Oil & Gas Geology ›› 2023, Vol. 44 ›› Issue (1): 186-194.doi: 10.11743/ogg20230115
• Petroleum Geology • Previous Articles Next Articles
Kang LI1,2,3,4(), Hong LU1,2(), Hongliang MA5, Zhongfeng ZHAO1,2,3, Huamei HUANG4, Ping’an PENG1,2
Received:
2022-05-27
Revised:
2022-11-10
Online:
2023-01-14
Published:
2023-01-13
Contact:
Hong LU
E-mail:likang1116@163.com;luhong@gig.ac.cn
CLC Number:
Kang LI, Hong LU, Hongliang MA, Zhongfeng ZHAO, Huamei HUANG, Ping’an PENG. Catalytic role of MoS2 in hydrocarbon generation during thermal evolution of low-maturity kerogen[J]. Oil & Gas Geology, 2023, 44(1): 186-194.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 2
The yields of hydrocarbons and inorganic gases during pyrolysis of kerogen with and without MoS2 added"
样品号 | 产率/(mg·g-1) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C1 | C2H6 | C3H8 | iC4 | nC4 | iC5 | nC5 | C2—C5 | C1—C5 | C6—C14 | C14+ | CO2 | H2 | H2S | |
Alum-336 | 1.61 | 1.03 | 0.54 | 0.15 | 0.13 | 0.07 | 0.03 | 1.94 | 3.55 | 8.80 | 51.83 | 18.05 | 0.02 | 1.31 |
Alum-360 | 4.48 | 7.98 | 2.00 | 0.29 | 0.38 | 0.28 | 0.37 | 11.31 | 15.79 | 19.48 | 204.49 | 24.43 | 0.03 | 2.02 |
Alum-384 | 13.74 | 14.41 | 11.69 | 1.96 | 5.83 | 1.63 | 2.64 | 38.15 | 51.89 | 37.00 | 225.16 | 36.19 | 0.05 | 6.48 |
Alum-408 | 25.25 | 23.21 | 18.78 | 3.20 | 9.50 | 2.81 | 4.68 | 62.18 | 87.42 | 39.42 | 109.90 | 34.52 | 0.10 | 7.00 |
Alum-432 | 43.47 | 33.84 | 27.74 | 5.01 | 13.42 | 4.22 | 6.25 | 90.48 | 133.95 | 46.34 | 44.91 | 38.35 | 0.14 | 7.51 |
Alum-456 | 69.38 | 45.85 | 36.86 | 7.29 | 15.83 | 4.20 | 5.57 | 115.60 | 184.98 | 38.97 | 14.26 | 44.30 | 0.22 | 9.10 |
Alum-480 | 103.32 | 54.79 | 34.86 | 6.95 | 7.79 | 1.05 | 0.74 | 106.18 | 209.51 | 13.41 | 13.01 | 51.68 | 0.31 | 8.10 |
Alum-504 | 140.61 | 51.50 | 16.88 | 2.53 | 0.58 | 0 | 0 | 71.50 | 212.11 | 4.36 | 20.82 | 60.08 | 0.48 | 6.04 |
Alum-528 | 181.21 | 30.10 | 1.79 | 0.07 | 0.04 | 0 | 0 | 32.00 | 213.22 | 1.28 | 25.92 | 66.16 | 0.56 | 4.31 |
Alum-552 | 203.43 | 10.14 | 0.26 | 0 | 0 | 0 | 0 | 10.40 | 213.83 | 0.58 | 12.80 | 67.08 | 0.59 | 3.53 |
Alum-576 | 219.06 | 1.19 | 0 | 0 | 0 | 0 | 0 | 1.19 | 220.25 | 0.95 | 8.27 | 78.35 | 0.64 | 0 |
Alum-600 | 222.87 | 0.65 | 0 | 0 | 0 | 0 | 0 | 0.65 | 223.52 | 0.93 | 15.81 | 88.67 | 0.81 | 0 |
Alum-MoS2-336 | 2.16 | 1.58 | 0.89 | 0.20 | 0.25 | 0.12 | 0.08 | 3.11 | 5.27 | 11.43 | 62.99 | 37.11 | 0.01 | 2.24 |
Alum-MoS2-360 | 7.64 | 8.19 | 6.75 | 1.10 | 3.23 | 0.88 | 1.32 | 21.48 | 29.12 | 30.56 | 190.18 | 57.63 | 0.04 | 17.85 |
Alum-MoS2-384 | 18.23 | 17.51 | 14.06 | 2.26 | 7.06 | 1.97 | 3.30 | 46.17 | 64.40 | 49.11 | 168.37 | 45.38 | 0.10 | 18.97 |
Alum-MoS2-408 | 29.97 | 25.15 | 20.02 | 3.21 | 9.55 | 2.74 | 4.24 | 64.91 | 94.88 | 62.06 | 70.07 | 44.38 | 0.13 | 21.98 |
Alum-MoS2-432 | 55.12 | 36.63 | 29.02 | 5.20 | 12.99 | 3.92 | 5.30 | 93.06 | 148.18 | 40.45 | 65.96 | 43.94 | 0.23 | 28.04 |
Alum-MoS2-456 | 79.05 | 44.76 | 33.99 | 6.47 | 12.77 | 3.07 | 3.64 | 104.70 | 183.76 | 27.21 | 47.53 | 55.57 | 0.33 | 27.11 |
