Oil & Gas Geology ›› 2024, Vol. 45 ›› Issue (3): 827-851.doi: 10.11743/ogg20240318
• Methods and Technologies • Previous Articles Next Articles
Wenlong DING1,2(), Yuntao LI1,2(), Jun HAN3, Cheng HUANG3, Laiyuan WANG3, Qingxiu MENG3
Received:
2024-01-01
Revised:
2024-05-10
Online:
2024-06-30
Published:
2024-07-01
Contact:
Yuntao LI
E-mail:dingwenlong2006@126.com;liyuntao1230@126.com
CLC Number:
Wenlong DING, Yuntao LI, Jun HAN, Cheng HUANG, Laiyuan WANG, Qingxiu MENG. Methods for high-precision tectonic stress field simulation and multi-parameter prediction of fracture distribution for carbonate reservoirs and their application[J]. Oil & Gas Geology, 2024, 45(3): 827-851.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Rock mechanical parameters of the Ordovician strata in Shunbei area"
样品编号 | 井号 | 深度/m | 围压/MPa | 抗压强度/MPa | 泊松比 | 杨氏模量/GPa | 内聚力/MPa | 内摩擦角/(°) |
---|---|---|---|---|---|---|---|---|
1 | X10 | 7 470.15~7 470.21 | 65 | — | 0.210 | 39.88 | — | — |
2 | X10 | 7 470.15~7 470.21 | 75 | — | 0.260 | 42.93 | ||
3 | X10 | 7 470.15~7 470.21 | 85 | — | 0.220 | 37.13 | ||
4 | X11 | 7 560.23~7 560.38 | 65 | — | 0.230 | 34.70 | 38 | 26.3 |
5 | X11 | 7 560.23~7 560.38 | 75 | — | 0.220 | 36.50 | ||
6 | X11 | 7 560.23~7 560.38 | 85 | — | 0.220 | 36.60 | ||
7 | X12 | 7 652.00~7 653.73 | 0 | 70.16 | 0.204 | 36.83 | — | — |
8 | X12 | 7 652.00~7 653.73 | 0 | 75.74 | 0.226 | 43.43 | ||
9 | X12 | 7 656.46~7 656.57 | 30 | 279.06 | 0.242 | 44.65 | ||
10 | X12 | 7 656.46~7 656.57 | 30 | 274.83 | 0.273 | 46.24 | ||
11 | X12 | 7 656.46~7 656.57 | 30 | 249.73 | 0.235 | 42.63 | ||
12 | X12 | 7 656.38~7 656.46 | 0 | 72.14 | 0.252 | 37.68 | 17.6 | 41.6 |
13 | X12 | 7 656.38~7 656.46 | 60 | 310.22 | 0.338 | 60.89 | ||
14 | X12 | 7 656.38~7 656.46 | 30 | 267.40 | 0.314 | 56.86 |
Fig. 16
Correlations of the present-day normalized comprehensive rupture rate with the distances from major faults, sliding trend coefficients, expansion coefficients, and fracture opening pressures on fault planes in the Middle Ordovician Yijianfang Formation in the No. 18 fault zone and adjacent regions in Shunbei area"
1 | 张鹏, 侯贵廷, 潘文庆, 等. 新疆柯坪地区碳酸盐岩对构造裂缝发育的影响[J]. 北京大学学报(自然科学版), 2011, 47(5): 831-836. |
ZHANG Peng, HOU Guiting, PAN Wenqing, et al. Effect of carbonate rock to development of structural fracture in the area of Keping, Xinjiang, China[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2011, 47(5): 831-836. | |
2 | 丁文龙, 李超, 李春燕, 等. 页岩裂缝发育主控因素及其对含气性的影响[J]. 地学前缘, 2012, 19(2): 212-220. |
DING Wenlong, LI Chao, LI Chunyan, et al. Dominant factor of fracture development in shale and its relationship to gas accumulation[J]. Earth Science Frontiers, 2012, 19(2): 212-220. | |
3 | 刘敬寿, 丁文龙, 肖子亢, 等. 储层裂缝综合表征与预测研究进展[J]. 地球物理学进展, 2019, 34(6): 2283-2300. |
LIU Jingshou, DING Wenlong, XIAO Zikang, et al. Advances in comprehensive characterization and prediction of reservoir fractures[J]. Progress in Geophysics, 2019, 34(6): 2283-2300. | |
