Oil & Gas Geology ›› 2023, Vol. 44 ›› Issue (5): 1084-1101.doi: 10.11743/ogg20230502
• Petroleum Geology • Previous Articles Next Articles
Qingyong LUO1,2(), Ningning ZHONG1,2(), Meijun LI1,2, Jin WU1,2, Imran Khan1,2, Ye ZHANG3, Qing CHEN4, Xiangzhong YE5, Wenhao LI6, Wenming JI6, Anji LIU1,2, Jingyue HAO1,2, Lipeng YAO1,2,7, Jia WU1,2
Received:
2023-05-09
Revised:
2023-08-03
Online:
2023-10-19
Published:
2023-10-19
Contact:
Ningning ZHONG
E-mail:qingyong.luo@cup.edu.cn;nnzhongxp@cup.edu.cn
CLC Number:
Qingyong LUO, Ningning ZHONG, Meijun LI, Jin WU, Imran Khan, Ye ZHANG, Qing CHEN, Xiangzhong YE, Wenhao LI, Wenming JI, Anji LIU, Jingyue HAO, Lipeng YAO, Jia WU. Classification, origins, and evolution of macerals in the Precambrian-Eopaleozoic sedimentary rocks[J]. Oil & Gas Geology, 2023, 44(5): 1084-1101.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Classification of macerals in the Precambrian-Eopaleozoic sedimentary rocks"
组 | 组分 | 成因 |
---|---|---|
类镜质组 | 类镜质组颗粒 | 还原环境下,低等水生生物遭受强烈的微生物降解 |
腐泥组 | 层状藻类体 | 浮游藻类和细菌有机质腐泥化作用产物 |
结构藻类体 | ||
腐泥碎屑体 | ||
沥青质体 | 还原环境下,低等水生生物遭受微生物降解 | |
矿物沥青基质 | 有机质和无机矿物在微纳米尺度上的混合物 | |
动物有机碎屑组 | 笔石表皮体 | 海洋半索动物、一些微体动物和环节动物的表皮、鄂片和骨骼等有机质的转化产物 |
几丁虫囊壁体 | ||
虫颚有机体 | ||
固体沥青组 | 源内固体沥青 | 石油经初次运移残留在烃源岩内的固相次生产物 |
储层固体沥青 | 石油经二次运移进入到储集岩形成的固相次生产物 | |
沥青铀钍矿 | 藻类有机质遭受放射性矿物的离子辐射作用聚合所形成的 | |
惰质组 | 惰屑体 | 氧化环境或再循环形成的高反射率有机质颗粒 |
石墨化碎片 | 外源输入的强烈光学各向异性有机质碎片 |
Table 2
Organic matter maturity and maceral compositions of pre-Devonian marine source rocks"
地区 | 组 | 随机反射率Ro/% | 样品数量/个 | 显微组分含量/% | |||
---|---|---|---|---|---|---|---|
类镜质组颗粒 | 源内固体沥青 | 笔石表皮体 | 腐泥组 | ||||
上扬子 | 大塘坡组 | SB Ro:3.19 ~ 3.80 | 10 | 0 | 100 | — | — |
陡山沱组 | SB Ro:2.62 ~ 4.71 | 13 | 0 | 100 | — | — | |
寒武系 | VLM Ro:2.24 ~ 5.49 | 47 | < 20 | > 80 | — | — | |
五峰组- 龙马溪组 | G Ro:1.08 ~ 5.48 | 38 | — | 7 ~ 100 | 0 ~ 93 | — | |
华北 | 洪水庄组 | VLM Ro:0.68 ~ 0.78 | 8 | < 10 | — | — | > 90 |
下马岭组 | VLM Ro:0.43 ~ 0.68 | 5 | < 10 | — | — | > 90 | |
塔里木 | 玉尔吐斯组 | VLM Ro:0.85 ~ 1.61 | 9 | < 10 | > 90 | — | < 10 |
Table 3
Comparison of structures and optical characteristics of non-granular graptolite, reservoir solid bitumens, in-source solid bitumen, and vitrinite-like maceral particles[2-3,26]"
显微组分 | 非粒状笔石表皮体 | 储层固体沥青 | 源内固体沥青 | 类镜质组颗粒 |
---|---|---|---|---|
结构 | 复杂生物结构,条带状 | 镶嵌状 | 无结构 | 特殊生物结构,条带状或颗粒状 |
产状 | 顺层产出 | 充填于孔隙和裂缝 | 充填于孔隙和裂缝、分散在黏土矿物里面或者呈顺层产出 | 顺层产出 |
表面特征 | 光滑,部分具纺锤层 | 较光滑 | 较粗糙 | 光滑 |
各向异性 | 强 | 强 | 弱 | 强 |
随机反射率 | 高 | 高 | 低 | 高 |
Table 4
Preexisting and present-day organic matter in ancient marine source rocks and their maceral compositions"
“前世”代表性地层 | “前世”显微组分组成 | “今生”代表性地层 | “今生”显微组分组成 |
---|---|---|---|
洪水庄组/下马岭组 | 以层状藻类体和矿物沥青基质为主,类镜质组颗粒和腐泥碎屑体次之,偶见沥青铀钍矿 | 大塘坡组、陡山沱组 | 全部为源内固体沥青 |
寒武系Alum页岩 | 牛蹄塘组 | 以源内固体沥青为主,类镜质组颗粒次之 | |
奥陶系含笔石页岩 | 以层状藻类体和矿物沥青基质为主,笔石表皮体和腐泥碎屑体次之,偶见类镜质组颗粒 | 五峰组-龙马溪组 | 以源内固体沥青为主,笔石表皮体次之 |
1 | HACKLEY P C, CARDOTT B J. Application of organic petrography in North American shale petroleum systems: A review[J]. International Journal of Coal Geology, 2016, 163: 8-51. |