Alum-MoS2-480 | 110.42 | 48.96 | 28.86 | 4.93 | 5.21 | 0.41 | 0.31 | 88.68 | 199.10 | 24.54 | 18.35 | 62.83 | 0.47 | 24.36 |
Alum-MoS2-504 | 165.87 | 35.93 | 7.05 | 0.58 | 0.12 | 0 | 0 | 43.68 | 209.55 | 15.68 | 20.26 | 80.68 | 0.72 | 18.63 |
Alum-MoS2-528 | 203.03 | 14.07 | 0.69 | 0 | 0 | 0 | 0 | 14.76 | 217.78 | 3.61 | 15.77 | 97.28 | 0.86 | 16.54 |
Alum-MoS2-552 | 245.68 | 5.69 | 0 | 0 | 0 | 0 | 0 | 5.69 | 251.38 | 1.77 | 20.62 | 112.3 | 1.01 | 18.03 |
Alum-MoS2-576 | 275.51 | 5.25 | 0 | 0 | 0 | 0 | 0 | 5.25 | 280.76 | 1.94 | 13.18 | 142.6 | 1.05 | 18.77 |
Alum-MoS2-600 | 292.49 | 0.64 | 0 | 0 | 0 | 0 | 0 | 0.64 | 293.13 | 1.05 | 16.41 | 153.8 | 1.10 | 15.18 |
1 | SNAPE C E, LAFFERTY C J, EGLINTON G, et al. The potential of hydropyrolysis as a route for coal liquefaction[J]. International Journal of Energy Research, 1994, 18(2): 233-242. |
2 | LOVE G D, SNAPE C E, CARR A D, et al. Release of covalently-bound alkane biomarkers in high yields from kerogen via catalytic hydropyrolysis[J]. Organic Geochemistry, 1995, 23(10): 981-986. |
3 | BROCKS J J, LOGAN G A, BUICK R, et al. Archean molecular fossils and the early rise of eukaryotes[J]. Science, 1999, 285(5430): 1033-1036. |
4 | 周建伟, 李术元, 岳长涛, 等. HYPY/SE提取固体有机质中生物标志化合物的研究[J]. 化学通报, 2006, 69(5): 337-341. |
ZHOU Jianwei, LI Shuyuan, YUE Changtao, et al. Study on releasing of biomarkers from the solid sedimentary organic matter[J]. Chemistry, 2006, 69(5): 337-341. | |
5 | 孙永革, MEREDITH W, SNAPE C E, 等. 加氢催化裂解技术用于高演化源岩有机质表征研究[J]. 石油与天然气地质, 2008, 29(2): 276-282. |
SUN Yongge, MEREDITH W, SNAPE C E, et al. Study on the application of hydropyrolysis technique to the description of organic matter in highly mature source rocks[J]. Oil & Gas Geology, 2008, 29(2): 276-282. | |
6 | 王庆涛, 江林香, 刘奇宝, 等. 柯坪剖面中上奥陶统烃源岩的催化加氢裂解产物特征及其地质意义[J]. 地球化学, 2012, 41(5): 415-424. |
WANG Qingtao, JIANG Linxiang, LIU Qibao, et al. Catalytic hydropyrolysis for kerogens of middle and Upper Ordovician source rocks in Keping Section, Tarim Basin, northwestern China[J]. Geochimica, 2012, 41(5): 415-424. | |
7 | 何大祥, 唐友军, 郑彬, 等. 生排烃热模拟中页岩生物标志化合物的变化及其地质意义[J]. 断块油气田, 2020, 27(6): 689-694. |
HE Daxiang, TANG Youjun, ZHENG Bin, et al. Changes of shale biomarkers in thermal simulation of hydrocarbon generation and expulsion and its geological significance[J]. Fault-Block Oil and Gas Field, 2020, 27(6): 689-694. | |
8 | 吴亮亮, 廖玉宏, 方允鑫, 等. 不同成熟度烃源岩的催化加氢热解与索氏抽提在生物标志物特征上的对比[J]. 科学通报, 2012, 57(32): 3067-3077. |
WU Liangliang, LIAO Yuhong, FANG Yunxin, et al. The comparison of biomarkers released by hydropyrolysis and Soxhlet extraction from source rocks of different maturities[J]. Chinese Science Bulletin, 2012, 57(32): 3067-3077. | |
9 | TISSOT B, DURAND B, ESPITALIÉ J, et al. Influence of nature and diagenesis of organic matter in formation of petroleum[J]. AAPG Bulletin, 1974, 58(3): 499-506. |
10 | MANGO F D. Transition metal catalysis in the generation of petroleum and natural gas[J]. Geochimica et Cosmochimica Acta, 1992, 56(1): 553-555. |
11 | MANGO F D, HIGHTOWER J W, JAMES A T. Role of transition-metal catalysis in the formation of natural gas[J]. Nature, 1994, 368(6471): 536-538. |