4 | 刘军, 任丽丹, 李宗杰, 等. 塔里木盆地顺南地区深层碳酸盐岩断裂和裂缝地震识别与评价[J]. 石油与天然气地质, 2017, 38(4): 703-710. |
LIU Jun, REN Lidan, LI Zongjie, et al. Seismic identification and evaluation of deep carbonate faults and fractures in Shunnan area, Tarim Basin[J]. Oil & Gas Geology, 2017, 38(4): 703-710. | |
5 | DENG Shang, LI Huili, ZHANG Zhongpei, et al. Structural characterization of intracratonic strike-slip faults in the central Tarim Basin[J]. AAPG Bulletin, 2019, 103(1): 109-137. |
6 | 云露, 邓尚. 塔里木盆地深层走滑断裂差异变形与控储控藏特征——以顺北油气田为例[J]. 石油学报, 2022, 43(6): 770-787. |
YUN Lu, DENG Shang. Structural styles of deep strike-slip faults in Tarim Basin and the characteristics of their control on reservoir formation and hydrocarbon accumulation: A case study of Shunbei oil and gas field[J]. Acta Petrolei Sinica, 2022, 43(6): 770-787. | |
7 | 郑和荣, 胡宗全, 云露, 等. 中国海相克拉通盆地内部走滑断裂发育特征及控藏作用[J]. 地学前缘, 2022, 29(6): 224-238. |
ZHENG Herong, HU Zongquan, YUN Lu, et al. Strike-slip faults in marine cratonic basins in China: Development characteristics and controls on hydrocarbon accumulation[J]. Earth Science Frontiers, 2022, 29(6): 224-238. | |
8 | 张继标, 张仲培, 汪必峰, 等. 塔里木盆地顺南地区走滑断裂派生裂缝发育规律及预测[J]. 石油与天然气地质, 2018, 39(5): 955-963, 1055. |
ZHANG Jibiao, ZHANG Zhongpei, WANG Bifeng, et al. Development pattern and prediction of induced fractures from strike-slip faults in Shunnan area, Tarim Basin[J]. Oil & Gas Geology, 2018, 39(5): 955-963, 1055. | |
9 | 朱秀香, 赵锐, 赵腾. 塔里木盆地顺北1号断裂带走滑分段特征与控储控藏作用[J]. 岩性油气藏, 2023, 35(5): 131-138. |
ZHU Xiuxiang, ZHAO Rui, ZHAO Teng. Characteristics and control effect on reservoir and accumulation of strike-slip segments in Shunbei No.1 fault zone, Tarim Basin[J]. Lithologic Reservoirs, 2023, 35(5): 131-138. | |
10 | 周新桂, 张林炎, 黄臣军. 华庆探区长63储层破裂压力及裂缝开启压力估测与开发建议[J]. 中南大学学报(自然科学版), 2013, 44(7): 2812-2818. |
ZHOU Xingui, ZHANG Linyan, HUANG Chenjun. Estimation of formation breakdown pressure and fracture open pressure of Chang 63 low permeable reservoir in Huaqing area and development suggestions[J]. Journal of Central South University of Science and Technology, 2013, 44(7): 2812-2818. | |
11 | LIU Jingshou, DING Wenlong, GU Yang, et al. Methodology for predicting reservoir breakdown pressure and fracture opening pressure in low-permeability reservoirs based on an in situ stress simulation[J]. Engineering Geology, 2018, 246: 222-232. |
12 | 戴俊生, 刘敬寿, 杨海盟, 等. 铜城断裂带阜二段储层应力场数值模拟及开发建议[J]. 中国石油大学学报(自然科学版), 2016, 40(1): 1-9. |
DAI Junsheng, LIU Jingshou, YANG Haimeng, et al. Numerical simulation of stress field of Fu-2 Member in Tongcheng fault zone and development suggestions[J]. Journal of China University of Petroleum (Edition of Natural Science), 2016, 40(1): 1-9. | |
13 | 朱圣举, 赵向原, 张皎生, 等. 低渗透砂岩油藏天然裂缝开启压力及影响因素[J]. 西北大学学报(自然科学版), 2016, 46(4): 573-578. |
ZHU Shengju, ZHAO Xiangyuan, ZHANG Jiaosheng, et al. Fracture opening pressure and its influence factors in low-permeability sandstone reservoirs[J]. Journal of Northwest University (Natural Science Edition), 2016, 46(4): 573-578. | |
