Oil & Gas Geology ›› 2021, Vol. 42 ›› Issue (1): 173-185.doi: 10.11743/ogg20210115
• Petroleum Geology • Previous Articles Next Articles
Wei Dang1,2,3(), Jinchuan Zhang4, Fengqin Wang1,2, Pei Li4, Chang'an Shan1,2, Ruijing Wang1
Received:
2020-06-07
Online:
2021-02-28
Published:
2021-02-07
CLC Number:
Wei Dang, Jinchuan Zhang, Fengqin Wang, Pei Li, Chang'an Shan, Ruijing Wang. Thermodynamics and kinetics of water vapor adsorption onto shale: A case study of the Permian Shanxi Formation, Ordos Basin[J]. Oil & Gas Geology, 2021, 42(1): 173-185.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 2
Fitting parameters of DW, GAB and Dent models"
温度/℃ | DW模型 | GAB模型 | Dent模型 | |||||||||||||||
q1/(mg·g-1) | q2/(mg·g-1) | k1 | k2 | R2 | AICc | q0/(mg·g-1) | C | k | R2 | AICc | q0/(mg·g-1) | K | k | R2 | AICc | |||
20 | 6.79 | 10.84 | 10.43 | 0.56 | 0.997 | -2.47 | 7.99 | 13.94 | 0.63 | 0.997 | -11.09 | 7.99 | 8.83 | 0.63 | 0.997 | -11.09 | ||
30 | 7.15 | 10.31 | 10.04 | 0.55 | 0.998 | -7.67 | 7.96 | 14.98 | 0.61 | 0.998 | -16.24 | 7.96 | 9.11 | 0.61 | 0.998 | -16.24 | ||
40 | 4.75 | 26.59 | 13.47 | 0.33 | 0.998 | -11.29 | 7.91 | 12.04 | 0.57 | 0.998 | -15.99 | 7.91 | 6.88 | 0.57 | 0.998 | -15.99 |
Table 4
Fitting parameters of different adsorption kinetics models"
模型 | 拟合参数 | p/p0 | T/℃ | |||||
0.05 | 0.30 | 0.90 | 20 | 30 | 40 | |||
拟一阶动力学模型 | k1/min-1 | 0.24 | 0.12 | 0.07 | 0.13 | 0.06 | 0.08 | |
R2 | 0.992 | 0.974 | 0.968 | 0.974 | 0.945 | 0.971 | ||
AICc | -205.12 | -255.41 | -378.46 | -255.41 | -230.73 | -239.06 | ||
拟二阶动力学模型 | k2/(mg3·g-1·min-1) | 0.23 | 0.22 | 0.14 | 0.23 | 0.12 | 0.16 | |
q∞/(mg·g-1) | 2.31 | 1.16 | 1.13 | 1.16 | 1.15 | 1.11 | ||
R2 | 0.949 | 0.952 | 0.959 | 0.952 | 0.97 | 0.948 | ||
AICc | -150.96 | -228.82 | -353.51 | -228.81 | -257.78 | -215.83 | ||
双一阶动力学模型 | q1 | 0.63 | 0.60 | 0.58 | 0.61 | 0.55 | 0.51 | |
q2 | 0.37 | 0.40 | 0.42 | 0.39 | 0.45 | 0.49 | ||
k′/min-1 | 0.47 | 0.23 | 0.14 | 0.23 | 0.25 | 0.32 | ||
k″/min-1 | 0.02 | 0.05 | 0.06 | 0.06 | 0.03 | 0.06 | ||
R2 | 0.995 | 0.995 | 0.994 | 0.992 | 0.993 | 0.992 | ||
AICc | -209.66 | -292.44 | -466.61 | -292.44 | -324.83 | -288.78 | ||
单孔扩散模型 | (D/R2)/min-1 | 0.014 | 0.007 | 0.004 | 0.006 | 0.003 | 0.005 | |
R2 | 0.978 | 0.972 | 0.979 | 0.972 | 0.991 | 0.981 | ||
AICc | -174.95 | -251.49 | -394.77 | -251.49 | -303.86 | -254.21 |
1 | 李东晖, 聂海宽. 一种考虑气藏特征的页岩含气量计算方法——以四川盆地及其周缘焦页1井和彭页1井为例[J]. 石油与天然气地质, 2019, 40 (6): 1324- 1332. |
Li Donghui , Nie Haikuan . A new method to calculate shale gas content based on gas reservoir characterization-A case study of Wells JY 1 and PY 1 in Sichuan Basin and its surrounding areas[J]. Oil & Gas Geology, 2019, 40 (6): 1324- 1332. | |
2 | 胡文瑄, 姚素平, 陆现彩, 等. 典型陆相页岩油层系成岩过程中有机质演化对储集性的影响[J]. 石油与天然气地质, 2019, 40 (5): 947- 956. |
Hu Wenxuan , Yao Suping , Lu Xiancai , et al. Effects of organic matter evolution on oil reservoir property during diagenesis of typical continental shale sequences[J]. Oil & Gas Geology, 2019, 40 (5): 947- 956. | |
3 |
Schilthuis R J . Connate water in oil and gas sands[J]. Transactions of the AIME, 1938, 127 (1): 199- 214.