12 | MANGO F D, HIGHTOWER J. The catalytic decomposition of petroleum into natural gas[J]. Geochimica et Cosmochimica Acta, 1997, 61(24): 5347-5350. |
13 | MEDINA J C, BUTALA S J, BARTHOLOMEW C H, et al. Low temperature iron- and nickel-catalyzed reactions leading to coalbed gas formation[J]. Geochimica et Cosmochimica Acta, 2000, 64(4): 643-649. |
14 | 吴艳艳, 秦勇, 刘金钟, 等. 矿物/金属元素在煤成烃过程中的作用——以黔西滇东上二叠统大河边煤矿煤样为例[J]. 天然气地球科学, 2012, 23(1): 141-152. |
WU Yanyan, QIN Yong, LIU Jinzhong, et al. Catalysis action of mineral/metal elements during coal-derived hydrocarbons process: An example of the Late Permian coal from Dahebian coal mine in eastern Yunnan and western Guizhou[J]. Natural Gas Geoscience, 2012, 23(1): 141-152. | |
15 | HE Kun, ZHANG Shuichang, MI Jingkui, et al. Mechanism of catalytic hydropyrolysis of sedimentary organic matter with MoS2 [J]. Petroleum Science, 2011, 8(2): 134-142. |
16 | HUANG Xiaowei, JIN Zhijun, LIU Quanyou, et al. Catalytic hydrogenation of post-mature hydrocarbon source rocks under deep-derived fluids: An example of Early Cambrian Yurtus Formation, Tarim Basin, NW China[J]. Frontiers in Earth Science, 2021, 9: 626111. |
17 | LI Kang, ZHAO Zhongfeng, LU Hong, et al. Effects of inherent pyrite on hydrocarbon generation by thermal pyrolysis: An example of low maturity type-Ⅱ kerogen from Alum shale formation, Sweden[J]. Fuel, 2022, 312: 122865. |
18 | PAN Changchun, GENG Ansong, ZHONG Ningning, et al. Kerogen pyrolysis in the presence and absence of water and minerals. 1. Gas components[J]. Energy & Fuels, 2008, 22(1): 416-427. |
19 | ACHOLLA F V, ORR W L. Pyrite removal from kerogen without altering organic matter: The chromous chloride method[J]. Energy & Fuels, 1993, 7(3): 406-410. |
20 | LU Hong, GREENWOOD P, CHEN Tengshui, et al. The role of metal sulfates in thermochemical sulfate reduction (TSR) of hydrocarbons: Insight from the yields and stable carbon isotopes of gas products[J]. Organic Geochemistry, 2011, 42(6): 700-706. |
21 | PAN Changchun, GENG Ansong, ZHONG Ningning, et al. Kerogen pyrolysis in the presence and absence of water and minerals: Amounts and compositions of bitumen and liquid hydrocarbons[J]. Fuel, 2009, 88(5): 909-919. |
22 | 邓模, 段新国, 翟常博, 等. 页岩热模拟过程中液态烃含量变化及对物性的影响[J]. 石油与天然气地质, 2020, 41(6): 1310-1320. |
DENG Mo, DUAN Xinguo, ZHAI Changbo, et al. Variation in liquid hydrocarbon content during thermal simulation and its influence on physical property of shale[J]. Oil & Gas Geology, 2020, 41(6): 1310-1320. | |
23 | ELLIS G S, ZHANG Tongwei, KRALERT P G, et al. Kinetics of elemental sulfur reduction by petroleum hydrocarbons and the implications for hydrocarbon thermal chemical alteration[J]. Geochimica et Cosmochimica Acta, 2019, 251: 192-216. |
24 | BEHAR F, KRESSMANN S, RUDKIEWICZ J L, et al. Experimental simulation in a confined system and kinetic modelling of kerogen and oil cracking[J]. Organic Geochemistry, 1992, 19(1/3): 173-189. |
25 | 秦艳, 彭平安, 于赤灵, 等. 硫在干酪根裂解生烃中的作用[J]. 科学通报, 2004, 49(S1): 9-16. |