14 | 计秉玉, 郑松青, 顾浩. 缝洞型碳酸盐岩油藏开发技术的认识与思考——以塔河油田和顺北油气田为例[J]. 石油与天然气地质, 2022, 43(6): 1459-1465. |
JI Bingyu, ZHENG Songqing, GU Hao. On the development technology of fractured-vuggy carbonate reservoirs: A case study on Tahe oilfield and Shunbei oil and gas field[J]. Oil & Gas Geology, 2022, 43(6): 1459-1465. | |
15 | 史今雄, 赵向原, 潘仁芳, 等. 川中地区震旦系灯影组碳酸盐岩天然裂缝特征及其对气井产能影响[J]. 石油与天然气地质, 2023, 44(2): 393-405. |
SHI Jinxiong, ZHAO Xiangyuan, PAN Renfang, et al. Characteristics of natural fractures in carbonate reservoirs and their impacts on well productivity in the Sinian Dengying Formation, central Sichuan Basin[J]. Oil & Gas Geology, 2023, 44(2): 393-405. | |
16 | MICHAEL K, GOLAB A, SHULAKOVA V, et al. Geological storage of CO2 in saline aquifers—A review of the experience from existing storage operations[J]. International Journal of Greenhouse Gas Control, 2010, 4(4): 659-667. |
17 | GODEC M L, KUUSKRAA V A, DIPIETRO P. Opportunities for using anthropogenic CO2 for enhanced oil recovery and CO2 storage[J]. Energy & Fuels, 2013, 27(8): 4183-4189. |
18 | OSMAN A I, HEFNY M, ABDEL MAKSOUD M I A, et al. Recent advances in carbon capture storage and utilisation technologies: A review[J]. Environmental Chemistry Letters, 2021, 19(2): 797-849. |
19 | GUÉGUEN Y, SCHUBNEL A. Elastic wave velocities and permeability of cracked rocks[J]. Tectonophysics, 2003, 370(1/4): 163-176. |
20 | CLAVAUD J B, MAINEULT A, ZAMORA M, et al. Permeability anisotropy and its relations with porous medium structure[J]. Journal of Geophysical Research: Solid Earth, 2008, 113(B1): B01202. |
21 | BERGMO P E S, GRIMSTAD A A, LINDEBERG E. Simultaneous CO2 injection and water production to optimise aquifer storage capacity[J]. International Journal of Greenhouse Gas Control, 2011, 5(3): 555-564. |
22 | 丁文龙, 许长春, 久凯, 等. 泥页岩裂缝研究进展[J]. 地球科学进展, 2011, 26(2): 135-144. |
DING Wenlong, XU Changchun, Kai JIU, et al. The research progress of shale fractures[J]. Advances in Earth Science, 2011, 26(2): 135-144. | |
23 | BARBIER M, HAMON Y, CALLOT J P, et al. Sedimentary and diagenetic controls on the multiscale fracturing pattern of a carbonate reservoir: The Madison Formation (Sheep Mountain, Wyoming, USA)[J]. Marine and Petroleum Geology, 2012, 29(1): 50-67. |
24 | GALE J F W, LAUBACH S E, OLSON J E, et al. Natural fractures in shale: A review and new observations[J]. AAPG Bulletin, 2014, 98(11): 2165-2216. |
25 | HENNINGS P, ALLWARDT P, PAUL P, et al. Relationship between fractures, fault zones, stress, and reservoir productivity in the Suban gas field, Sumatra, Indonesia[J]. AAPG Bulletin, 2015, 96(4): 753-772. |
26 | 赫俊民, 王小垚, 孙建芳, 等. 塔里木盆地塔河地区中-下奥陶统碳酸盐岩储层天然裂缝发育特征及主控因素[J]. 石油与天然气地质, 2019, 40(5): 1022-1030. |
HE Junmin, WANG Xiaoyao, SUN Jianfang, et al. Characteristics and main controlling factors of natural fractures in the Lower-to-Middle Ordovician carbonate reservoirs in Tahe area, Northern Tarim Basin[J]. Oil & Gas Geology, 2019, 40(5): 1022-1030. | |
