Oil & Gas Geology ›› 2020, Vol. 41 ›› Issue (5): 1107-1118.doi: 10.11743/ogg20200521
• Methods and Technologies • Previous Articles Next Articles
Mingxuan Tan1,2,3(), Xiaomin Zhu2,3, Zili Zhang2,3, Wei Liu3,4, Hongchao Zhao3,5, Bin Su3
Received:
2020-01-20
Online:
2020-10-28
Published:
2020-10-22
CLC Number:
Mingxuan Tan, Xiaomin Zhu, Zili Zhang, Wei Liu, Hongchao Zhao, Bin Su. Summary of sedimentological issues and fundamental approaches in terms of ancient "Source-to-Sink" systems[J]. Oil & Gas Geology, 2020, 41(5): 1107-1118.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 |
Armitage J J , Duller R.A , Whittaker A C , et al. Transformation of tectonic and climatic signals from source to sedimentary archive[J]. Nature Geoscience, 2011, 4 (4): 231- 235.
doi: 10.1038/ngeo1087 |
2 | Allen P A . From landscapes into geological history[J]. Nature, 2008, 451 (17): 274- 276. |
3 | Romans B W , Graham S A . A deep-time perspective of land-ocean linkages in the sedimentary record[J]. Annual Review of Marine Science, 2013, 5 (5): 69- 94. |
4 |
Romans B W , Castelltorts S , Covault J A , et al. Environmental signal propagation in sedimentary systems across timescales[J]. Earth-Science Reviews, 2016, 153, 7- 29.
doi: 10.1016/j.earscirev.2015.07.012 |
5 | Kuehl S A , Nittrouer C A . Exploring the transfer of Earth surface materials from source to sink[J]. Eos, Transactions American Geophy-sical Union, 2011, 92 (22): 188- 188. |
6 |
Walsh J P , Wiberg P L , Alato R , et al. Source-to-sink research:eco-nomy of the earth's surface and its strata[J]. Earth-Science Reviews, 2016, 153, 1- 6.
doi: 10.1016/j.earscirev.2015.11.010 |
7 | 李铁刚, 曹奇原, 李安春. 从源到汇:大陆边缘的沉积作用[J]. 地球科学进展, 2003, 18 (5): 713- 721. |
Li Tiegang , Cao Qiyuan , Li Anchun . Source to sink:sedimentation in the continental margins[J]. Advance in Earth Sciences, 2003, 18 (5): 713- 721. | |
8 | 朱红涛, 徐长贵, 朱筱敏, 等. 陆相盆地源-汇系统要素耦合研究进展[J]. 地球科学, 2017, 42 (11): 1851- 1870. |
Zhu Hongtao , Xu Changgui , Zhu Xiaomin , et al. Advances of the source-to-sink units and coupling model research in continental basin[J]. Earth Science, 2017, 42 (11): 1851- 1870. | |
9 |
Zhu H T , Steel R , Zhu X M , et al. Introduction to special section:Source-to-sink system analysis of petroliferous and other sedimentary basins[J]. Interpretation, 5 (4): STi- STii.
doi: 10.1190/INT-2017-0907-SPSEINTRO.1 |
10 |
Helland-Hansen W , Sømme T O , Martinsen O J , et al. Deciphering earth's natural hourglasses:perspectives on source-to-sink analysis[J]. Journal of Sedimentary Research, 2016, 86 (9): 1008- 1033.
doi: 10.2110/jsr.2016.56 |
11 | 林畅松, 夏庆龙, 施和生, 等. 地貌演化、源-汇过程与盆地分析[J]. 地学前缘, 2015, 22 (1): 9- 20. |
Lin Changsong , Xia Qinglong , Shi Hesheng , et al. Geomorphological evolution, source to sink system and basin analysis[J]. Earth Science Frontier, 2015, 22 (1): 9- 20. | |
12 | 杨江海, 马严. 源-汇沉积过程的深时古气候意义[J]. 地球科学, 2017, 42 (11): 1910- 1921. |
Yang Jianghai , Ma Yan . Paleoclimate perspectives of Source-to-Sink sedimentary processes[J]. Earth Science, 2017, 42 (11): 1910- 1921. | |
13 |
Xu J , Snedden J W , Galloway W E , et al. Channel-belt scaling relationship and application to early Miocene source-to-sink systems in the Gulf of Mexico basin[J]. Geosphere, 2017, 13 (1): 1- 22.