doi: 10.2118/938199-G |
4 | 柳广弟, 张厚福. 石油地质学[M]. 北京: 石油工业出版社, 2009. |
Liu Guangdi , Zhang Houfu . Petroluem Geology[M]. Beijing: Petroleum Industry Press, 2009. | |
5 | Curtis J B . Fractured shale-gas systems[J]. AAPG Bulletin, 2002, 86 (11): 1921- 1938. |
6 | 蒋裕强, 董大忠, 漆麟, 等. 页岩气储层的基本特征及其评价[J]. 天然气工业, 2010, 30 (10): 7- 12. |
Jiang Yuqiang , Dong Dazhong , Qi Lin , et al. Basic features and eval-uation of shale gas reservoirs[J]. Natural Gas Industry, 2010, 30 (10): 7- 12. | |
7 |
邹才能, 杨智, 朱如凯, 等. 中国非常规油气勘探开发与理论技术进展[J]. 地质学报, 2015, 89 (6): 979- 1007.
doi: 10.3969/j.issn.0001-5717.2015.06.001 |
Zou Caineng , Yang Zhi , Zhu Rukai ,et al. Progress in China's unconventional oil & gas exploration and development and theoretical technologies[J]. Acta Geologica Sinica, 2015, 89 (6): 979- 1007.
doi: 10.3969/j.issn.0001-5717.2015.06.001 |
|
8 | 刘洪林, 王红岩. 中国南方海相页岩超低含水饱和度特征及超压核心区选择指标[J]. 天然气工业, 2013, 33 (7): 140- 144. |
Liu Honglin , Wang Hongyan . Ultra-low water saturation characteristics and the identification of over-pressured play fairways of marine shales in south China[J]. Natural Gas Industry, 2013, 33 (7): 140- 144. | |
9 |
Tang X , Ripepi N , Valentine K A , et al. Water vapor sorption on Marcellus shale: measurement, modeling and thermodynamic analysis[J]. Fuel, 2017, 209, 606- 614.
doi: 10.1016/j.fuel.2017.07.062 |
10 |
Seemann T , Bertier P , Krooss B M , et al. Water vapour sorption on mudrocks[J]. Geological Society, London, Special Publications, 2017, 454 (1): 201- 233.
doi: 10.1144/SP454.8 |
11 |
Hao F , Zou H , Lu Y . Mechanisms of shale gas storage: Implications for shale gas exploration in China[J]. AAPG bulletin, 2013, 97 (8): 1325- 1346.