2 | LUO Qingyong, FARIBORZ G, ZHONG Ningning, et al. Graptolites as fossil geo-thermometers and source material of hydrocarbons: An overview of four decades of progress[J]. Earth-Science Reviews, 2020, 200: 103000. |
3 | LUO Qingyong, ZHANG Liang, ZHONG Ningning, et al. Thermal evolution behavior of the organic matter and a ray of light on the origin of vitrinite-like maceral in the Mesoproterozoic and Lower Cambrian black shales: Insights from artificial maturation[J]. International Journal of Coal Geology, 2021, 244: 103813. |
4 | LUO Qingyong, HAO Jingyue, SKOVSTED C B, et al. Optical characteristics of graptolite-bearing sediments and its implication for thermal maturity assessment[J]. International Journal of Coal Geology, 2018, 195: 386-401. |
5 | WANG Ye, QIU Nansheng, BORJIGIN T, et al. Integrated assessment of thermal maturity of the Upper Ordovician-Lower Silurian Wufeng-Longmaxi shale in Sichuan Basin, China[J]. Marine and Petroleum Geology, 2019, 100: 447-465. |
6 | XIAO Xianming, WILKINS R W T, LIU Dehan, et al. Investigation of thermal maturity of lower Palaeozoic hydrocarbon source rocks by means of vitrinite-like maceral reflectance—a Tarim Basin case study[J]. Organic Geochemistry, 2000, 31(10): 1041-1052. |
7 | 肖贤明, 吴治君, 刘德汉, 等. 早古生代海相烃源岩成熟度的有机岩石学评价方法[J]. 沉积学报, 1995, 13(2): 112-119. |
XIAO Xianming, WU Zhijun, LIU Dehan, et al. Evaluation of maturity of the early Paleozoic marine hydrocarbon source rocks on the basis of organic petrology[J]. Acta Sedimentologica Sinica, 1995, 13(2): 112-119. | |
8 | CRICK I H. Petrological and maturation characteristics of organic matter from the Middle Proterozoic McArthur Basin, Australia[J]. Australian Journal of Earth Sciences, 1992, 39(4): 501-519. |
9 | CRICK I H, BOREHAM C J, COOK A C, et al. Petroleum geology and geochemistry of Middle Proterozoic McArthur Basin, northern Australia Ⅱ: Assessment of source rock potential[J]. AAPG Bulletin, 1988, 72(12): 1495-1514. |
10 | PETERSEN H I, SCHOVSBO N H, NIELSEN A T. Reflectance measurements of zooclasts and solid bitumen in Lower Paleozoic shales, southern Scandinavia: Correlation to vitrinite reflectance[J]. International Journal of Coal Geology, 2013, 114: 1-18. |
11 | SANEI H, PETERSEN H I, SCHOVSBO N H, et al. Petrographic and geochemical composition of kerogen in the Furongian (U. Cambrian) Alum Shale, central Sweden: Reflections on the petroleum generation potential[J]. International Journal of Coal Geology, 2014, 132: 158-169. |
12 | HAERI-ARDAKANI O, SANEI H, LAVOIE D, et al. Geochemical and petrographic characterization of the Upper Ordovician Utica Shale, southern Quebec, Canada[J]. International Journal of Coal Geology, 2015, 138: 83-94. |
13 | LAVOIE D, PINET N, BORDELEAU G, et al. The Upper Ordovician black shales of southern Quebec (Canada) and their significance for naturally occurring hydrocarbons in shallow groundwater[J]. International Journal of Coal Geology, 2016, 158: 44-64. |
