Oil & Gas Geology ›› 2021, Vol. 42 ›› Issue (4): 919-930.doi: 10.11743/ogg20210413
• Petroleum Geology • Previous Articles Next Articles
Meijun Li1,2,3,4(), Xiaoqiang Liu5, Qiuya Han4, Hong Xiao4, Ronghui Fang6, Daxiang He7, Zhiwei Gao4
Received:
2020-03-02
Online:
2021-08-28
Published:
2021-08-27
CLC Number:
Meijun Li, Xiaoqiang Liu, Qiuya Han, Hong Xiao, Ronghui Fang, Daxiang He, Zhiwei Gao. Progress of molecular simulation application research in petroleum geochemistry[J]. Oil & Gas Geology, 2021, 42(4): 919-930.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | 陈正隆, 徐为人, 汤立达. 分子模拟的理论与实践[M]. 北京: 化学工业出版社, 2007. |
Cheng Zhenglong , Xu Weiren , Tang Lida . The theory and practice of molecular simulation[M]. Beijing: Chemical Industry Press, 2007. | |
2 | Frenkel D , Smit B . Understanding molecular simulation: from algorithms to applications[M]. (2nd Edition) Pittsburgh: Academic Press, 1996: 13- 15. |
3 |
Seyyedattar M , Zendehboudi S , Butt S . Molecular dynamics simulations in reservoir analysis of offshore petroleum reserves: A systematic review of theory and applications[J]. Earth-Science Reviews, 2019, 192, 194- 213.
doi: 10.1016/j.earscirev.2019.02.019 |
4 |
王继仁, 刘仲田, 邓汉忠, 等. 煤表面对多个氧分子的多层吸附机理研究[J]. 计算机与应用化学, 2008, 25 (3): 27- 30.
doi: 10.3969/j.issn.1001-4160.2008.03.007 |
Wang Jiren , Liu Zhongtian , Deng Hanzhong , et al. Multilayer adsorption mechanism of coal surface adsorption to more oxygen mol-ecule[J]. Computers and Applied Chemistry, 2008, 25 (3): 281- 284.
doi: 10.3969/j.issn.1001-4160.2008.03.007 |
|
5 | 周来, 冯启言, 秦勇. CO2和CH4在煤基质表面竞争吸附的热力学分析[J]. 煤炭学报, 2011, 36 (8): 1307- 1311. |
Zhou Lai , Feng Qiyan , Qin Yong . Thermodynamic analysis of competitive adsorption of CO2 and CH4 on coal matrix[J]. Journal of China Coal Society, 2011, 36 (8): 1307- 1311. | |
6 |
Mosher K , He J , Liu Y , et al. Molecular simulation of methane adsorption in micro-and mesoporous carbons with applications to coal and gas shale systems[J]. International Journal of Coal Geology, 2013, 109-110, 36- 44.
doi: 10.1016/j.coal.2013.01.001 |
7 | Liu Y , Wilcox J . Molecular simulation of CO2 adsorption in micro-and mesoporous carbons with surface heterogeneity[J]. International Journal of Coal Geology, 2012, 104, 8395. |
8 |
Zhang J , Clennell M B , Dewhurst D N , et al. Combined Monte Carlo and molecular dynamics simulation of methane adsorption on dry and moist coal[J]. Fuel, 2014, 122, 186- 197.
doi: 10.1016/j.fuel.2014.01.006 |
9 |
Liu X , He X , Qiu N , et al. Molecular simulation of CH4, CO2, H2O and N2 molecules adsorption on heterogeneous surface models of coal[J]. Applied Surface Science, 2016, 389, 894- 905.