27 | 田鹤, 曾联波, 徐翔, 等. 四川盆地涪陵地区海相页岩天然裂缝特征及对页岩气的影响[J]. 石油与天然气地质, 2020, 41(3): 474-483. |
TIAN He, ZENG Lianbo, XU Xiang, et al. Characteristics of natural fractures in marine shale in Fuling area, Sichuan Basin, and their influence on shale gas[J]. Oil & Gas Geology, 2020, 41(3): 474-483. | |
28 | 曾联波, 吕鹏, 屈雪峰, 等. 致密低渗透储层多尺度裂缝及其形成地质条件[J]. 石油与天然气地质, 2020, 41(3): 449-454. |
ZENG Lianbo, Peng LYU, QU Xuefeng, et al. Multi-scale fractures in tight sandstone reservoirs with low permeability and geological conditions of their development[J]. Oil & Gas Geology, 2020, 41(3): 449-454. | |
29 | 黄仁春, 刘若冰, 刘明, 等. 川东北通江-马路背地区须家河组断缝体储层特征及成因[J]. 石油与天然气地质, 2021, 42(4): 873-883. |
HUANG Renchun, LIU Ruobing, LIU Ming, et al. Characteristics and genesis of fault-fracture reservoirs in the Xujiahe Formation, Tongjiang-Malubei area, northeastern Sichuan Basin[J]. Oil & Gas Geology, 2021, 42(4): 873-883. | |
30 | 葛勋, 郭彤楼, 马永生, 等. 四川盆地东南缘林滩场地区上奥陶统五峰组-龙马溪组页岩气储层甜点预测[J]. 石油与天然气地质, 2022, 43(3): 633-647. |
GE Xun, GUO Tonglou, MA Yongsheng, et al. Prediction of shale reservoir sweet spots of the Upper Ordovician Wufeng-Longmaxi Formations in Lintanchang area, southeastern margin of Sichuan Basin[J]. Oil & Gas Geology, 2022, 43(3): 633-647. | |
31 | 丁文龙, 曾维特, 王濡岳, 等. 页岩储层构造应力场模拟与裂缝分布预测方法及应用[J]. 地学前缘, 2016, 23(2): 63-74. |
DING Wenlong, ZENG Weite, WANG Ruyue, et al. Method and application of tectonic stress field simulation and fracture distribution prediction in shale reservoir[J]. Earth Science Frontiers, 2016, 23(2): 63-74. | |
32 | LIU Jingshou, DING Wenlong, YANG Haimeng, et al. Quantitative multiparameter prediction of fractured tight sandstone reservoirs: A case study of the Yanchang Formation of the Ordos Basin, central China[J]. SPE Journal, 2021, 26(5): 3342-3373. |
33 | LIU Hao, ZUO Yujun, RODRIGUEZ-DONO A, et al. Study on multi-period palaeotectonic stress fields simulation and fractures distribution prediction in Lannigou gold mine, Guizhou[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2023, 9(1): 92. |
34 | HAN Xiaoying, DENG Shang, TANG Liangjie, et al. Geometry, kinematics and displacement characteristics of strike-slip faults in the northern slope of Tazhong uplift in Tarim Basin: A study based on 3D seismic data[J]. Marine and Petroleum Geology, 2017, 88: 410-427. |
35 | TENG Changyu, CAI Zhongxian, HAO Fang, et al. Structural geometry and evolution of an intracratonic strike-slip fault zone: A case study from the North SB5 fault zone in the Tarim Basin, China[J]. Journal of Structural Geology, 2020, 140: 104159. |
36 | 贾承造, 马德波, 袁敬一, 等. 塔里木盆地走滑断裂构造特征、形成演化与成因机制[J]. 天然气工业, 2021, 41(8): 81-91. |
JIA Chengzao, MA Debo, YUAN Jingyi, et al. Structural characteristics,formation & evolution and genetic mechanisms of strike-slip faults in the Tarim Basin[J]. Natural Gas Industry, 2021, 41(8): 81-91. | |