QIN Yan, PENG Ping’an, YU Chiling, et al. The role of sulfur in the pyrolysis of kerogen[J]. Chinese Science Bulletin, 2004, 49(S1): 9-16. | |
26 | 陈腾水, 何琴, 卢鸿, 等. 饱和烃与硫酸钙和元素硫的热模拟实验对比研究: H2S成因探讨[J]. 中国科学(D辑: 地球科学), 2009, 39(12): 1701-1708. |
CHEN Tengshui, HE Qin, LU Hong, et al. Thermal simulation experiments of saturated hydrocarbons with calcium sulfate and element sulfur: Implications on origin of H2S[J]. Science in China(Series D: Earth Sciences), 2009, 39(12): 1701-1708. | |
27 | ORR W L. Changes in sulfur content and isotopic ratios of sulfur during petroleum maturation—study of Big Horn Basin Paleozoic oils[J]. AAPG Bulletin, 1974, 58(11): 2295-2318. |
28 | LEWAN M D. Sulphur-radical control on petroleum formation rates[J]. Nature, 1998, 391(6663): 164-166. |
29 | LORANT F, BEHAR F, VANDENBROUCKE M, et al. Methane generation from methylated aromatics: Kinetic study and carbon isotope modeling[J]. Energy & Fuels, 2000, 14(6): 1143-1155. |
30 | LORANT F, BEHAR F. Late generation of methane from mature kerogens[J]. Energy & Fuels, 2002, 16(2): 412-427. |
31 | TANAKA K I, OKUHARA T. Molecular mechanisms of catalytic isomerization and hydrogen exchange of olefins over the MoS2 single crystal catalysts: Regulation of catalytic processes by the conformation of active sites[J]. Journal of Catalysis, 1982, 78(1): 155-164. |
32 | 范德廉, 杨秀珍, 王连芳, 等. 某地下寒武统含镍钼多元素黑色岩系的岩石学及地球化学特点[J]. 地球化学, 1973(3): 143-164. |
FAN Delian, YANG Xiuzhen, WANG Lianfang, et al. Petrological and geochemical characteristics of a nickel-molybdenum-multe-element-bearing Lower-Cambrian black shale from a certain district in South China[J]. Geochimica, 1973(3): 143-164. | |
33 | 高军波, 魏怀瑞, 刘坤, 等. 贵州遵义-纳雍一带寒武系黑色岩系中钼镍矿层的沉积特征[J]. 地质与资源, 2011, 20(3): 234-239. |
GAO Junbo, WEI Huairui, LIU Kun, et al. Sedimentary features of molybdenum-nickel-bearing strata in the Cambrian black rock series in Zunyi-Nayong area, Guizhou Province[J]. Geology and Resources, 2011, 20(3): 234-239. | |
34 | 孙福宁, 胡文瑄, 胡忠亚, 等. 断裂-层序双控机制下的热液活动及成储效应——以塔里木盆地塔河、玉北地区下奥陶统为例[J]. 石油与天然气地质, 2020, 41(3): 558-575. |
SUN Funing, HU Wenxuan, HU Zhongya, et al. Impact of hydrothermal activities on reservoir formation controlled by both faults and sequences boundaries: A case study from the lower Ordovician in Tahe and Yubei areas, Tarim Basin[J]. Oil & Gas Geology, 2020, 41(3): 558-575. | |
35 | 梁新平, 金之钧, 刘全有, 等. 火山灰对富有机质页岩形成的影响——以西西伯利亚盆地中生界巴热诺夫组为例[J]. 石油与天然气地质, 2021, 42(1): 201-211. |
LIANG Xinping, JIN Zhijun, LIU Quanyou, et al. Impact of volcanic ash on the formation of organic-rich shale: A case study on the Mesozoic Bazhenov Formation, West Siberian Basin[J]. Oil & Gas Geology, 2021, 42(1): 201-211. |
[1] | Min WANG, Changqi YU, Junsheng FEI, Jinbu LI, Yuchen ZHANG, Yu YAN, Yan WU, Shangde DONG, Yulong TANG. Molecular dynamics simulation of shale oil adsorption in kerogen and its implications [J]. Oil & Gas Geology, 2023, 44(6): 1442-1452. |