doi: 10.1016/j.apsusc.2016.08.021 |
10 | Liu X , Li M , Zhang C , et al. Mechanistic insight into the optimal recovery efficiency of CBM in sub-bituminous coal through molecular simulation[J]. Fuel, 2020, 266, 117- 137. |
11 | 蒋永平. CO2复合驱油分子动力学模拟及微观机理研究[J]. 石油实验地质, 2019, 41 (2): 274- 279. |
Jiang Yongping . Molecular dynamics simulation and microscopic mechanism of CO2 composite flooding[J]. Petroleum Geology & Experiment, 2019, 41 (2): 274- 279. | |
12 | 赵清民, 伦增珉, 章晓庆, 等. 页岩油注CO2动用机理[J]. 石油与天然气地质, 2019, 40 (6): 1333- 1338. |
Zhao Qingmin , Lun Zengmin , Zhang Xiaoqing , et al. Mechanism of shale oil mobilization under CO2 injection[J]. Oil & Gas Geology, 2019, 40 (6): 1333- 1338. | |
13 | 孙焕泉, 王海涛, 吴光焕, 等. 稠油油藏注CO2提高采收率影响因素研究[J]. 石油实验地质, 2020, 42 (6): 1009- 1013. |
Sun Huanquan , Wang Haitao , Wu Guanghuan , et al. CO2 EOR factors in heavy oil reservoirs[J]. Petroleum Geology & Experiment, 2020, 42 (6): 1009- 1013. | |
14 | 金之钧, 白振瑞, 高波, 等. 中国迎来页岩油气革命了吗?[J]. 石油与天然气地质, 2019, 40 (3): 451- 458. |
Jin Zhijun , Bai Zhenrui , Gao Bo , et al. Has China ushered in the shale oil and gas revolution?[J]. Oil & Gas Geology, 2019, 40 (3): 451- 458. | |
15 | 贾承造, 郑民, 张永峰. 中国非常规油气资源与勘探开发前景[J]. 石油勘探与开发, 2012, 39 (2): 129- 136. |
Jia Chengzao , Zheng Min , Zhang Yongfeng . Unconventional hydrocarbon resources in China and the prospect of exploration and development[J]. Petroleum Exploration and Development, 2012, 39 (2): 129- 136. | |
16 | 薛海涛, 卢双舫, 付晓泰, 等. 烃源岩吸附甲烷实验研究[J]. 石油学报, 2003, 24 (6): 49- 54. |
Xue Haitao , Lu Shuangfang , Fu Xiaotai , et al. Experimental study on absorbability of methane in soucre roeks[J]. Acta Petrolei Sinica, 2003, 24 (6): 49- 54. | |
17 | 郭为, 熊伟, 高树生, 等. 温度对页岩等温吸附/解吸特征影响[J]. 石油勘探与开发, 2013, 40 (4): 481- 485. |
Guo Wei , Xiong Wei , Gao Shusheng , et al. Impact of temperature on the isothermal adsorption/desorption characteristics of shale gas[J]. Petroleum Exploration and Development, 2013, 40 (4): 481- 485. | |
18 | 庞小婷, 陈国辉, 许晨曦, 等. 涪陵地区五峰组-龙马溪组页岩吸附-游离气定量评价及相互转化[J]. 石油与天然气地质, 2019, 40 (6): 1247- 1258. |
Pang Xiaoting , Chen Guohui , Xu Chenxi , et al. Quantitative evaluation of adsorbed and free gas and their mutual conversion in Wufeng-Longmaxi shale, Fuling area[J]. Oil & Gas Geology, 2019, 40 (6): 1247- 1258. | |
19 | 卢双舫, 沈博健, 许晨曦, 等. 利用GCMC分子模拟技术研究页岩气的吸附行为和机理[J]. 地球科学, 2018, 43 (5): 425- 433. |
Lu Shuangfang , Shen Bojian , Xu Chenxi , et al. Study on adsorption behavior and mechanism of shale gas by using GCMC molecular simulation[J]. Earth Science, 2018, 43 (5): 425- 433. | |
20 | 曹旭辉. 甲烷在干酪根中吸附的巨正则Monte Carlo模拟研究[D]. 青岛: 中国石油大学(华东), 2014. |
Cao Xuhui. Grand canonical montecarlo simulation of CH4 adsorption in kerogen[D]. Qingdao: China University of Petroleum(East China), 2014. | |
21 | 黄亮, 宁正福, 王庆, 等. 湿度对CH4/CO2在干酪根中吸附的影响[J]. 石油科学通报, 2017, 2 (3): 422- 430. |
Huang Liang , Ning Zhengfu , Wang Qing , et al. Effect of moisture on CH4/CO2 adsorption on kerogen: A molecular simulation study[J]. Petroleum Science Bulletin, 2017, 2 (3): 422- 430. | |
22 | Wang S , Feng Q , Ming Z , et al. Molecular dynamics simulation of liquid alkane occurrence state in pores and fractures of shale organic matter[J]. Petroleum Exploration & Development, 2015, 42 (6): 844- 851. |
23 | 张海波. 页岩油气在页岩孔隙中行为的分子模拟[D]. 北京: 北京化工大学, 2017. |
Zhang Haibo. A study on the behaviors of shale gas and oil in the nanochannel of shale matrix by molecular simulation[D]. Beijing: Beijing University of Chemical Technology, 2017. | |
24 |
Webb E B , Grest G S . Interfaces between silicalite surfaces and liquid hexadecane: A molecular dynamics simulation[J]. The Journal of Chemical Physics, 2002, 116 (14): 6311- 6321.