37 | SUN Qingqing, FAN Tailiang, GAO Zhiqian, et al. New insights on the geometry and kinematics of the Shunbei 5 strike-slip fault in the central Tarim Basin, China[J]. Journal of Structural Geology, 2021, 150: 104400. |
38 | XU Zhiqin, HE Bizhu, ZHANG Chuanlin, et al. Tectonic framework and crustal evolution of the Precambrian basement of the Tarim Block in NW China: New geochronological evidence from deep drilling samples[J]. Precambrian Research, 2013, 235: 150-162. |
39 | QIU Huabiao, DENG Shang, CAO Zicheng, et al. The evolution of the complex anticlinal belt with crosscutting strike-slip faults in the central Tarim Basin, NW China[J]. Tectonics, 2019, 38(6): 2087-2113. |
40 | 张建新, 于胜尧, 李云帅, 等. 原特提斯洋的俯冲、增生及闭合:阿尔金-祁连-柴北缘造山系早古生代增生/碰撞造山作用[J]. 岩石学报, 2015, 31(12): 3531-3554. |
ZHANG Jianxin, YU Shengyao, LI Yunshuai, et al. Subduction, accretion and closure of Proto-Tethyan Ocean: Early Paleozoic accretion/collision orogeny in the Altun-Qilian-North Qaidam orogenic system[J]. Acta Petrologica Sinica, 2015, 31(12): 3531-3554. | |
41 | 邬光辉, 马兵山, 韩剑发, 等. 塔里木克拉通盆地中部走滑断裂形成与发育机制[J]. 石油勘探与开发, 2021, 48(3): 510-520. |
WU Guanghui, MA Bingshan, HAN Jianfa, et al. Origin and growth mechanisms of strike-slip faults in the central Tarim cratonic basin,NW China[J]. Petroleum Exploration and Development, 2021, 48(3): 510-520. | |
42 | 张光亚, 赵文智, 王红军, 等. 塔里木盆地多旋回构造演化与复合含油气系统[J]. 石油与天然气地质, 2007, 28(5): 653-663. |
ZHANG Guangya, ZHAO Wenzhi, WANG Hongjun, et al. Multicycle tectonic evolution and composite petroleum systems in the Tarim Basin[J]. Oil & Gas Geology, 2007, 28(5): 653-663. | |
43 | LI Chuanxin, WANG Xiaofeng, LI Benliang, et al. Paleozoic fault systems of the Tazhong Uplift, Tarim Basin, China[J]. Marine and Petroleum Geology, 2013, 39(1): 48-58. |
44 | YU Jingbo. Using cylindrical surface-based curvature change rate to detect faults and fractures[J]. Geophysics, 2014, 79(5): O1-O9. |
45 | 郑孟林, 王毅, 金之钧, 等. 塔里木盆地叠合演化与油气聚集[J]. 石油与天然气地质, 2014, 35(6): 925-934. |
ZHENG Menglin, WANG Yi, JIN Zhijun, et al. Superimposition, evolution and petroleum accumulation of Tarim Basin[J]. Oil & Gas Geology, 2014, 35(6): 925-934. | |
46 | WINDLEY B F, ALLEN M B, ZHANG C, et al. Paleozoic accretion and Cenozoic redeformation of the Chinese Tien Shan Range, central Asia[J]. Geology, 1990, 18(2): 128-131. |
47 | SOBEL E R, DUMITRU T A. Thrusting and exhumation around the margins of the western Tarim Basin during the India-Asia collision[J]. Journal of Geophysical Research: Solid Earth, 1997, 102(B3): 5043-5063. |
48 | LIN Bo, ZHANG Xu, XU Xuechun, et al. Features and effects of basement faults on deposition in the Tarim Basin[J]. Earth-Science Reviews, 2015, 145: 43-55. |
49 | FOSSEN H. Structural geology[M]. 2nd ed. Cambridge: Cambridge University Press, 2016. |
50 | ROBSON A G, HOLFORD S P, KING R C, et al. Structural evolution of horst and half-graben structures proximal to a transtensional fault system determined using 3D seismic data from the Shipwreck Trough, offshore Otway Basin, Australia[J]. Marine and Petroleum Geology, 2018, 89(Part 3): 615-634. |