[2] | Hui TIAN, Zijin WU, Haifeng GAI, Xing WANG. Experimental study on late gas generation characteristics of the Middle Devonian sapropelic source rocks of in Northwestern Sichuan Basin [J]. Oil & Gas Geology, 2023, 44(1): 46-54. |
[3] | Erting Li, Jun Jin, Jian Wang, Wanyun Ma, Shijia Chen, Cuimin Liu, Haijing Wang. Geochemical characteristics and genesis of mid-to-shallow natural gas on the periphery of Shawan Sag, Junggar Basin [J]. Oil & Gas Geology, 2022, 43(1): 175-185. |
[4] | Mo Deng, Xinguo Duan, Changbo Zhai, Shengxiang Long, Zhenheng Yang, Lunju Zheng, Zhangchang Li, Taotao Cao. Variation in liquid hydrocarbon content during thermal simulation and its influence on physical property of shale [J]. Oil & Gas Geology, 2020, 41(6): 1310-1320. |
[5] | Chenjie Xu, Jiaren Ye, Jinshui Liu, Qiang Cao, Yiyong Sheng, Hanwen Yu. Simulation of hydrocarbon generation and expulsion for the dark mudstone with Type-Ⅲ kerogen in the Pinghu Formation of Xihu Sag in East China Sea Shelf Basin [J]. Oil & Gas Geology, 2020, 41(2): 359-366. |
[6] | Su Yue, Wang Weiming, Li Jijun, Gong Dajian, Shu Fang. Origin of nitrogen in marine shale gas in Southern China and its significance as an indicator [J]. Oil & Gas Geology, 2019, 40(6): 1185-1196. |
[7] | Tang Guomin, Wang Feilong, Wang Qingbin, Wan Lin, Yan Ge. Genesis and accumulation models of sulfur-rich heavy oil in Laizhou Bay Sag,Bohai Sea [J]. Oil & Gas Geology, 2019, 40(2): 284-293. |
[8] | Gu Shaohua, Shi Zhiliang, Shi Yunqing, Hu Xiangyang, Cen Fang. Numerical simulation for ultra-deep sour gas reservoirs with liquid sulfur condensate [J]. Oil & Gas Geology, 2017, 38(6): 1208-1216. |
[9] | Liu Wenhui, Hu Guang, Tenger, Wang Jie, Lu Longfei, Xie Xiaoming. Organism assemblages in the Paleozoic source rocks and their implications [J]. Oil & Gas Geology, 2016, 37(5): 617-626. |
[10] | Fu Xiaodong, Qiu Nansheng, Qin Jianzhong, Tenger, Liu Wenhui, Wang Xiaofang. Total sulfur distribution of source rock of the Upper Permian Longtan Formation and its response to sedimentary environment in Sichuan Basin [J]. Oil & Gas Geology, 2014, 35(3): 342-349. |
[11] | He Kun, Zhang Shuichang, Wang Xiaomei, Mi Jingkui, Mao Rong. Hydrocarbon generation kinetics of type-Ⅰ organic matters in the Cretaceous lacustrine sequences, Songliao Basin [J]. Oil & Gas Geology, 2014, 35(1): 42-49. |
[12] | Liu Quanyou, Jin Zhijun, Gao Bo, Zhang Dianwei, Xu Mei’e, Tang Ruipeng. Types and hydrocarbon generation potential of the Permian source rocks in the Sichuan Basin [J]. Oil & Gas Geology, 2012, 33(1): 10-18. |
[13] | YIN Qin-,SONG Zhi-Guang, LIU Jin-Zhong. Influences of sulfur on composition of oil cracked gas and carbon isotopes [J]. Oil & Gas Geology, 2010, 31(3): 309-314. |
[14] | Zhou Xinke, Xu Huazhen. Features of organic matter and formation environment of marine carbonate rocks [J]. Oil & Gas Geology, 2009, 30(3): 337-342,349. |
[15] | Hu Xiaoqing, Jin Qiang, Wang Xiuhong, Lin Lamei, Wang Li, Wang Juan, Wang Tingting. Origin of natural gas in Mingfeng area,the Jiyang Depression [J]. Oil & Gas Geology, 2009, 30(1): 85-89. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||