14 | 刘大锰, 金奎励, 艾天杰. 塔里木盆地海相烃源岩显微组分的分类及其岩石学特征[J]. 沉积学报, 1995, 13(S1): 124-133. |
LIU Dameng, JIN Kuili, AI Tianjie. A petrographic classification and organic petrological characteristics of macerals of the marine hydrocarbon source rocks in the Tarim Basin[J]. Acta Sedimentologica Sinica, 1995, 13(S1): 124-133. | |
15 | 吴朝东, 陈其英, 雷家锦. 湘西震旦—寒武纪黑色岩系的有机岩石学特征及其形成条件[J]. 岩石学报, 1999, 15(3): 453-461. |
WU Chaodong, CHEN Qiying, LEI Jiajin. The genesis factors and organic petrology of black shale series from the Upper Sinian to the Lower Cambrian, southwest of China[J]. Acta Petrologica Sinica, 1999, 15(3): 453-461. | |
16 | 胡明霞, 曹寅. 下古生界烃源岩有机显微组分分类与应用[J]. 石油实验地质, 2007, 29(4): 432-435. |
HU Mingxia, CAO Yin. Classification and application of organic macerals in the Lower Paleozoic hydrocarbon source rock[J]. Petroleum Geology and Experiment, 2007, 29(4): 432-435. | |
17 | LUO Qingyong, ZHONG Ningning, DAI Na, et al. Graptolite-derived organic matter in the Wufeng-Longmaxi formations (Upper Ordovician-Lower Silurian) of southeastern Chongqing, China: Implications for gas shale evaluation[J]. International Journal of Coal Geology, 2016, 153: 87-98. |
18 | 钟宁宁, 秦勇. 碳酸盐岩有机岩石学: 显微组分特性、成因、演化及其与油气关[M]. 北京: 科学出版社, 1995. |
ZHONG Ningning, QIN Yong. Carbonate organic petrology: Maceral characteristics, genesis, evolution and its relationship with oil and gas[M]. Beijing: Science Press, 1995. | |
19 | 肖贤明, 金奎励. 中国陆相源岩显微组分的分类及其岩石学特征[J]. 沉积学报, 1990, 8(3): 22-34. |
XIAO Xianming, JIN Kuili. A petrographic classification of macerals in terrestrial hydrocarbon source rocks in China and their organic petrological characteristics[J]. Acta Sedimentologica Sinica, 1990, 8(3): 22-34. | |
20 | LUO Qingyong, ZHONG Ningning, QIN Jing, et al. Thucholite in Mesoproterozoic shales from northern north China: Occurrence and indication for thermal maturity[J]. International Journal of Coal Geology, 2014, 125: 1-9. |
21 | ALPERN B. Petrographie du kerogene[M]//DURAND B. Kerogen, Insoluble Organic Matter From Sedimentary Rocks. Paris: Technip Editions, 1980: 339-384. |
22 | ARDAKANI O H, SANEI H, GHANIZADEH A, et al. Do all fractions of organic matter contribute equally in shale porosity? A case study from Upper Ordovician Utica Shale, southern Quebec, Canada[J]. Marine and Petroleum Geology, 2018, 92: 794-808. |
23 | 汪啸风, HOFFKNECHT A, 萧建新, 等. 笔石、几丁虫和虫牙反射率在热成熟度上的应用[J]. 地质学报, 1992, 66(3): 269-279, 297-298. |
WANG Xiaofeng, HOFFKNECHT A, XIAO Jianxin, et al. Graptolite, chitinozoan and scolecodont reflectances and their use as an indicator of thermal maturity[J]. Acta Geologica Sinica, 1992, 66(3): 269-279, 297-298. | |
24 | BERTRAND R, HÉROUX Y. Chitinozoan, graptolite, and scolecodont reflectance as an alternative to vitrinite and pyrobitumen reflectance in Ordovician and Silurian Strata, Anticosti Island, Quebec, Canada[J]. AAPG Bulletin, 1987, 71(8): 951-957. |