51 | MITRA S, PAUL D. Structural geometry and evolution of releasing and restraining bends: Insights from laser-scanned experimental models[J]. AAPG Bulletin, 2011, 95(7): 1147-1180. |
52 | HARDING T P, LOWELL J D. Structural styles, their plate-tectonic habitats, and hydrocarbon traps in petroleum provinces[J]. AAPG Bulletin, 1979, 63(7): 1016-1058. |
53 | SYLVESTER A G. Strike-slip faults[J]. GSA Bulletin, 1988, 100(11): 1666-1703. |
54 | LI Yuntao, DING Wenlong, ZENG Tao, et al. Structural geometry and kinematics of a strike-slip fault zone in an intracontinental thrust system: A case study of the No. 15 fault zone in the Fuling area, eastern Sichuan Basin, southwest China[J]. Journal of Asian Earth Sciences, 2023, 242: 105512. |
55 | CHRISTIE-BLICK N, BIDDLE K T. Deformation and basin formation along strike-slip faults[M]//BIDDLE K T, CHRISTIE-BLICK N. Strike-Slip Deformation, Basin Formation, and Sedimentation. Broken Arrow: SEPM Society for Sedimentary Geology, 1985: 1-34. |
56 | 肖阳, 邬光辉, 雷永良, 等. 走滑断裂带贯穿过程与发育模式的物理模拟[J]. 石油勘探与开发, 2017, 44(3): 340-348. |
XIAO Yang, WU Guanghui, LEI Yongliang, et al. Analogue modeling of through-going process and development pattern of strike-slip fault zone[J]. Petroleum Exploration and Development, 2017, 44(3): 340-348. | |
57 | 卢雪梅. 碳酸盐岩裂缝描述七大难点[J]. 石油与天然气地质, 2021, 42(3): 530. |
LU Xuemei. Seven difficulties in carbonate fracture characterization[J]. Oil & Gas Geology, 2021, 42(3): 530. | |
58 | GUO Peng, YAO Leihua, REN Desheng. Simulation of three-dimensional tectonic stress fields and quantitative prediction of tectonic fracture within the Damintun Depression, Liaohe Basin, northeast China[J]. Journal of Structural Geology, 2016, 86: 211-223. |
59 | LIU Jingshou, YANG Haimeng, XU Ke, et al. Genetic mechanism of transfer zones in rift basins: Insights from geomechanical models[J]. GSA Bulletin, 2022, 134(9/10): 2436-2452. |
60 | LIU Jingshou, MEI Lianfu, DING Wenlong, et al. Asymmetric propagation mechanism of hydraulic fracture networks in continental reservoirs[J]. GSA Bulletin, 2023, 135(3/4): 678-688. |
61 | 张博, 陈红果, 胡瑞, 等. 含油气盆地构造应力场研究方法综述及展望[J]. 矿产与地质, 2023, 37(4): 885-889. |
ZHANG Bo, CHEN Hongguo, HU Rui, et al. Review and prospect prediction of research methods for tectonic stress field in oil-gas-bearing basin[J]. Mineral Resources and Geology, 2023, 37(4): 885-889. | |
62 | ZOBACK M D, PESKA P. In-situ stress and rock strength in the GBRN/DOE Pathfinder well, South Eugene Island, gulf of Mexico[J]. Journal of Petroleum Technology, 1995, 47(7): 582-585. |
63 | 陆诗阔, 王迪, 李玉坤, 等. 鄂尔多斯盆地大牛地气田致密砂岩储层三维岩石力学参数场研究[J]. 天然气地球科学, 2015, 26(10): 1844-1850. |
LU Shikuo, WANG Di, LI Yukun, et al. Research on three-dimensional mechanical parameters’ distribution of the tight sandstone reservoirs in Daniudi Gasfield[J]. Natural Gas Geoscience, 2015, 26(10): 1844-1850. | |