doi: 10.1130/GES01353.1 |
14 |
Hinderer M . From gullies to mountain belts:a review of sediment budgets at various scales[J]. Sedimentary Geology, 2012, 280, 21- 59.
doi: 10.1016/j.sedgeo.2012.03.009 |
15 |
Sømme T O , Helland-Hansen W , Martinsen O J , et al. Predicting morphological relationships and sediment partitioning in source-to-sink systems[J]. Basin Research, 2009, 21, 361- 387.
doi: 10.1111/j.1365-2117.2009.00397.x |
16 |
Mulder T , Syvitski J P M . Climatic and morphologic relationships of rivers:implications of sea-level fluctuations on river loads[J]. Journal of Geology, 1996, 104 (5): 509- 523.
doi: 10.1086/629849 |
17 |
Twidale C R . River patterns and their meaning[J]. Earth-Science Reviews, 2004, 67 (3-4): 159- 218.
doi: 10.1016/j.earscirev.2004.03.001 |
18 | Scholz C A , Rosendahl B R , Scott D L . Development of coarse-grained facies in lacustrine rift basins:Examples from East Africa[J]. Geology, 1990, 18 (2): 140. |
19 |
Gawthorpe R L , Leeder M R . Tectono-sedimentary evolution of active extensional basins[J]. Basin Research, 2000, 12 (3-4): 195- 218.
doi: 10.1111/j.1365-2117.2000.00121.x |
20 |
Pechlivanidou S , Cowie P A , Hannisdal B , et al. Source-to-sink analysis in an active extensional setting:Holocene erosion and deposition in the Sperchios rift, central Greece[J]. Basin Research, 2018, 30, 522- 543.
doi: 10.1111/bre.12263 |
21 | 杨萍. 青海湖的形成与环境演化[J]. 青海环境, 2011, 21 (2): 59- 61. |
Yang Ping . The formation and environmental evolution of Qinghai Lake[J]. Environment in Qinghai, 2011, 21 (2): 59- 61. | |
22 |
Leeder M R , Jackson J A . The interaction between normal faulting and drainage in active extensional basins, with examples from the western United States and central Greece[J]. Basin Research, 1993, 5 (2): 79- 102.
doi: 10.1111/j.1365-2117.1993.tb00059.x |
23 |
Pechlivanidou S , Cowie P A , Duclaux G , et al. Tipping the balance:Shifts in sediment production in an active rifting setting[J]. Geology, 2019, 47 (3): 259- 262.
doi: 10.1130/G45589.1 |
24 |
Blum M , Martin J , Millken K , et al. Paleovalley systems:insights from quaternary analogs and experiments[J]. Earth-Science Reviews, 2013, 116, 128- 169.
doi: 10.1016/j.earscirev.2012.09.003 |
25 |
Scholz C A , Johnson T C , Cohen A S , et al. East African megadroughts between 135 and 75 thousand years ago and bearing on early-modern human origins[J]. Proceedings of the National Academy of Sciences, 2007, 104 (42): 16416- 16421.
doi: 10.1073/pnas.0703874104 |
26 |
Lyons R P , Scholz , C A , Buoniconti M R , et al. Late Quaternary stratigraphic analysis of the Lake Malawi Rift, East Africa:an integration of drill-core and seismic-reflection data[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 303 (1-4): 20- 37.