doi: 10.1306/02141312091 |
12 | 曾溅辉. 沉积盆地中地质流体运动与油气成藏[J]. 海相油气地质, 2005, 10 (1): 37- 42. |
Zeng Jianhui . Geofluids flow and hydrocarbon accumulation in sedimentary basin[J]. Marine Origin Petroleum Geology, 2005, 10 (1): 37- 42. | |
13 | 庞小婷, 陈国辉, 许晨曦, 等. 涪陵地区五峰组-龙马溪组页岩吸附-游离气定量评价及相互转化[J]. 石油与天然气地质, 2019, 40 (6): 1247- 1258. |
Pang Xiaoting , Chen Guohui , Xu Chenxi , et al. Quantitative evaluation of adsorbed and free gas and their mutual conversion in Wufeng-Longmaxi shale, Fuling area[J]. Oil & Gas Geology, 2019, 40 (6): 1247- 1258. | |
14 |
Wang F , Guan J , Feng W , et al. Evolution of overmature marine shale porosity and implication to the free gas volume[J]. Petroleum Exploration and Development, 2013, 40 (6): 819- 824.
doi: 10.1016/S1876-3804(13)60111-1 |
15 |
党伟, 张金川, 黄潇, 等. 陆相页岩含气性主控地质因素-以辽河西部凹陷沙河街组三段为例[J]. 石油学报, 2015, 36 (12): 1516- 1530.
doi: 10.7623/syxb201512006 |
Dang Wei , Zhang Jinchuan , Huang Xiao , et al. Main-controlling geological factors of gas-bearing property of continental shale gas: a case study of Member 3rd of Shahejie Formation in western Liaohe sag[J]. Acta Petrolei Sinica, 2015, 36 (12): 1516- 1530.
doi: 10.7623/syxb201512006 |
|
16 | 聂海宽, 何治亮, 刘光祥, 等. 中国页岩气勘探开发现状与优选方向[J]. 中国矿业大学学报, 2020, 49 (1): 13- 35. |
Nie Haikuan , He Zhiliang , Liu Guangxiang , et al. Status and direction of shale gas exploration and development in China[J]. Journal of China University of Mining & Technology, 2020, 49 (1): 13- 35. | |
17 |
Dang W , Zhang J C , Tang X , et al. Investigation of gas content of organic-rich shale: A case study from Lower Permian shale in southern North China Basin, central China[J]. Geoscience Frontiers, 2018, 9 (2): 559- 575.
doi: 10.1016/j.gsf.2017.05.009 |
18 |
Zhou Y , Sun W , Chu W , et al. Theoretical insight into the enhanced CH4 desorption via H2O adsorption on different rank coal surfaces[J]. Journal of energy chemistry, 2016, 25 (4): 677- 682.
doi: 10.1016/j.jechem.2016.04.011 |
19 |
Tan J , Weniger P , Krooss B , et al. Shale gas potential of the major marine shale formations in the Upper Yangtze Platform, South China, Part Ⅱ: Methane sorption capacity[J]. Fuel, 2014, 129, 204- 218.
doi: 10.1016/j.fuel.2014.03.064 |
20 |
Tang X , Zhang T , Zhang J , et al. Effects of pore fluids on methane sorption in the Lower Bakken Shales, Williston Basin, USA[J]. Fuel, 2020, 282, 118457.
doi: 10.1016/j.fuel.2020.118457 |
21 | Li P , Ma D , Zhang J , et al. Effect of wettability on adsorption and desorption of coalbed methane: A case study from low-rank coals in the southwestern Ordos Basin, China[J]. Industrial & Engineering Chemistry Research, 2018, 57 (35): 12003- 12015. |
22 | Li P , Zhang J , Rezaee R , et al. Effect of adsorbed moisture on the pore size distribution of marine-continental transitional shales: Insights from lithofacies differences and clay swelling[J]. Applied Clay Science, 2020, 105926. |
23 |
Ma L , Yu Q . Dynamic behaviors of methane adsorption on partially saturated shales[J]. Journal of Petroleum Science and Engineering, 2020, 190, 107071.
doi: 10.1016/j.petrol.2020.107071 |
24 | Shaoul J R , van Zelm L F , De Pater C . Damage mechanisms in unconventional-gas-well Stimulation-a new look at an old problem[J]. SPE Production & Operations, 2011, 26 (4): 388- 400. |
25 |
Dang W , Zhang J , Nie H , et al. Isotherms, thermodynamics and kine-tics of methane-shale adsorption pair under supercritical condition: Implications for understanding the nature of shale gas adsorption process[J]. Chemical Engineering Journal, 2020, 383, 123191.