25 | MASTALERZ M, DROBNIAK A, STANKIEWICZ A B. Origin, properties, and implications of solid bitumen in source-rock reservoirs: A review[J]. International Journal of Coal Geology, 2018, 195: 14-36. |
26 | 罗情勇, 郝婧玥, 李可文, 等. 下古生界有机质成熟度评价新参数:笔石表皮体光学特征再研究[J]. 地质学报, 2019, 93(9): 2362-2371. |
LUO Qingyong, HAO Jingyue, LI Kewen, et al. A new parameter for the thermal maturity assessment of organic matter from the Lower Palaeozoic sediments: A re-study on the optical characteristics of graptolite periderms[J]. Acta Geologica Sinica, 2019, 93(9): 2362-2371. | |
27 | 赵文智, 王兆云, 王东良, 等. 分散液态烃的成藏地位与意义[J]. 石油勘探与开发, 2015, 42(4): 401-413. |
ZHAO Wenzhi, WANG Zhaoyun, WANG Dongliang, et al. Contribution and significance of dispersed liquid hydrocarbons to reservoir formation[J]. Petroleum Exploration and Development, 2015, 42(4): 401-413. | |
28 | 刘文汇, 张建勇, 范明, 等. 叠合盆地天然气的重要来源——分散可溶有机质[J]. 石油实验地质, 2007, 29(1): 1-6. |
LIU Wenhui, ZHANG Jianyong, FAN Ming, et al. Gas generation character of dissipated soluble organic matter[J]. Petroleum Geology and Experiment, 2007, 29(1): 1-6. | |
29 | 范明, 刘文汇, 郑伦举, 等. 不同岩石中分散可溶有机质裂解成气特征[J]. 沉积学报, 2007, 25(5): 774-777. |
FAN Ming, LIU Wenhui, ZHENG Lunju, et al. Characteristics of cracked gas of soluble organic matter dispersed in different kinds of rocks[J]. Acta Sedimentologica Sinica, 2007, 25(5): 774-777. | |
30 | 王兆云, 赵文智, 王东良, 等. 分散液态烃裂解气资源评价方法[J]. 地质学报, 2016, 90(1): 68-79. |
WANG Zhaoyun, ZHAO Wenzhi, WANG Dongliang, et al. Quantitative assessment of pyrolysis gas generated by dispersed liquid hydrocarbon[J]. Acta Geologica Sinica, 2016, 90(1): 68-79. | |
31 | 薛海涛, 田善思, 卢双舫, 等. 分散可溶有机质的气源意义[J]. 吉林大学学报(地球科学版), 2015, 45(1): 52-60. |
XUE Haitao, TIAN Shansi, LU Shuangfang, et al. Significance of dissipated soluble organic matter as gas source[J]. Journal of Jilin University (Earth Science Edition), 2015, 45(1): 52-60. | |
32 | GAI Haifeng, TIAN Hui, CHENG Peng, et al. Influence of retained bitumen in oil-prone shales on the chemical and carbon isotopic compositions of natural gases: Implications from pyrolysis experiments[J]. Marine and Petroleum Geology, 2019, 101: 148-161. |
33 | GAI Haifeng, XIAO Xianming, CHENG Peng, et al. Gas generation of shale organic matter with different contents of residual oil based on a pyrolysis experiment[J]. Organic Geochemistry, 2015, 78: 69-78. |
34 | 赵文智, 王兆云, 王红军, 等. 再论有机质 “接力成气” 的内涵与意义[J]. 石油勘探与开发, 2011, 38(2): 129-135. |
ZHAO Wenzhi, WANG Zhaoyun, WANG Hongjun, et al. Further discussion on the connotation and significance of the natural gas relaying generation model from organic materials[J]. Petroleum Exploration and Development, 2011, 38(2): 129-135. | |
35 | 赵文智, 王兆云, 张水昌, 等. 有机质 “接力成气” 模式的提出及其在勘探中的意义[J]. 石油勘探与开发, 2005, 32(2): 1-7. |
ZHAO Wenzhi, WANG Zhaoyun, ZHANG Shuichang, et al. Successive generation of natural gas from organic materials and its significance in future exploration[J]. Petroleum Exploration and Development, 2005, 32(2): 1-7. | |