doi: 10.1016/j.palaeo.2009.04.014 |
27 | 崔龙涛, 张倩萍. 坡折带-物源耦合控砂模式在湖相盆地储层预测中的探讨——以松辽盆地西斜坡地区白垩系储层为例[J]. 石油地质与工程, 2018, 32 (4): 6- 11. |
Cui Longtao , Zhang Qianping . Discussion on reservoir prediction controlled by slope break belt-source coupling sand bodies in lacustrine basin[J]. Petroleum Geology & Engineering, 2018, 32 (4): 6- 11. | |
28 | 陈林, 张曰静, 商丰凯, 等. 不同物源体系沉积结合部砂体展布范围精细识别[J]. 石油地质与工程, 2019, 33 (2): 6- 10. |
Chen Lin , Zhang Yuejing , Shang Fengkai , et al. Fine identification of sedimentary boundary of different provenance systems[J]. Petroleum Geology & Engineering, 2019, 33 (2): 6- 10. | |
29 | Liu Q H , Zhu X M , Yang Y , et al. Sequence stratigraphy and seismic geomorphology application of facies architecture and sediment-dispersal patterns analysis in the third member of Eocene Shahejie Formation, slope system of Zhanhua Sag, Bohai Bay Basin, China[J]. Marine & Petroleum Geology, 2016, 78, 766- 784. |
30 | 徐长贵, 杜晓峰, 徐伟, 等. 沉积盆地"源-汇"系统研究新进展[J]. 石油与天然气地质, 2017, 38 (1): 1- 11. |
Xu Changgui , Du Xiaofeng , Xu Wei , et al. New advances of the "source-to-sink" system research in sedimentary basin[J]. Oil & Gas Geology, 2017, 38 (1): 1- 11. | |
31 | 李勇, 黎兵, 周荣军, 等. 剥蚀-沉积体系中剥蚀量与沉积通量的定量对比研究——以岷江流域为例[J]. 地质学报, 2007, 81 (3): 332- 343. |
Li Yong , Li Bing , Zhou Rongjun , et al. The quantitative correlation between denudation volume and sedimentary flux in the denudation-accumulation system:examples from Minjiang River drainage system[J]. Acta Geologica Sinica, 2007, 81 (3): 332- 343. | |
32 |
Guillocheau F , Rouby D , Robin C , et al. Quantification and causes of the terrigenous sediment budget at the scale of a continental margin:a new method applied to the Namibia-South Africa margin[J]. Basin Research, 2012, 24 (1): 3- 30.
doi: 10.1111/j.1365-2117.2011.00511.x |
33 | Michael N.Functioning of an ancient routing system, the Escanilla Formation, South Central Pyrenees[D].London: Imperial College London, 2013. |
34 |
Sadler P M . Sediment accumulation rates and the completeness of stratigraphic sections[J]. The Journal of Geology, 1981, 89 (5): 569- 584.
doi: 10.1086/628623 |
35 | Schumer R , Jerolmack D J . Real and apparent changes in sediment deposition rates through time[J]. Journal of Geophysical Research:Earth Surface, 2009, 114 (F3): F00A06. |
36 | Allen P A . Sediment routing systems:The fate of sediment from source to sink[M]. Cambridge Cambridge University Press, 2017. |
37 | Watkins S E , Whittaker A C , Bell R E , et al. Are landscapes buffered to high-frequency climate change? A comparison of sediment fluxes and depositional volumes in the Corinth Rift, central Greece, over the past 130 k.y[J]. Geological Society of America Bulletin, 2019, 132 (3/4): 372- 388. |
38 |
Nyberg B , Helland-Hansen W , Gawthorpe R L , et al. Revisiting morphological relationships of modern source-to-sink segments as a first-order approach to scale ancient sedimentary systems[J]. Sedimentary Geology, 2018, 373, 111- 133.
doi: 10.1016/j.sedgeo.2018.06.007 |
39 | 马收先, 孟庆任, 曲永强. 轻矿物物源分析研究进展[J]. 岩石学报, 2014, 30 (2): 597- 608. |
Ma Shouxian , Meng Qingren , Qu Yongqiang . Development on provenance analysis of light minerals[J]. Acta Petrologica Sinica, 2014, 30 (2): 597- 608. | |
40 |
Xu J , Snedden J W , Stockli D F , Fulthorpe D F , et al. Early Miocene continental-scale sediment supply to the Gulf of Mexico basin based on detrital zircon analysis[J]. Geological Society of America Bulletin, 2017, 129 (1-2): 3- 22.