doi: 10.1016/j.cej.2019.123191 |
26 |
Sang G , Liu S , Elsworth D . Water vapor sorption properties of Illinois shales under dynamic water vapor conditions: Experimentation and modeling[J]. Water Resources Research, 2019, 55 (8): 7212- 7228.
doi: 10.1029/2019WR024992 |
27 |
Zolfaghari A , Dehghanpour H , Holyk J . Water sorption behaviour of gas shales: I.Role of clays[J]. International Journal of Coal Geology, 2017, 179, 130- 138.
doi: 10.1016/j.coal.2017.05.008 |
28 | 冯东, 李相方, 李靖, 等. 黏土矿物吸附水蒸气特征及对孔隙分布的影响[J]. 中国石油大学学报(自然科学版), 2018, 42 (2): 116- 124. |
Feng Dong , Li Xiangfang , Li Jing , et al. Water adsorption isotherm and its effect on pore size distribution of clay minerals[J]. Journal of China University of Petroleum (Edition of Natural Science), 2018, 42 (2): 116- 124. | |
29 |
Wang T , Tian S , Li G , et al. Experimental study of water vapor adsorption behaviors on shale[J]. Fuel, 2019, 248, 168- 177.
doi: 10.1016/j.fuel.2019.03.029 |
30 |
Qiu H , Lv L , Pan B C , et al. Critical review in adsorption kinetic models[J]. Journal of Zhejiang University-Science A, 2009, 10 (5): 716- 724.
doi: 10.1631/jzus.A0820524 |
31 |
Duan S , Li G . Equilibrium and kinetics of water vapor adsorption on shale[J]. Journal of Energy Resources Technology, 2018, 140 (12): 122001- 122010.
doi: 10.1115/1.4040530 |
32 | Langmuir I . The adsorption of gases on plane surfaces of glass, mica and platinum[J]. Journal of Chemical Physics, 2015, 40 (12): 1361- 1403. |
33 |
Dubinin M M , Serpinsky V V . Isotherm equation for water vapor adsorption by microporous carbonaceous adsorbents[J]. Carbon, 1981, 19, 402- 403.
doi: 10.1016/0008-6223(81)90066-X |
34 | Dubinin M M , Serpinsky V V . Water vapour adsorption on microporous activated carbons[J]. Doklady Akademii Nauk SSSR., 1981, 285, 1151- 1157. |
35 |
D'Arcy R , Watt I . Analysis of sorption isotherms of non-homogeneous sorbents[J]. Transactions of the Faraday Society, 1970, 66, 1236- 1245.
doi: 10.1039/tf9706601236 |
36 |
Furmaniak S , Gauden P A , Terzyk A P , et al. Water adsorption on carbons-Critical review of the most popular analytical approaches[J]. Advances in Colloid and Interface Science, 2008, 137 (2): 82- 143.
doi: 10.1016/j.cis.2007.08.001 |
37 |
Brunauer S , Emmett P H , Teller E . Adsorption of gases in multimolecular layers[J]. Journal of the American Chemical Society, 1938, 60 (2): 309- 319.
doi: 10.1021/ja01269a023 |
38 |
Anderson R B . Modifications of the Brunauer, Emmett and Teller equation1[J]. Journal of the American Chemical Society, 1946, 68 (4): 686- 691.
doi: 10.1021/ja01208a049 |
39 | De Boer J H . The dynamical character of adsorption[M]. Oxford: Clarendon Press, 1953. |
40 | Guggenheim E A . Applications of statistical mechanics[M]. Oxford: Clarendon Press, 1966. |
41 | Lagergren S . Zurtheorie der sogenannten adsorption geloster stoffe, Kungliga Svenska Vetenskapsakademiens[J]. Handligar, 1898, 24, 1- 39. |
42 |
Ho Y S , McKay G . Pseudo-second order model for sorption processes[J]. Process Biochemistry, 1999, 34 (5): 451- 465.