doi: 10.1063/1.1457447 |
25 | 李俊乾, 卢双舫, 张婕, 等. 页岩油吸附与游离定量评价模型及微观赋存机制[J]. 石油与天然气地质, 2019, 40 (3): 583- 592. |
Li Junqian , Lu Shuangfang , Zhang Jie , et al. Quantitative evaluation models of adsorbed and free shale oil and its microscopic occurrence mechanism[J]. Oil & Gas Geology, 2019, 40 (3): 583- 592. | |
26 | Peters K E , Walters C C , Moldowan J M . The biomarker guide: Biomarkers and isotopes in petroleum exploration and earth history[M]. Cambridge: Cambridge University Press, 2005: 499- 502. |
27 | Farrimond P , Taylor A , Telnas N . Biomarker maturity parameters: the role of generation and thermal degradation[J]. Organic Geochemistry, 1998, 29 (5): 1181- 1197. |
28 | Kolaczkowska E , Slougui N , Watt D S , et al. Thermodynamic stability of various alkylated, dealkylated and rearranged 17α-and 17β-hopane isomers using molecular mechanics calculations[J]. Organic Geochemistry, 1990, 16 (4): 1033- 1038. |
29 | Radke M , Welte D H , Willsch H . Maturity parameters based on aromatic hydrocarbons: Influence of the organic matter type[J]. Organic Geochemistry, 1986, 10 (1): 51- 63. |
30 | Radke M , D H Welte . Themethylphenanthrene index (MPI): A maturity parameter based on aromatic hydrocarbons[J]. Advances in Organic Geochemistry, 1983, 504- 512. |
31 | 包建平, 王铁冠, 周玉琦, 等. 甲基菲比值与有机质热演化的关系[J]. 石油天然气学报, 1992, 14 (4): 8- 13. |
Bao Jianping , Wang Tieguan , Zhou Yuqi , et al. The relationship between methylphenanthrene ratios and the evolution of organic matter[J]. Journal of Oil and Gas Technology, 1992, 14 (4): 8- 13. | |
32 |
唐琪, 李美俊. 海相页岩有机质甲基菲指数与成熟度关系[J]. 油气地质与采收率, 2015, 22 (3): 62- 66.
doi: 10.3969/j.issn.1009-9603.2015.03.011 |
Tang Qi , Li Meijun . Relationship between methylphenanthrene index and maturity of organic matter in marine shale[J]. Petroleum Geology and Recovery Efficiency, 2015, 22 (3): 62- 66.
doi: 10.3969/j.issn.1009-9603.2015.03.011 |
|
33 |
杨思博, 赖洪飞, 李美俊, 等. 湖相烃源岩有机质甲基菲指数及甲基菲比值与成熟度关系[J]. 长江大学学报(自科版), 2018, 15 (19): 12- 17.
doi: 10.3969/j.issn.1673-1409.2018.19.004 |
Yang Sibo , Lai Hongfei , Li Meijun , et al. The relationship between methylphenanthrene index, methylphenanthrene ratio and maturity in lacustrine source rocks[J]. Journal of Yangtze University(Natural Science Edition), 2018, 15 (19): 12- 17.
doi: 10.3969/j.issn.1673-1409.2018.19.004 |
|
34 |
Szczerba M , Rospondek M J . Controls on distributions of methylphenanthrenes in sedimentary rock extracts: Critical evaluation of existing geochemical data from molecular modelling[J]. Organic Geochemistry, 2010, 41 (12): 1297- 1311.
doi: 10.1016/j.orggeochem.2010.09.009 |
35 |
Yang S , Li M , Liu X , et al. Thermodynamic stability of methyldibenzothiophenes in sedimentary rock extracts: Based on molecular simulation and geochemical data[J]. Organic Geochemistry, 2019, 129, 24- 41.