doi: 10.1130/B31465.1 |
41 | Sharman G R , Hubbard S M , Covault J A , et al. Sediment routing evolution in the North Alpine Foreland Basin, Austria:interplay of transverse and longitudinal sediment dispersal[J]. Basin Research, 2017, 30 (3): 426- 447. |
42 | 郭佩, 刘池洋, 王建强, 等. 碎屑锆石年代学在沉积物源研究中的应用及存在问题[J]. 沉积学报, 2017, 35 (1): 46- 56. |
Guo Pei , Liu Chiyang , Wang Jianqiang , et al. Consideration on the application of detrital-zircon geochronology to sedimentary provenance analysis[J]. Acta Sedimentological Sinica, 2017, 35 (1): 46- 56. | |
43 |
Markwitz V , Kirkland C . Source to sink zircon grain shape:Constraints on selective preservation and significance for Western Australian Proterozoic basin provenance[J]. Geoscience Frontiers, 2018, 9, 415- 430.
doi: 10.1016/j.gsf.2017.04.004 |
44 |
Saylor J E , Sundell K E . Quantifying comparison of large detrital geochronology data sets[J]. Geosphere, 2016, 12 (1): 203- 220.
doi: 10.1130/GES01237.1 |
45 |
Sharman G R , Sharman J P , Sylvester Z . detritalPy:A Python-based Toolset for Visualizing and Analyzing Detrital Geo-Thermochronologic Data[J]. The Depositional Record, 2018, 4, 202- 215.
doi: 10.1002/dep2.45 |
46 |
Tyrell S , Haughton P D W , Daly J S . Drainage reorganization during breakup of Pangea revealed by in-situ Pb isotopic analysis of detrital K-feldspar[J]. Geology, 2007, 35 (11): 971- 974.
doi: 10.1130/G4123A.1 |
47 | Zhang Z J , Tyrrell S , Li C A , et al. Pb isotope compositions of detrital K-feldspar grains in the upper-middle Yangtze River system:Implications for sediment provenance and drainage evolution[J]. Geoche-mistry Geophysics Geosystems, 2015, 15 (7): 2765- 2779. |
48 |
Jinnah Z A , Roberts E M , Deino A L , et al. New 40Ar- 39Ar and detrital zircon U-Pb ages for the Upper Cretaceous Wahweap and Kaiparowits Formations on the Kaiparowits Plateau, Utah:implications for regional correlation, provenance, and biostratigraphy[J]. Cretaceous Research, 2009, 30 (2): 287- 299.
doi: 10.1016/j.cretres.2008.07.012 |
49 |
Liu Z S , Shi H S , Zhu J Z , et al. Detrital K-feldspar 40Ar/39Ar ages:source constraints of the Lower Miocene sandstones in the Pearl River Mouth Basin, South China Sea[J]. Acta Geologica Sinica (English Edition), 2012, 86 (2): 383- 392.
doi: 10.1111/j.1755-6724.2012.00667.x |
50 | 喻顺, 陈文, 孙敬博, 等. 库车盆地白垩系碎屑白云母物源区示踪与构造意义[J]. 地质学报, 2016, 90 (8): 1874- 1885. |
Yu Shun , Chen Wen , Sun Jingbo , et al. Provenance tracing of Cretaceous Detrital Muscovite in the Kuqa Basin and its tectonic significance[J]. Acta Geologica Sinica, 2016, 90 (8): 1874- 1885. | |
51 | Hietpa J , Samson S , Moecher D . A direct comparison of the ages of detrital monazite versus detrital zircon in Appalachian foreland basin sandstones:Searching for the record of Phanerozoic orogenic events[J]. Earth & Planetary Science Letters, 2011, 310 (3-4): 488- 497. |
52 | 简星, 关平, 张巍. 碎屑金红石:沉积物源的一种指针[J]. 地球科学进展, 2012, 27 (8): 828- 846. |
Jian Xing , Guan Ping , Zhang Wei . Detrital Rutile:a sediment provenance indicator[J]. Advances in Earth Science, 2012, 27 (8): 828- 846. | |
53 |
Tan M X , Zhu X M , Liu W , et al. Sediment routing systems in the second member of the Eocene Shahejie Formation in the Liaoxi Sag, offshore Bohai Bay Basin:A synthesis from tectono-sedimentary and detrital zircon geochronological constraints[J]. Marine and Petro-leum Geology, 2018, 94, 95- 113.