doi: 10.1016/S0032-9592(98)00112-5 |
43 |
Wilczak A , Keinath T M . Kinetics of sorption and desorption of copper (Ⅱ) and lead (Ⅱ) on activated carbon[J]. Water Environment Research, 1993, 65 (3): 238- 244.
doi: 10.2175/WER.65.3.7 |
44 | Wheeler A . Reaction rates and selectivity in catalyst pores[J]. Advances in Catalysis, 1951, 3 (5): 433- 439. |
45 | Iglesias H A , Chirife J , Viollaz P . Thermodynamics of water vapour sorption by sugar beet root[J]. International Journal of Food Science & Technology, 1976, 11 (1): 91- 101. |
46 |
Sing K S . Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)[J]. Pure and Applied Chemistry, 1985, 57 (4): 603- 619.
doi: 10.1351/pac198557040603 |
47 |
汪政德, 张茂林, 梅海燕, 等. 毛细凝聚和吸附-脱附回路的物理化学解释[J]. 新疆石油地质, 2002, 23 (3): 233- 235.
doi: 10.3969/j.issn.1001-3873.2002.03.017 |
Wang Zhengde , Zhang Maolin , Mei Haiyan , et al. The physical chemistry explanation of the capillary condensation and the circuit of adsorption-desorption[J]. Xinjiang Petroleum Geology, 2002, 23 (3): 233- 235.
doi: 10.3969/j.issn.1001-3873.2002.03.017 |
|
48 |
Hueckel T . Reactive plasticity for clays during dehydration and rehydration.Part 1: concepts and options[J]. International Journal of Plasticity, 2002, 18 (3): 281- 312.
doi: 10.1016/S0749-6419(00)00099-1 |
49 | Saffron C M , Park J H , Dale B E , et al. Kinetics of contaminant desorption from soil: comparison of model formulations using the Akaike information criterion[J]. Environmental science & technology, 2006, 40 (24): 7662- 7667. |
50 |
Hurvich C M , Tsai C L . Regression and time series model selection in small samples[J]. Biometrika, 1989, 76 (2): 297- 307.
doi: 10.1093/biomet/76.2.297 |
51 |
Wan K , He Q , Miao Z , et al. Water desorption isotherms and net isosteric heat of desorption on lignite[J]. Fuel, 2016, 171, 101- 107.
doi: 10.1016/j.fuel.2015.12.054 |
[1] | Weitao WU, Yansong FENG, Shixiang FEI, Yifei WANG, Heyuan WU, Xudong YANG. Enrichment factors and play fairway mapping for tight gas in the 5th member of the Permian Shiqianfeng Formation, Shenmu gas field, Ordos Basin [J]. Oil & Gas Geology, 2024, 45(3): 739-751. |
[2] | Chenglin LIU, Zhengang DING, Liyong FAN, Rui KANG, Sijie HONG, Yuxin ZHU, Jianfa CHEN, Haidong WANG, Nuo XU. Geochemical characteristics and enrichment factors of helium-bearing natural gas in the Ordos Basin [J]. Oil & Gas Geology, 2024, 45(2): 384-392. |
[3] | Junyu WAN, Jianhui ZHU, Suping YAO, Yi ZHANG, Chuntang LI, Wei ZHANG, Haijian JIANG, Jie WANG. Geobiological evaluation of hydrocarbon-generating organisms and source rocks in the Ordovician Majiagou Formation, east-central Ordos Basin [J]. Oil & Gas Geology, 2024, 45(2): 393-405. |
[4] | Changbo ZHAI, Liangbiao LIN, Donghua YOU, Fengbin LIU, Siyu LIU. Sedimentary microfacies characteristics and organic matter enrichment pattern of the 1st member of the Middle Permian Maokou Formation, southwestern Sichuan Basin [J]. Oil & Gas Geology, 2024, 45(2): 440-456. |
[5] | LiHua YANG, ChiYang LIU, Lei HUANG, Yijun ZHOU, Yongtao LIU, Yang QIN. Discovery of suspected intrusive rock bodies in Gufengzhuang area, Ordos Basin and its geological significance [J]. Oil & Gas Geology, 2024, 45(1): 142-156. |