doi: 10.1016/j.orggeochem.2018.10.012 |
36 | Budzinski H , Garrigues P , Connan , et al. Determination of maturity indicators in alkylated aromatic series by gas chromatography-mass spectrometry(GC-MS)[M]. Manchester: Manchester University Press, 1991: 619- 623. |
37 |
Richard L . Calculation of the standard molal thermodynamic properties as a function of temperature and pressure of some geochemically important organic sulfur compounds[J]. Geochimica et Cosmochimica Acta, 2001, 65 (21): 3827- 3877.
doi: 10.1016/S0016-7037(01)00761-X |
38 |
Li M , Shi S , Wang T G , et al. The occurrence and distribution of phenylphenanthrenes, phenylanthracenes and binaphthyls in Palaeozoic to Cenozoic shales from China[J]. Applied Geochemistry, 2012, 27 (12): 2560- 2569.
doi: 10.1016/j.apgeochem.2012.09.002 |
39 | 刘晓强, 李美俊, 唐友军, 等. 有机质中三联苯成熟度参数及其化学机理-基于地球化学数据和量子化学计算[J]. 地球化学, 2020, 49 (2): 218- 226. |
Liu Xiaoqiang , Li Meijun , Tang Youjun , et al. Mechanism of maturity indicators relative to triphenyls in sedimentary organic matter based on geochemical data and quantum chemical calculation[J]. Geochimica, 2020, 49 (2): 218- 226. | |
40 | Zhu Z , Li M , Tang Y , et al. Identification of phenyldibenzothiophenes in coals and the effects of thermal maturity on their distributions based on geochemical data and theoretical calculations[J]. Organic Geochemistry, 2019, 138, 1- 11. |
41 |
England W , Mackenzie A S , Mann D M , et al. The movement and entrapment of petroleum fluids in the subsurface[J]. Journal of Geological Society, 1987, 144, 327- 347.
doi: 10.1144/gsjgs.144.2.0327 |
42 |
Larter S R , Aplin A C . Reservoir geochemistry: method, application and opportunities[J]. Geological Society London Special Publications, 1995, 86 (1): 5- 32.
doi: 10.1144/GSL.SP.1995.086.01.02 |
43 |
王铁冠, 张枝焕. 油藏地球化学的理论与实践[J]. 科学通报, 1997, 42 (19): 2017- 2025.
doi: 10.3321/j.issn:0023-074X.1997.19.001 |
Wang Tieguan , Zhang Zhihuan . Theory and practice of reservoir geochemistry[J]. Chinese Science Bulletin, 1997, 42 (19): 2017- 2025.
doi: 10.3321/j.issn:0023-074X.1997.19.001 |
|
44 | 李美俊, 王铁冠. 油藏地球化学在勘探中的研究进展及应用: 以北部湾盆地福山凹陷为例[J]. 地学前缘, 2015, 22 (1): 215- 222. |
Li Meijun , Wang Tieguan . The progress and application of reservoir geochemistry in hydrocarbon exploration: An example from the Fushan Depression, Beibuwan Basin, South China Sea[J]. Earth Science Frontiers, 2015, 22 (1): 215- 222. | |
45 |
Duin A C T V , Larter S R . Application of molecular dynamics calculations in the prediction of dynamical molecular properties[J]. Organic Geochemistry, 1998, 29, 1043- 1050.
doi: 10.1016/S0146-6380(98)00076-X |
46 |
Larter S R , Bowler B F J , Li M , et al. Molecular indicators of secondary oil migration distances[J]. Nature, 1996, 383, 593- 597.
doi: 10.1038/383593a0 |
47 |
Han Q , Li M , Liu X , et al. Fractionation of alkylated carbazoles in petroleum during subsurface migration: Evidence from molecular simulation and application in sandstone reservoirs[J]. Journal of Petroleum Science and Engineering, 2020, 191, 107308.
doi: 10.1016/j.petrol.2020.107308 |
48 | Wang T , He F , Li M , et al. Alkyldibenzothiophenes: molecular tracers for filling pathway in oil reservoirs[J]. Chinese Science Bulletin, 2004, 49, 2399- 2404. |
49 |
Li M , Wang T , Liu J , et al. Total alkyl dibenzothiophenes content tracing the filling pathwayof condensate reservoir in the Fushan Depression, South China Sea[J]. Science in China(Series D): Earth Sciences, 2008, 51, 138- 145.
doi: 10.1007/s11430-008-6025-6 |
50 |
杨禄, 李美俊, 刘晓强, 等. 甲基二苯并噻吩的吸附性及油藏充注途径示踪机理之Connolly分子表面计算证明[J]. 地球化学, 2017, 46 (4): 367- 372.