doi: 10.1016/j.marpetgeo.2018.04.003 |
54 | 蔡长娥.沉积盆地碎屑锆石低温热年代学研究[D].北京:中国石油大学(北京), 2017. |
Cai C E.Detrital zircon low-temperaturethermochronology in sedimentary basin[D].Beijing: China University of Petroleum (Beijing), 2017. | |
55 | Xu J , Stockli D F , Snedden J W . Enhanced provenance interpretation using combined U-Pb and (U-Th)/He double dating of detrital zircon grains from lower Miocene strata, proximal Gulf of Mexico Basin, North America[J]. Earth & Planetary Science Letters, 2017, 475, 44- 57. |
56 |
Hooke R L B . Steady-state relationships on arid-region alluvial fans in closed basins[J]. American Journal of Science, 1968, 266 (8): 609- 629.
doi: 10.2475/ajs.266.8.609 |
57 |
Bull W B . The alluvial-fan environment[J]. Progress in Physical Geography, 1977, 1 (2): 222- 270.
doi: 10.1177/030913337700100202 |
58 | Schumm S A, Winskley B R.1994.The character of large alluvial rivers[M]//Schumm S A, Winkley B R.The Variability of Large Alluvial Rivers.New York: American Society of Civil Engineers, 1994: 1-9. |
59 |
Davidson S K , North C P . Geomorphological regional curves for prediction of drainage area and screening modern analogues for rivers in the rock record[J]. Journal of Sedimentary Research, 2009, 79 (10): 773- 792.
doi: 10.2110/jsr.2009.080 |
60 |
Hovius N . Regular spacing of drainage outlets from linear mountain belts[J]. Basin Research, 1996, 8 (1): 29- 44.
doi: 10.1111/j.1365-2117.1996.tb00113.x |
61 |
Talling P J , Stewart M D , Stark C P , et al. Regular spacing of drainage outlets from linear fault blocks[J]. Basin Research, 1997, 9 (4): 275- 302.
doi: 10.1046/j.1365-2117.1997.00048.x |
62 |
Walcott R C , Summerfield M A . Universality and variability in basin outlet spacing:implications for the two-dimensional form of drainage basins[J]. Basin Research, 2009, 21 (2): 147- 155.
doi: 10.1111/j.1365-2117.2008.00379.x |
63 |
Sømme T O , Jackson C A L . Source-to-sink analysis of ancient sedimentary systems using a subsurface case study from the Møre-Trøndelag area of southern Norway:Part 2, sediment dispersal and forcing mechanisms[J]. Basin Research, 2013, 25, 512- 531.
doi: 10.1111/bre.12014 |
64 |
Sømme T O , Martinsen O J , Thurmond J B . Reconstructing morphological and depositional characteristics in subsurface sedimentary systems:an example from the Maastrichtian-Danian Ormen Lange system, Møre Basin, Norwegian Sea[J]. AAPG Bulletin, 2009, 93 (10): 1347- 1377.
doi: 10.1306/06010909038 |
65 |
Snedden J W , Galloway W E , Milliken K T , et al. Validation of empirical source-to-sink scaling relationships in a continental-scale system:The Gulf of Mexico basin Cenozoic record[J]. Geosphere, 2018, 14 (2): 768- 784.
doi: 10.1130/GES01452.1 |
66 |
Covault J A , Romans B W , Graham S A , et al. Terrestrial source to deep-sea sink sediment budgets at high and low sea levels:Insights from tectonically active Southern California[J]. Geology, 2011, 39 (7): 619- 622.
