Oil & Gas Geology ›› 2023, Vol. 44 ›› Issue (1): 226-237.doi: 10.11743/ogg20230119
• Methods and Technologies • Previous Articles Next Articles
Yanfeng LIU(), Taizhong DUAN(), Yuan HUANG, Wenbiao ZHANG, Meng LI
Received:
2022-06-01
Revised:
2022-11-03
Online:
2023-01-14
Published:
2023-01-13
Contact:
Taizhong DUAN
E-mail:liuyf.syky@sinopec.com;duantz.syky@sinopec.com
CLC Number:
Yanfeng LIU, Taizhong DUAN, Yuan HUANG, Wenbiao ZHANG, Meng LI. Deep learning-based geological modeling driven by sedimentary process simulation[J]. Oil & Gas Geology, 2023, 44(1): 226-237.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Main parameter types and analytical methods of sedimentary process simulation of carbonates"
参数类型 | 具体参数 | 分析方法 |
---|---|---|
可容空间类 | 构造沉降曲线 | 地层回剥法,地震资料解释 |
海平面曲线 | Haq曲线,岩石的水深指示曲线 | |
初始地形 | 标志层厚度,沉积微相对水深指示意义 | |
沉积物供给类 | 沉积物供给速率,最大产率 | 地层厚度,井上地层厚度序列 |
沉积物供给集中度,透光带厚度 | 物源方向初始地层厚度变化程度,高能相带厚度 | |
沉积物供给成分比例,产率下降系数 | 观测数据中岩性比例,岩性变化频率 | |
沉积物搬运剥蚀类 | 势能扩散系数 | 沿沉积物搬运方向的地层厚度变化 |
扩散系数变化因子 | 岩性纵向变化程度 | |
动能对流系数 | 沿沉积物搬运方向的岩性变化程度 | |
流体动能分布类 | 波浪能 | 水体流速相对大小 |
风能 | 高能和低能相带分布的突变程度 | |
地形消浪能 | 沉积相对水体能量的指示意义 |
Table 2
Parameter ranges of stratigraphic inverse modeling"
序号 | 参数 | 最小值 | 最大值 | 序号 | 参数 | 最小值 | 最大值 |
---|---|---|---|---|---|---|---|
1 | AmpSeaL1 | 40.000 | 120.000 | 22 | KEng2 | 1.000 | 3.000 |
2 | PerdSeaL1 | 500.000 | 1500.000 | 23 | KEng3 | 0.500 | 1.500 |
3 | AmpSeaL2 | 20.000 | 60.000 | 24 | bEng1 | 0.500 | 1.500 |
4 | PerdSeaL2 | 80.000 | 150.000 | 25 | bEng2 | 0.040 | 0.120 |
5 | PerdSeaL3 | 20.000 | 60.000 | 26 | bEng3 | 10.000 | 30.000 |
6 | LinEuElev3 | -55.000 | -10.000 | 27 | pPr1 | 0.350 | 1.000 |
7 | SubsidenceScale1 | 0.500 | 1.500 | 28 | KV1 | 5.000 | 15.000 |
8 | PDX2 | 40.000 | 120.000 | 29 | KV2 | 17.000 | 52.000 |
9 | PDX1 | 800.000 | 2200.000 | 30 | KV3 | 12.000 | 35.000 |
10 | KDX1 | 5.000 | 15.000 | 31 | KW1 | 0.007 | 0.022 |
11 | KDX2 | 25.000 | 750.000 | 32 | KW2 | 0.012 | 0.040 |
12 | Apord1 | 2.500 | 7.500 | 33 | KW3 | 0.007 | 0.022 |
13 | Apord2 | 15.000 | 45.000 | 34 | kR1 | 0.025 | 0.000 |
14 | Apord3 | 7.500 | 22.000 | 35 | kR2 | 0.020 | 0.060 |
15 | Kpord3 | 0.010 | 0.030 | 36 | kR3 | 0.007 | 0.020 |
16 | Kpord1 | 0.010 | 0.030 | 37 | kH1 | 0.030 | 0.090 |
17 | Kpord2 | 0.020 | 0.070 | 38 | kH2 | 0.100 | 0.300 |
18 | Wpord1 | 30.000 | 90.000 | 39 | kH3 | 0.030 | 0.090 |
19 | Wpord2 | 15.000 | 45.000 | 40 | WaveBase1 | 20.000 | 60.000 |
20 | Wpord3 | 35.000 | 100.000 | 41 | KL1 | 0.002 | 0.007 |
21 | KEng1 | 0.020 | 0.060 |
1 | 吴胜和, 李宇鹏. 储层地质建模的现状与展望[J]. 海相油气地质, 2007, 12(3): 53-60. |
WU Shenghe, LI Yupeng. Reservoir modeling: Current situation and development prospect[J]. Marine Origin Petroleum Geology, 2007, 12(3): 53-60. | |
2 | 张文彪, 段太忠, 刘彦锋, 等. 定量地质建模技术应用现状与发展趋势[J]. 地质科技情报, 2019, 38(3): 264-275. |
ZHANG Wenbiao, DUAN Taizhong, LIU Yanfeng, et al. Application status and development trend of quantitative geological modeling[J]. Geological Science and Technology Information, 2019, 38(3): 264-275. | |
3 | 尹艳树, 张昌民, 李玖勇, 等. 多点地质统计学研究进展与展望[J]. 古地理学报, 2011, 13(2): 245-252. |
