1 |
刘公社, 周庆源, 宋松泉, 等. 能源植物甜高粱种质资源和分子生物学研究进展[J]. 植物学报, 2009, 44(3): 253-261.
|
|
LIU Gongshe, ZHOU Qingyuan, SONG Songquan, et al. Research advances into germplasm resources and molecular biology of the energy plant sweet sorghum[J]. Chinese Bulletin of Botany, 2009, 44(3): 253-261.
|
2 |
FRIEDBERG E C. The intersection between the birth of molecular biology and the discovery of DNA repair[J]. DNA Repair, 2002, 1(10): 855-867.
|
3 |
王刚, 孙静, 方东, 等. 分子炼油为导向的催化裂化加工重质油策略[J]. 中国科学: 化学, 2018, 48(4): 362-368.
|
|
WANG Gang, SUN Jing, FANG Dong, et al. Molecular-refining oriented strategy of catalytic cracking for processing heavy oil[J]. Scientia Sinica Chimica, 2018, 48(4): 362-368.
|
4 |
AYE M M S, ZHANG Nan. A novel methodology in transforming bulk properties of refining streams into molecular information[J]. Chemical Engineering Science, 2005, 60(23): 6702-6717.
|
5 |
牟思阳, 郭静, 齐善威, 等. 原子转移自由基聚合在分子结构设计中的应用进展[J]. 高分子通报, 2015, 28(11): 28-34.
|
|
MU Siyang, GUO Jing, QI Shanwei, et al. The research of ATRP macromolecular initiator and application process in the molecular structure design[J]. Polymer Bulletin, 2015, 28(11): 28-34.
|
6 |
郭彦伸, 郭宗儒. 多靶点药物分子设计[J]. 药学学报, 2009, 44(3): 276-281.
|
|
GUO Yanshen, GUO Zongru. Design of multiple targeted drugs[J]. Acta Pharmaceutica Sinica, 2009, 44(3): 276-281.
|
7 |
巢华庆. 对21世纪大庆油田开发前沿技术发展的初步思考[J]. 石油勘探与开发, 2001, 28(1): 6-8.
|
|
CHAO Huaqing. Preliminary thinking on leading edge technology development of Daqing Oil Field in the 21st century[J]. Petroleum Exploration and Development, 2001, 28(1): 6-8.
|
8 |
高斯萌, 夏坤, 康志红, 等. “拟双子” 阴离子表面活性剂在癸烷/水界面的分子动力学模拟[J]. 化学学报, 2020, 78(2): 155-160.
|
|
GAO Simeng, XIA Kun, KANG Zhihong, et al. Molecular dynamics simulation of “quasi-gemini” anionic surfactant at the decane/water interface[J]. Acta Chimica Sinica, 2020, 78(2): 155-160.
|
9 |
张恒, 苑世领. 分子动力学模拟在三次采油中的应用[J]. 中国科学: 化学, 2021, 51(6): 761-771.
|
|
ZHANG Heng, YUAN Shiling. Application of molecular dynamics simulation in enhanced oil recovery[J]. Scientia Sinica Chimica, 2021, 51(6): 761-771.
|
10 |
AHMADI M, HOU Qingfeng, WANG Yuanyuan, et al. Interfacial and molecular interactions between fractions of heavy oil and surfactants in porous media: Comprehensive review[J]. Advances in Colloid and Interface Science, 2020, 283: 102242.
|
11 |
王亦农, 孙平川, 黎明, 等. 交联共聚丙烯酰胺-丙烯酸水凝胶溶胀态分子动力学的NMR弛豫研究[J]. 离子交换与吸附, 1998, 14(3): 191-196.
|
|
WANG Yinong, SUN Pingchuan, LI Ming, et al. NMR relaxation studies on the dynamics of P(AAM-NaAA) copolymer hydrogels[J]. Ion Exchange and Adsorption, 1998, 14(3): 191-196.
|
12 |
HU Songqing, ZHU Qianqian, WANG Pei, et al. Effect of HPAM hydrolysis degree on catanionic mixtures of DTAB/HPAM: A coarse-grained molecular dynamic simulation[J]. Computational Materials Science, 2018, 153: 134-140.
