon generation and expulsion efficiency of lacustrine source rocks:A case study of Dongying Sag, Bohai Bay Basin[J]. Petroleum and Natural Gas Geology, 2012, 33 (3): 329- 345. | |
9 | 罗胜元, 陈孝红, 刘安, 李海. 中扬子宜昌地区下寒武统水井沱组页岩气地球化学特征及其成因[J]. 石油与天然气地质, 2019, 40 (5): 999- 1010. |
Luo Shengyuan , Chen Xiaohong , Liu An , Li Hai . Geochemical features and genesis of shale gas from the Lower Cambrian Shuijingtuo Formation shale in Yichang block, Middle Yangtze region[J]. Oil & Gas Geology, 2019, 40 (5): 999- 1010. | |
10 | 申宝剑, 秦建中, 冯丹, 等. 烃源岩有机碳含量与生排油效率动态评价[J]. 石油实验地质, 2017, 39 (4): 505- 510. |
Shen Baojian , Qin Jianzhong , Feng Dan , et al. Dynamic evaluation of organic carbon content and oil production and discharge efficiency of source rocks[J]. Petroleum experimental geology, 2017, 39 (4): 505- 510. | |
11 | 胡朝元. 生油区控制油气田分布:中国东部陆相盆地进行区域勘探的有效理论[J]. 石油学报, 1982, 3 (2): 9- 13. |
Hu Chaoyuan . Source bed controls hydrocarbon habitat in continental basins, east China[J]. Acta Petrolei Sinica, 1982, 3 (2): 9- 13. | |
12 | 胡见义, 徐树宝, 童晓光. 渤海湾盆地复式油气聚集区(带)的形成和分布[J]. 石油勘探与开发, 1986, 13 (1): 1- 8. |
Hu Jianyi , Xu Shubao , Tong Xiaoguang . Formation and distribution of complex petroleum accumulation zones in Bohaiwan Basin[J]. Petroleum Exploration and Development, 1986, 13 (1): 1- 8. | |
13 | 赵文智, 邹才能, 汪泽成, 等. 富油气凹陷"满凹含油"论:内涵与意义[J]. 石油勘探与开发, 2004, 31 (2): 130- 142. |
Zhao Wenzhi , Zou Caineng , Wang Zecheng , et al. The intension and signification of "sag-wide oil-bearing theory" in the hydrocarbon-rich depression with terrestrial origin[J]. Petroleum Exploration and Development, 2004, 31 (2): 130- 142. | |
14 | 康洪全, 逄林安, 贾怀存, 等. 澳大利亚西北陆架北卡那封盆地资源潜力评价[J]. 石油实验地质, 2018, 40 (6): 808- 817. |
Kang Hongquan , Lilin'an , Jia Huaihuai , et al. Resource Potential Assessment of NorthCARNAVON Basin on the Northwest Shelf of Australia[J]. Petroleum Experimental Geology, 2018, 40 (6): 808- 817. | |
15 | 高辉, 何梦卿, 赵鹏云, 等. 鄂尔多斯长7页岩油与北美地区典型页岩油地质特征对比[J]. 石油实验地质, 2018, 40 (2): 133- 140. |
Gao Hui , He Mengqing , Zhao Pengyun , et al. Comparison of geological characteristics of Chang 7 shale oil in Ordos Basin and typical shale oil in North America[J]. Petroleum Geology & Experiment, 2018, 40 (2): 133- 140. | |
16 | 周志,翟刚毅,石砥石,等.鄂西-渝东北地区五峰组-龙马溪组页岩气成藏地质条件分析[J],石油实验地质, 2019, 41(1):1-9. |
Zhou Zhi, Zhai Gangyi, Shizhanshi, et al.[J], Petroleum Experimental Geology, 2019, 41(1): 1-9. | |
17 | 朱如凯,邹才能,吴松涛,杨智,毛治国,杨海波,范春怡,惠潇,崔景伟,苏玲,王焕第.中国陆相致密油形成机理与富集规律[J].石油与天然气地质, 2019, 40(6): 1168-1184. |
Zhu Rukai, Zou Caineng, Wu Songtao,, et al.[J], Mechanism for generation and accumulation of continental tight oil in China[J]. Oil & Gas Geology, 2019, 40(6): 1168-1184. | |
18 | 梁刚, 甘军, 李兴, 等. 琼东南盆地浅水区与深水区烃源岩热演化差异性影响因素研究[J]. 特种油气藏, 2019, 26 (1): 69- 74. |
Liang Gang , Gan Jun , Li Xing , et al. Influential factors of thermal evolution difference of source rocks in shallow and deep water areas of Southeastern Hainan Basin[J]. Special Oil & Gas Reservoirs, 2019, 26 (1): 69- 74. | |
19 | 刘玉瑞. 苏北盆地与南黄海盆地中-新生界成烃对比浅析[J]. 石油实验地质, 2010, 32 (6): 541- 546. |
Liu Yurui . Comparison analysis of Meso-Cenozoic hydrocarbon generation between the North Jiangsu basin and the South Yellow Sea basin[J]. Petroleum Geology & Experiment, 2010, 32 (6): 541- 546. | |
20 | 范柏江, 庞雄奇, 师良. 烃源岩排烃门限在生排油气作用中的应用[J]. 西南石油大学学报(自然科学版), 2012, 34 (5): 65- 70. |
Fan Bojiang , Pang Xiongqi , Shi Liang . Application of Hydrocarbon Expulsion Threshold in Studying the Hydrocarbon Generation and Expulsion[J]. Journal of Southwest Petroleum University:Science & Technology Edition, 2012, 34 (5): 65- 70. | |