YIN Yanshu, ZHANG Changmin, LI Jiuyong, et al. Progress and prospect of multiple-point geostatistics[J]. Journal of Palaeogeography, 2011, 13(2): 245-252. | |
4 | 吴胜和, 李文克. 多点地质统计学——理论、应用与展望[J]. 古地理学报, 2005, 7(1): 137-144. |
WU Shenghe, LI Wenke. Multiple-point geostatistics: Theory, application and perspective[J]. Journal of Palaeogeography, 2005, 7(1): 137-144. | |
5 | 尹艳树, 吴胜和. 储层随机建模研究进展[J]. 天然气地球科学, 2006, 17(2): 210-216. |
YIN Yanshu, WU Shenghe. The progress of reservoir stochastic modeling[J]. Natural Gas Geoscience, 2006, 17(2): 210-216. | |
6 | 胡向阳, 郑文波, 游瑜春, 等. 四川盆地元坝长兴组礁滩相气藏概率体约束地质建模[J]. 石油与天然气地质, 2020, 41(1): 157-163. |
HU Xiangyang, ZHENG Wenbo, YOU Yuchun, et al. Probability body-constrained geomodeling of reef-shoal reservoir in Changxing Formation, Yuanba area, Sichuan Basin[J]. Oil & Gas Geology, 2020, 41(1): 157-163. | |
7 | 张文彪, 段太忠, 郑磊, 等. 基于浅层地震的三维训练图像获取及应用[J]. 石油与天然气地质, 2015, 36(6): 1030-1037. |
ZHANG Wenbiao, DUAN Taizhong, ZHENG Lei, et al. Generation and application of three-dimensional MPS training images based on shallow seismic data[J]. Oil & Gas Geology, 2015, 36(6): 1030-1037. | |
8 | 宋随宏, 史燕青, 侯加根. 基于生成对抗网络的储层地质建模方法研究进展[J]. 石油科学通报, 2022, 7(1): 34-49. |
SONG Suihong, SHI Yanqing, HOU Jiagen. Review of a generative adversarial networks (GANs)-based geomodelling method[J]. Petroleum Science Bulletin, 2022, 7(1): 34-49. | |
9 | GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Ghahramani Z, Welling M, Cortes C, eds. Proceedings of the 27th International Conference on Neural Information Processing Systems, Montreal, 2014. Cambridge: MIT press, 2014: 2672-2680. |
10 | 刘彦锋, 张文彪, 段太忠, 等. 深度学习油气藏地质建模研究进展[J]. 地质科技通报, 2021, 40(4): 235-241. |
LIU Yanfeng, ZHANG Wenbiao, DUAN Taizhong, et al. Progress of deep learning in oil and gas reservoirgeological modeling[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 235-241. | |
11 | ZHENG Qiang, ZENG Lingzao, KARNIADAKIS G E. Physics-informed semantic inpainting: Application to geostatistical modeling[J]. Journal of Computational Physics, 2020, 419: 109676. |
12 | MOSSER L, DUBRULE O, BLUNT M J. Conditioning of three-dimensional generative adversarial networks for pore and reservoir-scale models[EB/OL]. (2018-02-15)[2022-01-03]. . |
13 | SONG Suihong, MUKERJI T, HOU Jiagen. Geological facies modeling based on progressive growing of generative adversarial networks (GANs)[J]. Computational Geosciences, 2021, 25(3): 1251-1273. |
14 | SONG Suihong, MUKERJI T, HOU Jiagen. GANSim: conditional facies simulation using an improved progressive growing of generative adversarial networks (GANs)[J]. Mathematical Geosciences, 2021, 53(7): 1413-1444. |
15 | NESVOLD E, MUKERJI T. Geomodeling using generative adversarial networks and a database of satellite imagery of modern river deltas[C]//Petroleum Geostatistics 2019, Florence, 2019. Bunnik: European Association of Geoscientists & Engineers, 2019: 1-5. |
16 | RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378: 686-707. |
17 | KARNIADAKIS G E, KEVREKIDIS I G, LU Lu, et al. Physics-informed machine learning[J]. Nature Reviews Physics, 2021, 3(6): 422-440. |
18 | SLOSS L L. Stratigraphic models in exploration[J]. AAPG Bulletin, 1962, 46(7): 1050-1057. |