doi: 10.3969/j.issn.0379-1726.2017.04.007 |
Yang Lu , Li Meijun , Liu Xiaoqiang , et al. Using connolly surface to characterize the adsorption of methyldibenzothiophenes and their chemical mechanism as molecular tracer for oil filling pathways[J]. Geochimica, 2017, 46 (4): 367- 372.
doi: 10.3969/j.issn.0379-1726.2017.04.007 |
|
51 |
李美俊, 王铁冠, 杨福林, 等. 凝析油藏充注方向示踪分子标志物: 烷基二苯并呋喃[J]. 石油天然气学报, 2011, 33 (3): 6- 11.
doi: 10.3969/j.issn.1000-9752.2011.03.002 |
Li Meijun , Wang Tieguan , Yang Fulin , et al. Molecular tracer markers for filling pathway in condensate reservoirs: Alkyldibenzofuran[J]. Journal of Oil and Gas Technology, 2011, 33 (3): 6- 11.
doi: 10.3969/j.issn.1000-9752.2011.03.002 |
|
52 |
Li M , Liu X , Wang T G , et al. Fractionation of dibenzofurans during subsurface petroleum migration: Based on molecular dynamics simulation and reservoir geochemistry[J]. Organic Geochemistry, 2018, 115, 220- 232.
doi: 10.1016/j.orggeochem.2017.10.006 |
53 | Wang N , Li M , Liu X , et al. Geo-chromatographic fractionation effect of methyldibenzofuran in dolomite reservoirs and its application in tracing oil filling pathways in the Sichuan Basin[J]. Marine and Petroleum Geology, 2020, 113, 104- 126. |
54 |
卢双舫, 李启明. 塔里木盆地熟化有机质成烃动力学模型原始参数的恢复及意义[J]. 地质论评, 2000, 46 (5): 556- 560.
doi: 10.3321/j.issn:0371-5736.2000.05.016 |
Lu Shuangfang , Li Qiming . Restoration of the original parameters of the chemical kinetic models for generation of hydrocarbons from mature organic matter in the Tarim Basin and its significance[J]. Geological Review, 2000, 46 (5): 556- 560.
doi: 10.3321/j.issn:0371-5736.2000.05.016 |
|
55 |
李贤庆, 肖贤明, 米敬奎, 等. 塔里木盆地库车坳陷烃源岩生成甲烷的动力学参数及其应用[J]. 地质学报, 2005, 79 (1): 133- 142.
doi: 10.3321/j.issn:0001-5717.2005.01.015 |
Li Xianqing , Xiao Xianming , Mi Jingkui , et al. Kinetic parameters of methane generated from source rocks and its application in the Kuqa Depression of the Tarim Basin[J]. Acta Geologica Sinica, 2005, 79 (1): 133- 142.
doi: 10.3321/j.issn:0001-5717.2005.01.015 |
|
56 | Tissot B P , Welte D H . Petroleum Formation and Occurrence[M]. Berlin: Springer-Verlas, 1984. |
57 | 傅家谟, 秦匡忠. 干酪根地球化学[M]. 广东: 广东科技出版社, 1995. |
Fu Jiamo , Qin Kuangzhong . Kerogen geochemistry[M]. Guangdong: Guangdong Science and Technology Press, 1995. | |
58 | 王三跃. 褐煤结构的分子动力学模拟及量子化学研究[D]. 太原: 太原理工大学, 2004. |
Wang Sanyue. Study of lignite structure by molecular dynamics simulation and quantum chemistry[D]. Taiyuan: Taiyuan University of Technology, 2004. | |
59 | Ungerer P , Collell J , Yiannourakou M . Molecular Modeling of the volumetric and thermodynamic properties of kerogen: in fluence of organic type and maturity[J]. Energy & Fuels, 2015, 29 (1): 91- 105. |
60 | 刘向君, 罗丹序, 熊健, 等. 龙马溪组页岩干酪根平均分子结构模型的构建[J]. 化工进展, 2017, (2): 139- 146. |
Liu Xiangjun , Luo Danxu , Xiong Jian , et al. Construction of the average molecular modeling of the kerogen from the Longmaxi formation[J]. Chemical Industry And Engineering Progress, 2017, (2): 139- 146. | |
61 | Van Duin A C T , Dasgupta S , et al. ReaxFF: A reactive force field for hydrocarbons[J]. Journal of Physical Chemistry A, 1995, 105 (41): 9396- 9409. |
62 | Zheng M , Li X , Liu J , et al. Initial chemical reaction simulation of coal pyrolysis via ReaxFF molecular dynamics[J]. Energy & Fuels, 2013, 27 (6): 2942- 2951. |
63 |
Li G , Wang F , Wang J , et al. ReaxFF and DFT study on the sulfur transformation mechanism during the oxidation process of lignite[J]. Fuel, 2016, 181, 238- 247.