[6] | Liang SHI, Bojiang FAN, Zhonghou LI, Ziwei YU, Zijin LIN, Xinyang DAI. Migration differentiation of hydrocarbon components in the 7th member of the Triassic Yanchang Formation, central Ordos Basin [J]. Oil & Gas Geology, 2024, 45(1): 157-168. |
[7] | Jiangjun CAO, Jiping WANG, Daofeng ZHANG, Long WANG, Xiaotian LI, Ya LI, Yuanyuan ZHANG, Hui XIA, Zhanhai YU. Effects of diagenetic evolution on gas-bearing properties of deep tight sandstone reservoirs: A case study of reservoirs in the 1st member of the Permian Shanxi Formation in the Qingyang gas field, southwestern Ordos Basin [J]. Oil & Gas Geology, 2024, 45(1): 169-184. |
[8] | Zongquan HU, Ruyue WANG, Jing LU, Dongjun FENG, Yuejiao LIU, Baojian SHEN, Zhongbao LIU, Guanping WANG, Jianhua HE. Storage characteristic comparison of pores between lacustrine shales and their interbeds and differential evolutionary patterns [J]. Oil & Gas Geology, 2023, 44(6): 1393-1404. |
[9] | Chenglin LIU, Zhengang DING, Jianfa CHEN, Liyong FAN, Rui KANG, Haidong WANG, Sijie HONG, Anqi TIAN, Xueyong CHEN. Characteristics and helium-generating potential of helium source rocks in the Ordos Basin [J]. Oil & Gas Geology, 2023, 44(6): 1546-1554. |
[10] | Yong LI, Zhitong ZHU, Peng WU, Chenzhou SHEN, Jixian GAO. Pressure evolution of gas-bearing systems in the Upper Paleozoic tight reservoirs at the eastern margin of the Ordos Basin [J]. Oil & Gas Geology, 2023, 44(6): 1568-1581. |
[11] | Jianhui ZENG, Yaxiong ZHANG, Zaizhen ZHANG, Juncheng QIAO, Maoyun WANG, Dongxia CHEN, Jingli YAO, Jingchen DING, Liang XIONG, Yazhou LIU, Weibo ZHAO, Kebo REN. Complex gas-water contacts in tight sandstone gas reservoirs: Distribution pattern and dominant factors controlling their formation and distribution [J]. Oil & Gas Geology, 2023, 44(5): 1067-1083. |
[12] | Yueli LIANG, Xiaoming ZHAO, Xi ZHANG, Shuxin LI, Jiawang GE, Zhihong NIE, Tingshan ZHANG, Haihua ZHU. Orbital forced high-resolution sequence boundary identification of marine-continental transitional shale and its geological significance: A case in Shan 23 sub-member at the eastern margin of Ordos Basin [J]. Oil & Gas Geology, 2023, 44(5): 1231-1242. |
[13] | Han LI, Jinhua FU, Hancheng JI, Lei ZHANG, Yuwei SHE, Wei GUAN, Xianghui JING, Hongwei WANG, qian CAO, Gang LIU, Jiayi WEI. Bauxite series in the Upper Paleozoic weathering crusts in the southwestern Ordos Basin: Development and distribution of dominant reservoirs [J]. Oil & Gas Geology, 2023, 44(5): 1243-1255. |
[14] | Xiao LI, Peng GUO, Yanzhi HU, Shixiang LI, Weiwei YANG. Experiment and numerical simulation of hydraulic fracturing in lacustrine shale: Taking the Ordos Basin as an example [J]. Oil & Gas Geology, 2023, 44(4): 1009-1019. |
[15] | Bin BAI, Chaocheng DAI, Xiulin HOU, Liang YANG, Rui WANG, Lan WANG, Siwei Meng, Ruojing DONG, Yuxi LIU. Geological heterogeneity of shale sequence and evaluation of shale oil sweet spots in the Qingshankou Formation, Songliao Basin [J]. Oil & Gas Geology, 2023, 44(4): 846-856. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||