36 | MA Yong, ZHONG Ningning, CHENG Lijun, et al. Pore structure of the graptolite-derived OM in the Longmaxi Shale, southeastern Upper Yangtze Region, China[J]. Marine and Petroleum Geology, 2016, 72: 1-11. |
37 | MARSH H. Carbonization and liquid-crystal (mesophase) development: Part 1. The significance of the mesophase during carbonization of coking coals[J]. Fuel, 1973, 52(3): 205-212. |
38 | WHITE J L. Mesophase mechanisms in the formation of the microstructure of petroleum coke[M]//DEVINEY M L, O’Grady T M. Petroleum Derived Carbons. Washington, D.C.: American Chemical Society, 1976: 282-314. |
39 | STASIUK L D. The origin of pyrobitumens in Upper Devonian Leduc Formation gas reservoirs, Alberta, Canada: An optical and EDS study of oil to gas transformation[J]. Marine and Petroleum Geology, 1997, 14(7/8): 915-929. |
40 | JACOB H. Classification, structure, genesis and practical importance of natural solid oil bitumen (“migrabitumen”)[J]. International Journal of Coal Geology, 1989, 11(1): 65-79. |
41 | ELLSWORTH H V. (Ⅰ) Thuchohte, a remarkable primary carbon mineral from the vicinity of Parry Sound, Ontario. (Ⅱ) Cyrtolite intergrowth associated with the Parry Sound thucholite[J]. American Mineralogist, 1928, 13(8): 419-441. |
42 | RASMUSSEN B, GLOVER J E, ALEXANDER R. Hydrocarbon rims on monazite in Permian-Triassic arenites, northern Perth Basin, Western Australia: Pointers to the former presence of oil[J]. Geology, 1989, 17(2): 115-118. |
43 | RASMUSSEN B, GLOVER J E, FOSTER C B. Polymerisation of hydrocarbons by radioactive minerals in sedimentary rocks: Diagenetic and economic significance[M]//PARNELL J, KUCHA H, LANDAIS P. Bitumens in Ore Deposits. Berlin: Springer, 1993: 490-509. |
44 | KHAN I, ZHONG Ningning, LUO Qingyong, et al. Maceral composition and origin of organic matter input in Neoproterozoic-Lower Cambrian organic-rich shales of Salt Range Formation, upper Indus Basin, Pakistan[J]. International Journal of Coal Geology, 2020, 217: 103319. |
45 | SYNNOTT D P, SANEI H, PEDERSEN P K, et al. The effect of bacterial degradation on bituminite reflectance[J]. International Journal of Coal Geology, 2016, 162: 34-38. |
46 | STACH E, MACKOWSKY M T, TEICHMÜLLER M, et al. Stach’s textbook of coal petrology[M]. 3rd ed. Berlin: Gebrüder Borntraeger, 1982. |
47 | 代世峰, 赵蕾, 唐跃刚, 等. 煤的显微组分定义与分类 (ICCP system 1994) 解析Ⅳ: 类脂体[J]. 煤炭学报, 2021, 46(9): 2965-2983. |
DAI Shifeng, ZHAO Lei, TANG Yuegang, et al. An in-depth interpretation of definition and classification of macerals in coal (ICCP system 1994) for Chinese researchers, Ⅳ: Liptinite[J]. Journal of China Coal Society, 2021, 46(9): 2965-2983. | |
48 | PICKEL W, KUS J, FLORES D, et al. Classification of liptinite-ICCP System 1994[J]. International Journal of Coal Geology, 2017, 169: 40-61. |
49 | GRINT A, MARSH H. Carbonization of coal blends: Mesophase formation and coke properties[J]. Fuel, 1981, 60(12): 1115-1120. |