19 | HARBAUGH J W. Mathematical simulation of marine sedimentation with IBM 7090/7094 computers[M]//Merriam D F. Computer Contributions 1. Lawrence: Kansas Geological Survey, 1966: 1-52. |
20 | PAOLA C. Quantitative models of sedimentary basin filling[J]. Sedimentology, 2000, 47(S1): 121-178. |
21 | BURGESS P M. 14-A brief review of developments in stratigraphic forward modelling, 2000-2009[M]//Roberts D G, Bally A W. Regional Geology and Tectonics: Principles of Geologic Analysis. Boston: Elsevier Science, 2012: 378-404. |
22 | HUANG X, GRIFFITHS C M, LIU J. Recent development in stratigraphic forward modelling and its application in petroleum exploration[J]. Australian Journal of Earth Sciences, 2015, 62(8): 903-919. |
23 | ROSLI R, POPPELREITER M C, JAMALUDIN S N F. A review of stratigraphic foward models (Sfm) for carbonate platform[J]. International Journal of Engineering & Technology, 2018, 7(4.35): 143-147. |
24 | DUAN Taizhong. Similarity measure of sedimentary successions and its application in inverse stratigraphic modeling[J]. Petroleum Science, 2017, 14(3): 484-492. |
25 |
刘彦锋, 段太忠, 龚伟, 等. 基于深度学习的沉积模拟代理模型构建与应用[J/OL]. 沉积学报: 1-16[2022-01-03]. . DOI:10.14027/j.issn.1000-0550.2021.152 .
doi: 10.14027/j.issn.1000-0550.2021.152 |
LIU Yanfeng, DUAN Taizhong, GONG Wei, et al. Construction and application of a proxy model for stratigraphic forward modeling based on deep learning[J/OL]. Acta Sedimentologica Sinica: 1-16[2022-01-03]. . DOI:10.14027/j.issn.1000-0550.2021.152 .
doi: 10.14027/j.issn.1000-0550.2021.152 |
|
26 | GOODFELLOW I, BENGIO Y, COURVILLE A. Deep learning[M]. Cambridge: MIT Press, 2016. |
27 | HARSHVARDHAN G M, GOURISARIA M K, PANDEY M, et al. A comprehensive survey and analysis of generative models in machine learning[J]. Computer Science Review, 2020, 38: 100285. |
28 | ZHANG Tuanfeng, TILKE P, DUPONT E, et al. Generating geologically realistic 3D reservoir facies models using deep learning of sedimentary architecture with generative adversarial networks[J]. Petroleum Science, 2019, 16(3): 541-549. |
29 | CHAN S, ELSHEIKH A H. Parametric generation of conditional geological realizations using generative neural networks[J]. Computational Geosciences, 2019, 23(5): 925-952. |
30 | GAO Xiaoyang, HE Wenxiang, HU Yong. Modeling of meandering river deltas based on the conditional generative adversarial network[J]. Journal of Petroleum Science and Engineering, 2020, 193: 107352. |
31 | MIRZA M, OSINDERO S. Conditional generative adversarial nets[EB/OL]. (2014-11-06)[2022-01-03]. . |
32 | HUANG Huimin, LIN Lanfen, TONG Ruofeng, et al. UNet 3+: A full-scale connected UNet for medical image segmentation[C]//ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, 2020. Piscataway: IEEE, 2020: 1055-1059. |
33 | POMAR L. Ecological control of sedimentary accommodation: Evolution from a carbonate ramp to rimmed shelf, Upper Miocene, Balearic Islands[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 175(1/4): 249-272. |
34 | POMAR L, HAQ B U. Decoding depositional sequences in carbonate systems: Concepts vs experience[J]. Global and Planetary Change, 2016, 146: 190-225. |