64 | 车小花, 赵腾, 乔文孝, 等. 多极子声波测井的裂缝识别与评价[J]. 石油与天然气地质, 2020, 41(6): 1263-1272. |
CHE Xiaohua, ZHAO Teng, QIAO Wenxiao, et al. Fracture identification and evaluation based on multi-pole acoustic logging[J]. Oil & Gas Geology, 2020, 41(6): 1263-1272. | |
65 | HOLCOMB D J. Using acoustic emissions to determine in-situ stress: Problems and promise[J]. Geomechanics, 1983, ASME AMD(57): 11-21. |
66 | ISHIDA T. Acoustic emission monitoring of hydraulic fracturing in laboratory and field[J]. Construction and Building Materials, 2001, 15(5/6): 283-295. |
67 | Kai JIU, DING Wenglong, HUANG Wenhui, et al. Simulation of paleotectonic stress fields within Paleogene shale reservoirs and prediction of favorable zones for fracture development within the Zhanhua Depression, Bohai Bay Basin, east China[J]. Journal of Petroleum Science and Engineering, 2013, 110: 119-131. |
68 | LIU Jingshou, DING Wenlong, WANG Ruyue, et al. Simulation of paleotectonic stress fields and quantitative prediction of multi-period fractures in shale reservoirs: A case study of the Niutitang Formation in the Lower Cambrian in the Cen’gong block, South China[J]. Marine and Petroleum Geology, 2017, 84: 289-310. |
69 | GRIFFITH A A. VI. The phenomena of rupture and flow in solids[J]. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 1921, 221(4): 163-198. |
70 | HANDIN J. On the Coulomb-Mohr failure criterion[J]. Journal of Geophysical Research, 1969, 74(22): 5343-5348. |
71 | BARTON C A, ZOBACK M D, MOOS D. Fluid flow along potentially active faults in crystalline rock[J]. Geology, 1995, 23(8): 683-686. |
72 | PEARSON E S, SNOW B A S. Tests for rank correlation coefficients[J]. Biometrika, 1962, 49(1/2):185-191. |
73 | MYERS J L, WELL A D, LORCH R F, Jr. Research design and statistical analysis[M]. 3rd ed. New York: Routledge, 2010. |
74 | PIANTADOSI J, HOWLETT P, BOLAND J. Matching the grade correlation coefficient using a copula with maximum disorder[J]. Journal of Industrial and Management Optimization, 2017, 3(2): 305-312. |
[1] | Pengyuan HAN, Wenlong DING, Debin YANG, Juan ZHANG, Hailong MA, Shenghui WANG. Characteristics of the S80 strike-slip fault zone and its controlling effects on the Ordovician reservoirs in the Tahe oilfield, Tarim Basin [J]. Oil & Gas Geology, 2024, 45(3): 770-786. |
[2] | Yanqiu ZHANG, Honghan CHEN, Xiepei WANG, Peng WANG, Danmei SU, Zhou XIE. Assessment of connectivity between source rocks and strike-slip fault zone in the Fuman oilfield, Tarim Basin [J]. Oil & Gas Geology, 2024, 45(3): 787-800. |
[3] | Zicheng CAO, Lu YUN, Lixin QI, Haiying LI, Jun HAN, Feng GENG, Bo LIN, Jingping CHEN, Cheng HUANG, Qingyan MAO. A major discovery of hydrocarbon-bearing layers over 1,000-meter thick in well Shunbei 84X, Shunbei area, Tarim Basin and its implications [J]. Oil & Gas Geology, 2024, 45(2): 341-356. |