50 | LUO Qingyong, HAO Jingyue, SKOVSTED C B, et al. The organic petrology of graptolites and maturity assessment of the Wufeng-Longmaxi formations from Chongqing, China: Insights from reflectance cross-plot analysis[J]. International Journal of Coal Geology, 2017, 183: 161-173. |
51 | 罗情勇, 郝婧玥, 李可文, 等. 重庆地区五峰组—龙马溪组页岩笔石光学特征及其在成熟度评价中的应用[J]. 天然气地球科学, 2017, 28(12): 1855-1863. |
LUO Qingyong, HAO Jingyue, LI Kewen, et al. The optical characteristics of the graptolites in the Wufeng-Longmaxi formations and its application for the thermal maturity evaluation[J]. Natural Gas Geoscience, 2017, 28(12): 1855-1863. | |
52 | GOODARZI F. Dispersion of optical properties of graptolite epiderms with increased maturity in early Paleozoic organic sediments[J]. Fuel, 1985, 64(12): 1735-1740. |
53 | GOODARZI F. Reflected light microscopy of chitinozoan fragments[J]. Marine and Petroleum Geology, 1985, 2(1): 72-78. |
54 | GOODARZI F, FOWLER M G, BUSTIN M, et al. Thermal maturity of Early Paleozoic sediments as determined by the optical properties of marine-derived organic matter—A review[M]//SCHIDLOWSKI M, GOLUBIC S, KIMBERLEY M M, et al. Early Organic Evolution. Berlin: Springer, 1992: 279-295. |
55 | RIEDIGER C, GOODARZI F, MACQUEEN R W. Graptolites as indicators of regional maturity in Lower Paleozoic sediments, Selwyn Basin, Yukon and Northwest Territories, Canada[J]. Canadian Journal of Earth Sciences, 1989, 26(10): 2003-2015. |
56 | BERTRAND R. Correlations among the reflectances of vitrinite, chitinozoans, graptolites and scolecodonts[J]. Organic Geochemistry, 1990, 15(6): 565-574. |
57 | BERTRAND R, LAVOIE D, FOWLER M. Cambrian-Ordovician shales in the Humber Zone: Thermal maturation and source rock potential[J]. Bulletin of Canadian Petroleum Geology, 2003, 51(3): 213-233. |
58 | 汪啸风, 霍夫奈克, 肖建新, 等. 笔石的反射率及其在指示热成熟度上的应用[J]. 中国地质科学院宜昌地质矿产研究所所刊, 1992, 18: 83-93. |
WANG Xiaofeng, HOFFKNECHT A, XIAO Jianxin, et al. Reflectance of graptolite and its use as indicator of thermal maturity[J]. Journal of Yichang Institute of Geology and Mineral Resources, Chinese Academy of Geological Sciences, 1992, 18: 83-93. | |
59 | LIANG Yan, BERNARDO J, GOLDMAN D, et al. Morphological variation suggests that chitinozoans may be fossils of individual microorganisms rather than metazoan eggs[J]. Proceedings of the Royal Society B: Biological Sciences, 2019, 286(1908): 20191270. |
60 | TRICKER P M, MARSHALL J E A, BADMAN T D. Chitinozoan reflectance: A Lower Palaeozoic thermal maturity indicator[J]. Marine and Petroleum Geology, 1992, 9(3): 302-307. |
61 | BUCHARDT B, LEWAN M D. Reflectance of vitrinite-like macerals as a thermal maturity index for Cambrian-Ordovician Alum Shale, southern Scandinavia[J]. AAPG Bulletin, 1990, 74(4): 394-406. |
62 | SCHMIDT J S, ARAUJO C V, SOUZA I V A F, et al. Hydrous pyrolysis maturation of vitrinite-like and humic vitrinite macerals: Implications for thermal maturity analysis[J]. International Journal of Coal Geology, 2015, 144/145: 5-14. |
63 | CROWTHER P R. The fine structure of graptolite periderm[M]. London: Palaeontological Association, 1981. |