35 | POMAR L. Chapter 12-Carbonate systems[M]//Scarselli N, Adam J, Chiarella D, et al. Regional Geology and Tectonics: Volume 1: Principles of Geologic Analysis. 2nd ed. Amsterdam: Elsevier, 2020: 235-311. |
36 | 段太忠, 王光付, 廉培庆, 等. 油气藏定量地质建模方法与应用[M]. 北京: 石油工业出版社, 2019. |
DUAN Taizhong, WANG Guangfu, LIAN Peiqing, et al. Quantitative geological modeling method and application of oil and gas reservoir[M]. Beijing: Petroleum Industry Press, 2019. | |
37 | 马永生, 蔡勋育. 四川盆地川东北区二叠系-三叠系天然气勘探成果与前景展望[J]. 石油与天然气地质, 2006, 27(6): 741-750. |
MA Yongsheng, CAI Xunyu. Exploration achievements and prospects of the Permian-Triassic natural gas in northeastern Sichuan Basin[J]. Oil & Gas Geology, 2006, 27(6): 741-750. | |
38 | 姜贻伟, 刘红磊, 杨福涛, 等. 震控储层建模方法及其在普光气田的应用[J]. 天然气工业, 2011, 31(3): 14-17, 106. |
JIANG Yiwei, LIU Honglei, YANG Futao, et al. Seismic-constrained reservoir modeling and its application in the Puguang gas field[J]. Natural Gas Industry, 2011, 31(3): 14-17, 106. | |
39 | 马永生, 储昭宏. 普光气田台地建造过程及其礁滩储层高精度层序地层学研究[J]. 石油与天然气地质, 2008, 29(5): 548-556. |
MA Yongsheng, CHU Zhaohong. Building-up process of carbonate platform and high-resolution sequence stratigraphy of reservoirs of reef and oolitic shoal facies in Puguang gas field[J]. Oil & Gas Geology, 2008, 29(5): 548-556. | |
40 | 马永生, 蔡勋育, 郭旭升, 等. 普光气田的发现[J]. 中国工程科学, 2010, 12(10): 14-23. |
MA Yongsheng, CAI Xunyu, GUO Xusheng, et al. The discovery of Puguang gas field[J]. Strategic Study of CAE, 2010, 12(10): 14-23. |
[1] | Rui FANG, Yuqiang JIANG, Changcheng YANG, Haibo DENG, Chan JIANG, Haitao HONG, Song TANG, Yifan GU, Xun ZHU, Shasha SUN, Guangyin CAI. Occurrence states and mobility of shale oil in different lithologic assemblages in the Jurassic Lianggaoshan Formation, Sichuan Basin [J]. Oil & Gas Geology, 2024, 45(3): 752-769. |
[2] | Xiao HE, Maja ZHENG, Yong LIU, Qun ZHAO, Xuewen Shi, Zhenxue Jiang, Wei WU, Ya WU, Shitan NING, Xianglu TANG, Dadong LIU. Characteristics and differential origin of Qiongzhusi Formation shale reservoirs under the “aulacogen-uplift” tectonic setting, Sichuan Basin [J]. Oil & Gas Geology, 2024, 45(2): 420-439. |
[3] | Changbo ZHAI, Liangbiao LIN, Donghua YOU, Fengbin LIU, Siyu LIU. Sedimentary microfacies characteristics and organic matter enrichment pattern of the 1st member of the Middle Permian Maokou Formation, southwestern Sichuan Basin [J]. Oil & Gas Geology, 2024, 45(2): 440-456. |
[4] | Heyi ZHANG, Shuai YANG, Xihua ZHANG, Hanlin PENG, Qian LI, Cong CHEN, Zhaolong GAO, Anqing CHEN. Sedimentary microfacies and environmental evolution of the Middle Permian Maokou Formation in the eastern Sichuan Basin: A case study of the Yangjiao section in Wulong District, Chongqing, China [J]. Oil & Gas Geology, 2024, 45(2): 457-470. |
[5] | Hui PAN, Yuqiang JIANG, Xun ZHU, Haibo DENG, Linke SONG, Zhanlei WANG, Miao LI, Yadong ZHOU, Linjie FENG, Yongliang YUAN, Meng WANG. Evaluation of geological sweet spots in fluvial tight sandstone gas: A case study of the first submember of the second member of the Jurassic Shaximiao Formation, central Sichuan Basin [J]. Oil & Gas Geology, 2024, 45(2): 471-485. |