[4] | Debin YANG, Xinbian LU, Dian BAO, Fei CAO, Yan WANG, Ming WANG, Runcheng XIE. New insights into the genetic types and characteristics of the Ordovician marine fault-karst carbonate reservoirs in the northern Tarim Basin [J]. Oil & Gas Geology, 2024, 45(2): 357-366. |
[5] | Changjian ZHANG, Debin YANG, Lin JIANG, Yingbing JIANG, Qi CHANG, Xuejian MA. Characteristics and origin of over-dissolution residual fault-karst reservoirs in the northern Tahe oilfield, Tarim Basin [J]. Oil & Gas Geology, 2024, 45(2): 367-383. |
[6] | Junyu WAN, Jianhui ZHU, Suping YAO, Yi ZHANG, Chuntang LI, Wei ZHANG, Haijian JIANG, Jie WANG. Geobiological evaluation of hydrocarbon-generating organisms and source rocks in the Ordovician Majiagou Formation, east-central Ordos Basin [J]. Oil & Gas Geology, 2024, 45(2): 393-405. |
[7] | Tongwen JIANG, Xingliang DENG, Peng CAO, Shaoying CHANG. Storage space types and water-flooding efficiency for fault-controlled fractured oil reservoirs in Fuman oilfield, Tarim Basin [J]. Oil & Gas Geology, 2024, 45(2): 542-552. |
[8] | Yuemeng NIU, Jun HAN, Yixin YU, Cheng Huang, Bo Lin, Fan YANG, Lang YU, Junyu CHEN. Igneous rock intrusions in the western Shunbei area, Tarim Basin: Characteristics and coupling relationships with faults [J]. Oil & Gas Geology, 2024, 45(1): 231-242. |
[9] | San ZHANG, Qiang JIN, Jinxiong SHI, Mingyi HU, Mengyue DUAN, Yongqiang LI, Xudong ZHANG, Fuqi CHENG. Filling patterns and reservoir property of the Ordovician buried-river karst caves in the Tabei area, Tarim Basin [J]. Oil & Gas Geology, 2023, 44(6): 1582-1594. |
[10] | Haizhou QU, Xinyu GUO, Wei XU, Wenhao LI, Song TANG, Yani DENG, Shipeng HE, Yunfeng ZHANG, Xingyu ZHANG. Classification and origin of micropores in carbonates and their effects on physical properties of rocks [J]. Oil & Gas Geology, 2023, 44(5): 1102-1117. |
[11] | Wei HU, Ting XU, Yang YANG, Zengmin LUN, Zongyu LI, Zhijiang KANG, Ruiming ZHAO, Shengwen MEI. Fluid phases and behaviors in ultra-deep oil and gas reservoirs, Tarim Basin [J]. Oil & Gas Geology, 2023, 44(4): 1044-1053. |
[12] | Tan ZHANG, Wei YAO, Yongqiang ZHAO, Yushuang ZHOU, Jiwen HUANG, Xinyu FAN, Yu LUO. Time scale and denudation thickness calculation of Carboniferous Kalashayi Formation in the Bamai area, Tarim Basin [J]. Oil & Gas Geology, 2023, 44(4): 1054-1066. |
[13] | Honghui GUO, Jianwei FENG, Libin ZHAO. Characteristics of passive strike-slip structure and its control effect on fracture development in Bozi-Dabei area, Tarim Basin [J]. Oil & Gas Geology, 2023, 44(4): 962-975. |
[14] | Faqi HE, Wei ZHANG, Xiaoqi DING, Zhuangzhuang QI, Chuntang LI, Hanjing SUN. Controlling mechanism of Wushenqi paleo-uplift on paleo-karst gas reservoirs in Ordos Basin [J]. Oil & Gas Geology, 2023, 44(2): 276-291. |
[15] | Bin LI, Xingxing ZHAO, Guanghui WU, Jianfa HAN, Baozhu GUAN, Chunguang SHEN. Differential hydrocarbon accumulation model of the Ordovician in Tazhong Ⅱ block, Tarim Basin [J]. Oil & Gas Geology, 2023, 44(2): 308-320. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||