|
13 |
OLDIGES C, TÖNSING T. Molecular dynamic simulation of structural, mobility effects between dilute aqueous CH3CN solution and crosslinked PAA[J]. Physical Chemistry Chemical Physics, 2002, 4(9): 1628-1636.
|
14 |
薛萍. 分子动力学模拟研究CO2-EOR技术[D]. 济南: 山东大学, 2019.
|
|
XUE Ping. Molecular dynamics simulation of CO2-EOR technology[D]. Jinan: Shandong University, 2019.
|
15 |
XUE Ping, SHI Jing, CAO Xulong, et al. Molecular dynamics simulation of thickening mechanism of supercritical CO2 thickener[J]. Chemical Physics Letters, 2018, 706: 658-664.
|
16 |
李宾飞, 王凯, 赵洪涛, 等. 降黏剂作用下油水两相渗流特征[J]. 中国石油大学学报(自然科学版), 2022, 46(1): 104-110.
|
|
LI Binfei, WANG Kai, ZHAO Hongtao, et al. Flow characteristics of oil-water two-phase seepage under action of viscosity reducer[J]. Journal of China University of Petroleum (Edition of Natural Science), 2022, 46(1): 104-110.
|
17 |
XU Yan, AYALA-OROZCO C, CHIANG P T, et al. Understanding the role of iron (Ⅲ) tosylate on heavy oil viscosity reduction[J]. Fuel, 2020, 274: 117808.
|
18 |
李洪毅. 稠油分散性降黏剂的降黏效果及其微观驱油机理[J]. 油田化学, 2021, 38(4): 708-713.
|
|
LI Hongyi. Viscosity reduction effect evaluation and micro-flooding mechanism of dispersive viscosity reducer for heavy oil[J]. Oilfield Chemistry, 2021, 38(4): 708-713.
|
19 |
LI Xiaoqi, FANG Jichao, JI Bingyu. Quantitative analysis of phase separation using the lattice Boltzmann method[J]. Frontiers in Earth Science, 2021, 9: 748450.
|
20 |
XU J P, WANG, N, XUE S, et al. Insights into the mechanism during viscosity reduction process of heavy oil through molecule simulation, Fuel, 310: 122270.
|
21 |
YANG Feng, NING Zhengfu, LIU Huiqing. Fractal characteristics of shales from a shale gas reservoir in the Sichuan Basin, China[J]. Fuel, 2014, 115: 378-384.
|
22 |
郭旭升, 胡东风, 魏志红, 等. 涪陵页岩气田的发现与勘探认识[J]. 中国石油勘探, 2016, 21(3): 24-37.
|
|
GUO Xusheng, HU Dongfeng, WEI Zhihong, et al. Discovery and exploration of Fuling shale gas field[J]. China Petroleum Exploration, 2016, 21(3): 24-37.
|
23 |
王鹏威, 陈筱, 刘忠宝, 等. 海相富有机质页岩储层压力预测方法——以涪陵页岩气田上奥陶统五峰组-下志留统龙马溪组页岩为例[J]. 石油与天然气地质, 2022, 43(2): 467-476.
|
|
WANG Pengwei, CHEN Xiao, LIU Zhongbao, et al.Reservoir pressure prediction for marine organic-rich shale: A case study of the Upper Ordovician Wufeng-Lower Silurian Longmaxi shale in Fuling shale gas field, NE Sichuan Basin[J]. Oil & Gas Geology,2022, 43(2): 467-476.
|
24 |
陆亚秋, 梁榜, 王超, 等. 四川盆地涪陵页岩气田江东区块下古生界深层页岩气勘探开发实践与启示[J]. 石油与天然气地质, 2021, 42(1): 241-250.
|
|
LU Yaqiu, LIANG Bang, WANG Chao, et al. Shale gas exploration and development in the Lower Paleozoic Jiangdong block of Fuling gas field,Sichuan Basin[J]. Oil & Gas Geology, 2021, 42(1): 241-250.
|
25 |
车世琦. 涪陵气田平桥区块页岩气选区评价[J]. 石油地质与工程, 2022, 36(4): 48-54.
|
|
CHE Shiqi. Selection evaluation of shale gas in Pingqiao block of Fuling gas field[J]. Petroleum Geology & Engineering, 2022, 36(4): 48-54.
|