doi: 10.1130/G31801.1 |
67 |
Mason C , Romans B . Climate-driven unsteady denudation and sediment flux in a high-relief unglaciated catchment-fan using 26Al and 10Be:Panamint Valley, California[J]. Earth and Planetary Science Letters, 2018, 492, 130- 143.
doi: 10.1016/j.epsl.2018.03.056 |
68 |
Babault J , Viaplana-Muzas M , Legrand X , et al. Source-to-sink constraints on tectonic and sedimentary evolution of the western Central Range and Cenderawasih Bay (Indonesia)[J]. Journal of Asian Earth Sciences, 2018, 156, 265- 287.
doi: 10.1016/j.jseaes.2018.02.004 |
69 |
Brewer C J , Hampson G J , Whittaker A C . Comparison of methods to estimate sediment flux in ancient sediment routing systems[J]. Earth-Science Reviews, 2020, 207, 103217.
doi: 10.1016/j.earscirev.2020.103217 |
70 |
Holbrook J , Wanas H . A fulcrum approach to assessing source-to-sink mass balance using channel paleohydrologic parameters derivable from common fluvial data sets with an example from the Cretaceous of Egypt[J]. Journal of Sedimentary Research, 2014, 84 (5): 349- 372.
doi: 10.2110/jsr.2014.29 |
71 |
Lin W , Bhattacharya J P . Estimation of source-to-sink mass balance by a fulcrum approach using channel paleohydrologic parameters of the Cretaceous Dunvegan Formation, Canada[J]. Journal of Sedimentary Research, 2017, 87 (1): 97- 116.
doi: 10.2110/jsr.2017.1 |
72 |
Sharma S , Bhattacharya J P , Richards B . Source-to-sink sediment budget analysis of the Cretaceous Ferron Sandstone, Utah, USA, using the fulcrum approach[J]. Journal of Sedimentary Research, 2017, 87 (6): 594- 608.
doi: 10.2110/jsr.2017.23 |
73 |
Syvitski J PM , Milliman J D . Geology, geography, and humans battle for dominance over the delivery of fluvial sediment to the coastal ocean[J]. Journal of Geology, 2007, 115, 1- 19.
doi: 10.1086/509246 |
74 |
Sømme T O , Piper D J W , Deptuck M E , et al. Linking onshore-offshore sediment dispersal in the Golo Source-to-Sink System (Corsica, France) During the Late Quaternary[J]. Journal of Sedimentary Research, 2011, 81 (2): 118- 137.
doi: 10.2110/jsr.2011.11 |
75 |
Zhang J Y , Covault J , Pyrcz M , et al. Quantifying sediment supply to continental margins:Application to the Paleogene Wilcox Group, Gulf of Mexico[J]. AAPG Bulletin, 2018, 102 (9): 1685- 1702.
doi: 10.1306/01081817308 |
76 | Martinsen O J, Sømme T O, Thurmond J B, et al.Source-to-sink systems on passive margins: theory and practice with an example from the Norwegian continental margin[C]//Geological Society, London, Petroleum Geology Conference series.Geological Society of London, 2010, 7(1): 913-920. |
77 |
Zhu X M , Li S l , Liu Q H , et al. Source to sink studies between the Shaleitian uplift and surrounding sags:Perspectives on the importance of hinterland relief and catchment area for sediment budget, Western Bohai Bay Basin, China[J]. Interpretation, 2017, 5 (4): 65- 84.
doi: 10.1190/INT-2017-0027.1 |
78 |
Ding X S , Salles T , Flament N , et al. Quantitative stratigraphic stratigraphic analysis in a source-to-sink numerical framework[J]. Geoscientific Model Development, 2019, 12 (6): 2571- 2585.