[6] | Baoshou ZHANG, Benjian ZHANG, Hua WANG, Jianfa CHEN, Kaixuan LIU, Shuang DOU, Xin DAI, Shuangling CHEN. The Jinqiu gas field in the Sichuan Basin: A typical helium-bearing to helium-rich gas field with the Mesozoic sedimentary rocks as helium source rocks [J]. Oil & Gas Geology, 2024, 45(1): 185-199. |
[7] | Zhili ZHANG, Yanping QIAO, Shuang DOU, Kunyu LI, Yuan ZHONG, Luya WU, Baoshou ZHANG, Xin Dai, Xin JIN, Bin WANG, Jinmin SONG. Karst paleogeomorphology and reservoir control model of the 2nd member of Dengying Formation in Penglai gas area, Sichuan Basin, China [J]. Oil & Gas Geology, 2024, 45(1): 200-214. |
[8] | Guangfu WANG, Fengxia LI, Haibo WANG, Tong ZHOU, Yaxiong ZHANG, Ruyue WANG, Ning LI, Yuxin CHEN, Xiaofei XIONG. Difficulties and countermeasures for fracturing of various shale gas reservoirs in the Sichuan Basin [J]. Oil & Gas Geology, 2023, 44(6): 1378-1392. |
[9] | Zongquan HU, Ruyue WANG, Jing LU, Dongjun FENG, Yuejiao LIU, Baojian SHEN, Zhongbao LIU, Guanping WANG, Jianhua HE. Storage characteristic comparison of pores between lacustrine shales and their interbeds and differential evolutionary patterns [J]. Oil & Gas Geology, 2023, 44(6): 1393-1404. |
[10] | Dongfeng HU, Zhihong WEI, Ruobing LIU, Xiangfeng WEI, Wei WANG, Qingbo WANG. Discovery of the Qijiang shale gas field in a structurally complex region on the southeastern margin of the Sichuan Basin and its implications [J]. Oil & Gas Geology, 2023, 44(6): 1418-1429. |
[11] | Hongyan WANG, Shangwen ZHOU, Qun ZHAO, Zhensheng SHI, Dexun LIU, Pengfei JIAO. Enrichment characteristics, exploration and exploitation progress, and prospects of deep shale gas in the southern Sichuan Basin, China [J]. Oil & Gas Geology, 2023, 44(6): 1430-1441. |
[12] | Zhensheng SHI, Shengxian ZHAO, Tianqi ZHOU, Shasha SUN, Yuan YUAN, Chenglin ZHANG, Bo LI, Ling QI. Types and genesis of horizontal bedding of marine gas-bearing shale and its significance for shale gas: A case study of the Wufeng-Longmaxi shale in southern Sichuan Basin, China [J]. Oil & Gas Geology, 2023, 44(6): 1499-1514. |
[13] | Ruikang BIAN, Chuanxiang SUN, Haikuan NIE, Zhujiang LIU, Wei DU, Pei LI, Ruyue WANG. Types, characteristics, and exploration targets of deep shale gas reservoirs in the Wufeng-Longmaxi formations, southeastern Sichuan Basin [J]. Oil & Gas Geology, 2023, 44(6): 1515-1529. |
[14] | Shuangjian LI, Zhi LI, Lei ZHANG, Yingqiang LI, Xianwu MENG, Haijun WANG. Hydrocarbon accumulation conditions and exploration targets of the Triassic subsalt ultra-deep sequences in the western Sichuan Depression, Sichuan Basin [J]. Oil & Gas Geology, 2023, 44(6): 1555-1567. |
[15] | Jianhui ZENG, Yaxiong ZHANG, Zaizhen ZHANG, Juncheng QIAO, Maoyun WANG, Dongxia CHEN, Jingli YAO, Jingchen DING, Liang XIONG, Yazhou LIU, Weibo ZHAO, Kebo REN. Complex gas-water contacts in tight sandstone gas reservoirs: Distribution pattern and dominant factors controlling their formation and distribution [J]. Oil & Gas Geology, 2023, 44(5): 1067-1083. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||