doi: 10.1016/j.fuel.2016.04.068 |
64 | Liu X , Zhan J , Lai D , et al. Initial pyrolysis mechanism of oil shale kerogen with reactive molecular dynamics simulation[J]. Energy & Fuels, 2015, 29 (5): 2987- 2997. |
65 | Hunt J M . Petroleum geochemistry and geology[M]. San Francisco: Freeman W H Company, 1996: 269 |
66 |
Price L C . Thermal stability of hydrocarbons in nature: Limits, evidence, characteristics, and possible controls[J]. Geochimica Cosmochimica Acta, 1993, 57 (14): 3261- 3280.
doi: 10.1016/0016-7037(93)90539-9 |
67 |
Waples D W . The kinetics of in-reservoir oil destruction and gas formation: constraints from experimental and empirical data, and from thermodynamics[J]. Organic Geochemistry, 2000, 31 (6): 553- 575.
doi: 10.1016/S0146-6380(00)00023-1 |
68 | Schenk H J , Di Primo R , Horsfield B . The conversion of oil into gas in petroleum reservoirs.Part 1:Comparative kinetic investigation of gas generation from crude oils of lacustrine, marine andfluviodeltaic origin by programmed temperature closed-system pyrolysis[J]. Organic Geochemistry, 1997, 26 (7/8): 467- 481. |
69 | 何坤, 张水昌, 米敬奎. 原油裂解的动力学及控制因素研究[J]. 天然气地球科学, 2011, 22 (2): 211- 218. |
He Kun , Zhang Shuichang , Mi Jingkui . Research on the kinetics and controlling factors for oil cracking[J]. Natural Gas Geoscience, 2011, 22 (2): 211- 218. | |
70 | 帅燕华, 张水昌, 罗攀, 等. 地层水促进原油裂解成气的模拟实验证据[J]. 科学通报, 2012, 57 (30): 2857- 2863. |
Shuai Yyanhua , Zhang Shuichang , Luo Pan , et al. Experimental evidence for formation water promoting crude oil cracking to gas[J]. Chinese Science Bulletin, 2012, 57 (30): 2857- 2863. | |
71 |
Hill R H , Tang Y , Kaplan I R . Insights into oil cracking based on laboratory experiments[J]. Organic Geochemistry, 2003, 34 (12): 1651- 1672.
doi: 10.1016/S0146-6380(03)00173-6 |
72 |
田辉, 王招明, 肖中尧, 等. 原油裂解成气动力学模拟及其意义[J]. 科学通报, 2006, 51 (15): 1821- 1827.
doi: 10.3321/j.issn:0023-074X.2006.15.014 |
Tian Hui , Wang Zhaoming , Xiao Zhongyao , et al. Oil cracking to gases: Kinetic modeling and geological significance[J]. Chinese Science Bulletin, 2006, 51 (15): 1821- 1827.
doi: 10.3321/j.issn:0023-074X.2006.15.014 |
|
73 |
Zhong J , Wang P , Zhang Y , et al. Adsorption mechanism of oil components on water-wet mineral surface: A molecular dynamics simulation study[J]. Energy, 2013, 59, 295- 300.
doi: 10.1016/j.energy.2013.07.016 |
74 |
Kunieda M , Nakaoka K , Liang Y , et al. Self-accumulation of aromatics at the oil-water interface through weak hydrogen bonding[J]. Journal of the American Chemical Society, 2010, 132 (51): 18281- 18286.
doi: 10.1021/ja107519d |
75 |
Liu Y , Ding J , Han K L . Molecular dynamics simulation of the high-temperature pyrolysis of methylcyclohexane[J]. Fuel, 2018, 217, 185- 192.
doi: 10.1016/j.fuel.2017.12.055 |
76 | Wang Q D , Wang J B , Li J Q , et al. Reactive molecular dynamics simulation and chemical kinetic modeling of pyrolysis and combustion of n-dodecane[J]. Combustion and Flame, 2010, 158 (2): 217- 226. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||