64 | GENTZIS T, DE FREITAS T, GOODARZI F, et al. Thermal maturity of Lower Paleozoic sedimentary successions in Arctic Canada[J]. AAPG Bulletin, 1996, 80(7): 1065-1083. |
65 | GOODARZI F. Organic petrography of graptolite fragments from Turkey[J]. Marine and Petroleum Geology, 1984, 1(3): 202-210. |
66 | GOODARZI F, NORFORD B S. Optical properties of graptolite epiderm-A review[J]. Bulletin of Geological Society of Denmark, 1987, 35: 141-147. |
67 | GOODARZI F, NORFORD B S. Variation of graptolite reflectance with depth of burial[J]. International Journal of Coal Geology, 1989, 11(2): 127-141. |
68 | LINK C M, BUSTIN R M, GOODARZI F. Petrology of graptolites and their utility as indices of thermal maturity in Lower Paleozoic strata in northern Yukon, Canada[J]. International Journal of Coal Geology, 1990, 15(2): 113-135. |
69 | TEICHMÜLLER M. Nachweis von graptolithen-periderm in geschieferten gesteinen mit hilfe kohlenpetrologischer methoden[J]. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 1978, 7: 430-447. |
70 | HAO Jingyue, ZHONG Ningning, LUO Qingyong, et al. Raman spectroscopy of graptolite periderm and its potential as an organic maturity indicator for the Lower Paleozoic in southwestern China[J]. International Journal of Coal Geology, 2019, 213: 103278. |
71 | 孟江辉, 吕沛熙, 吴伟, 等. 基于笔石表皮体反射率和拉曼光谱评价海相页岩热成熟度的方法——以川南下古生界五峰组-龙马溪组为例[J]. 石油与天然气地质, 2022, 43(6): 1515-1528. |
MENG Jianghui, Peixi LYU, WU Wei, et al. A method for evaluating the thermal maturity of marine shale based on graptolite reflectance and Raman spectroscopy: A case from the Lower Palaeozoic Wufeng-Longmaxi formations, southern Sichuan Basin, SW China[J]. Oil & Gas Geology, 2022, 43(6): 1515-1528. |
[1] | Huimin LIU, Youshu BAO, Maowen LI, Zheng LI, Lianbo WU, Rifang ZHU, Dayang WANG, Xin WANG. Geochemical parameters for evaluating shale oil enrichment and mobility: A case study of shales in the Bakken Formation, Williston Basin and the Shahejie Formation, Jiyang Depression [J]. Oil & Gas Geology, 2024, 45(3): 622-636. |
[2] | Xiugang PU, Jiangchang DONG, Gongquan CHAI, Shunyao SONG, Zhannan SHI, Wenzhong HAN, Wei ZHANG, Delu XIE. Enrichment model of high-abundance organic matter in shales in the 2nd member of the Paleogene Kongdian Formation, Cangdong Sag, Bohai Bay Basin [J]. Oil & Gas Geology, 2024, 45(3): 696-709. |
[3] | Rui FANG, Yuqiang JIANG, Changcheng YANG, Haibo DENG, Chan JIANG, Haitao HONG, Song TANG, Yifan GU, Xun ZHU, Shasha SUN, Guangyin CAI. Occurrence states and mobility of shale oil in different lithologic assemblages in the Jurassic Lianggaoshan Formation, Sichuan Basin [J]. Oil & Gas Geology, 2024, 45(3): 752-769. |
[4] | Jun LI, Youlong ZOU, Jing LU. Well-log-based assessment of movable oil content in lacustrine shale oil reservoirs: A case study of the 2nd member of the Paleogene Funing Formation, Subei Basin [J]. Oil & Gas Geology, 2024, 45(3): 816-826. |