doi: 10.5194/gmd-12-2571-2019 |
79 | Salles T , Duclaux G . Combined hillslope diffusion and sediment transport simulation applied to landscape dynamics modelling[J]. Earth Surface Processes & Landforms, 2015, 40 (6): 823- 839. |
80 |
Tristan S , Ding X S , Gilles B , et al. pyBadlands:A framework to simulate sediment transport, landscape dynamics and basin stratigraphic evolution through space and time[J]. Plos One, 2018, 13 (4): e0195557.
doi: 10.1371/journal.pone.0195557 |
81 |
Clevie Q , De Boer P L , Wachter M . Numerical modelling of drainage basin evolution and three-dimensional alluvial fan stratigraphy[J]. Sedimentary Geology, 2003, 163, 85- 110.
doi: 10.1016/S0037-0738(03)00174-X |
82 | Gazzetti, E.Autogenic signals in an experimental source-to-sink system[D].Minnesota: University of Minnesota, 2015. |
83 |
Pettinga L , Jobe Z , Shumaker L , et al. Morphometric scaling relationships in submarine channel-lobe systems[J]. Geology, 2018, 46 (9): 819- 822.
doi: 10.1130/G45142.1 |
[1] | Dengfa He, Desheng Li, Xiaoguang Tong, Xiaozhi Wu. Integrated 3D hydrocarbon exploration in sedimentary basins of China [J]. Oil & Gas Geology, 2021, 42(2): 265-284. |
[2] | Lin Changsong. Sedimentary dynamics of basin: Status and trend [J]. Oil & Gas Geology, 2019, 40(4): 685-700. |
[3] | Chen Zhuoheng, Li Maowen, Jiang Chunqing, Qian Menhui. Shale oil resource potential and its mobility assessment: A case study of Upper Devonian Duvernay shale in Western Canada Sedimentary Basin [J]. Oil & Gas Geology, 2019, 40(3): 459-468. |
[4] | Xu Changgui, Du Xiaofeng, Xu Wei, Zhao Meng. New advances of the “Source-to-Sink” system research in sedimentary basin [J]. Oil & Gas Geology, 2017, 38(1): 1-11. |
[5] | Wang Min, Guo Xiaobo, Xue Haitao, Lu Shuangfang, Fu Guang, Chen Yong. Assessment of natural gas diffusion loss from multiple source rocks—an example from shallow gas source rocks in the northern Songliao Basin [J]. Oil & Gas Geology, 2009, 30(2): 203-209. |
[6] | Yu Hezhong, Han Shouhua, Xie Jinlong, Guo Qingxin, Wu Jinyun. Types of original sedimentary basins and tectonic evolution on southeastern margin of North China plate [J]. Oil & Gas Geology, 2006, 27(2): 244-252. |
[7] | Zhao Zhongyuan. Post-Hercynian platforms in China and its geological significance [J]. Oil & Gas Geology, 2005, 26(1): 16-22. |
[8] | Wang Lianjin, Ye Jiaren. A COMMENT ON FORMING MECHANISM OF OVERPRESSURE IN SEDIMENTARY BASINS [J]. Oil & Gas Geology, 2001, 22(1): 17-20. |
[9] | Ren Zhanli. COMPARISON OF THERMAL EVOLUTION HISTORY IN SEDIMENTARY BASINS,NORTH CHINA [J]. Oil & Gas Geology, 2000, 21(1): 33-37. |
[10] | Liu Chiyang, Yang Xingke. THINKING FOR RESEARCHES AND OIL-GAS ASSESSMENT OF REFORMED BASINS [J]. Oil & Gas Geology, 2000, 21(1): 11-14. |
[11] | Liu Chiyang, Zhao Zhongyuan, Yang Xingke. STRONG ACTIVITY AND ACTIVE DEEP ACTION: TWO IMPORTANT FEATURES OF CHINESE SEDIMENTARY BASINS [J]. Oil & Gas Geology, 2000, 21(1): 1-6,23. |
[12] | Wei Yongpei, Chen Huixin. RECOVERING PLATE ON INITIAL THICKNESS OF CLASTIC ROCKS IN SEDIMENTARY BASINS: A quick and practical method [J]. Oil & Gas Geology, 1999, 20(1): 90-93. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||