21 | 郑见超, 李斌, 刘羿伶, 等. 塔里木盆地下寒武统玉尔吐斯组烃源岩热演化模拟分析[J]. 油气藏评价与开发, 2018, 8 (6): 7- 12. |
Zheng Jianchao , Li Bin , Liu Yiling , et al. Study on thermal evolution modeling of lower Cambrian Yuertusi source rock, Tarim Basin[J]. Reservoir Evaluation and Development, 2018, 8 (6): 7- 12. | |
22 | Rossi C , Goldstein R H , Ceriani A , et al. Fluid inclusions record thermal and ffluid evolution in reservoir sandstones, Khatatba Formation, Western Desert, Egypt:A case for ffluid injection[J]. AAPG Bulletin, 2002, 86 (10): 1773- 1799. |
23 | Moretti I , Kerdraon Y , Rodrigo G , et al. South Alamein petroleum system (Western Desert, Egypt[J]. Petroleum Geoscience, 2010, 16, 121- 131. |
24 | Metwalli F I , Pigott J D . Analysis of petroleum system criticals of the Matruh-Shushan Basin, Western Desert, Egypt[J]. Petroleum Geoscience, 2005, 11, 157- 178. |
25 | Awad G M . Habitat of Oil in Abu Gharadig and Faiyum Basins, Western Desert, Egypt[J]. AAPG Bulletin, 1984, 68 (5): 564- 573. |
26 | Younes M A.Burial History and Hydrocarbon Generation Modeling of the Jurassic-Cretaceous Formations in the Alamein-Shushan Basins, Northern Western Desert of Egypt.AAPG, 2012. |
27 | 庞雄奇, 陈章明, 陈发景. 含油气盆地地史、热史、生留排烃史数值模拟研究与烃源岩定量评价[M]. 北京: 地质出版社, 1993. |
Pang Xiongqi , Chen Zhangming , Chen Fajing . Study on Numerical Simulation of geohistory, thermal history and hydrocarbon generation and expulsion history of petroliferous basins and quantitative evaluation of hydrocarbon source rocks[M]. Beijing: Geological Press, 1993. | |
28 | The Egyptian general petroleum corporation.Western Desert, oil and gas fields(A Comprehensive Overview)[M]. 1992. |
29 | Said R.The geology of Egypt[M]. The Egyptian General Petroleum Corporation, Conoco Hurghada Inc.and Repsol Exploracion, 1990. |
30 | 贾怀存. 全球大油气田勘探进展及勘探启示[J]. 科技导报, 2014, 32 (8): 76- 83. |
Jia Huaiyun . Exploration Progress and Exploration Enlightenment of Global Large Oil and Gas Fields[J]. Science and Technology Report, 2014, 32 (8): 76- 83. | |
31 | 田纳新, 殷进垠, 陶崇智, 等. 中东-中亚地区重点盆地油气地质特征及资源评价[J]. 石油与天然气地质, 2017, 38 (3): 582- 591. |
Tian Naxin , Yin Jinyuan , Tao Chongzhi , et al. Petroleum geologic characteristics and resource evaluation of key basins in the Middle East-Central Asia region[J]. Petroleum and natural gas geology, 2017, 38 (3): 582- 591. | |
32 | 张鹏, 张金功, 张亮, 等. 济阳坳陷渤南洼陷沙河街组二段多源供烃成藏模式[J]. 石油实验地质, 2018, 40 (2): 159- 167. |
Zhang Peng , Zhang Jingong , Zhang Liang , et al. Multi-source hydrocarbon supply and accumulation model of the second member of Shahejie Formation in Bonan Depression, Jiyang Depression[J]. Petroleum experimental geology, 2018, 40 (2): 159- 167. | |
33 | 徐田武, 张成富, 吕立爽, 等. 形成规模油田成烃要素下限探讨——以东濮凹陷马寨油田为例[J]. 断块油气田, 2019, 26 (02): 137- 141. |
Xu Tianwu , Zhang Chengfu , Lyu Lishuang , et al. Lower limit discussion of hydrocarbon generation factor for large scale oilfield:taking Mazhai Oilfield of Dongpu Depression as an example[J]. Fault-Block Oil and Gas Field, 2019, 26 (02): 137- 141. | |
34 | 孙同文, 高喜成, 吕延防, 付广, 王海学, 王浩然. 断裂转换带作为油气侧向、垂向运移通道的研究进展[J]. 石油与天然气地质, 2019, 40 (5): 1011- 1021. |
Sun Tongwen , Gao Xicheng , Lyu Yanfang , Fu Guang , Wang Haixue , Wang Haoran . Research progress in fault transformation zones as lateral or vertical hydrocarbon migration pathways[J]. Oil & Gas Geology, 2019, 40 (5): 1011- 1021. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||