[5] | Xiaoyu DU, Zhijun JIN, Lianbo ZENG, Guoping LIU, Sen YANG, Xinping LIANG, Guoqing LU. Evaluation of natural fracture effectiveness in deep lacustrine shale oil reservoirs based on formation microresistivity imaging logs [J]. Oil & Gas Geology, 2024, 45(3): 852-865. |
[6] | Caineng ZOU, Dazhong DONG, Wei XIONG, Guoyou FU, Qun ZHAO, Wen LIU, Weiliang KONG, Qin ZHANG, Guangyin CAI, Yuman WANG, Feng LIANG, Hanlin LIU, Zhen QIU. Advances, challenges, and countermeasures in shale gas exploration of underexplored plays, sequences and new types in China [J]. Oil & Gas Geology, 2024, 45(2): 309-326. |
[7] | Zhe ZHAO, Bin BAI, Chang LIU, Lan WANG, Haiyan ZHOU, Yuxi LIU. Current status, advances, and prospects of CNPC’s exploration of onshore moderately to highly mature shale oil reservoirs [J]. Oil & Gas Geology, 2024, 45(2): 327-340. |
[8] | Bo LIU, Qi’an MENG, Xiaofei FU, Tiefeng LIN, Yunfeng BAI, Shansi TIAN, Jinyou ZHANG, Yao YAO, Xinyang CHENG, Zhao LIU. Composition of generated and expelled hydrocarbons and phase evolution of shale oil in the 1st member of Qingshankou Formation, Songliao Basin [J]. Oil & Gas Geology, 2024, 45(2): 406-419. |
[9] | Xiao HE, Maja ZHENG, Yong LIU, Qun ZHAO, Xuewen Shi, Zhenxue Jiang, Wei WU, Ya WU, Shitan NING, Xianglu TANG, Dadong LIU. Characteristics and differential origin of Qiongzhusi Formation shale reservoirs under the “aulacogen-uplift” tectonic setting, Sichuan Basin [J]. Oil & Gas Geology, 2024, 45(2): 420-439. |
[10] | Hequn GAO, Yuqiao GAO, Xipeng HE, Jun NIE. Rock mechanical properties and controlling factors for shale oil reservoirs in the second member of the Paleogene Funing Formation, Subei Basin [J]. Oil & Gas Geology, 2024, 45(2): 502-515. |
[11] | Liang SHI, Bojiang FAN, Zhonghou LI, Ziwei YU, Zijin LIN, Xinyang DAI. Migration differentiation of hydrocarbon components in the 7th member of the Triassic Yanchang Formation, central Ordos Basin [J]. Oil & Gas Geology, 2024, 45(1): 157-168. |
[12] | Yi ZHANG, Bin ZHANG, Banghua LIU, Jie LIU, Qiansheng WEI, Qi ZHANG, Hongjun LU, Pengyu ZHU, Rui WANG. Status quo and development trends of research on shale gas adsorption and seepage in shale gas reservoirs [J]. Oil & Gas Geology, 2024, 45(1): 256-280. |
[13] | Dujie HOU, Keqiang WU, Li YOU, Ziming ZHANG, Yajun LI, Xiaofeng XIONG, Min XU, Xiazhe YAN, Weihe CHEN, Xiong CHENG. Organic matter enrichment mechanisms of terrigenous marine source rocks in the Qiongdongnan Basin [J]. Oil & Gas Geology, 2024, 45(1): 31-43. |
[14] | Xusheng GUO, Xiaoxiao MA, Maowen LI, Menhui QIAN, Zongquan HU. Mechanisms for lacustrine shale oil enrichment in Chinese sedimentary basins [J]. Oil & Gas Geology, 2023, 44(6): 1333-1349. |
[15] | Longde SUN, Xiaojun WANG, Zihui FENG, Hongmei SHAO, Huasen ZENG, Bo GAO, Hang JIANG. Formation mechanisms of nano-scale pores/fissures and shale oil enrichment characteristics for Gulong shale, Songliao Basin [J]. Oil & Gas Geology, 2023, 44(6): 1350-1365. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||