Oil & Gas Geology ›› 2021, Vol. 42 ›› Issue (1): 158-172.doi: 10.11743/ogg20210114
• Petroleum Geology • Previous Articles Next Articles
Jianghui Ding1,2(), Jinchuan Zhang3,4, Gang Shi5, Baojian Shen1,2, Xuan Tang3,4, Zhenheng Yang1,2, Xingqi Li3,4, Chuxiong Li1,2
Received:
2020-05-06
Online:
2021-02-28
Published:
2021-02-07
CLC Number:
Jianghui Ding, Jinchuan Zhang, Gang Shi, Baojian Shen, Xuan Tang, Zhenheng Yang, Xingqi Li, Chuxiong Li. Sedimentary environment and organic matter enrichment mechanisms of the Upper Permian Dalong Formation shale, southern Anhui Province, China[J]. Oil & Gas Geology, 2021, 42(1): 158-172.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
TOC and major element oxide contents of the Upper Permian Dalong Formation shale samples, southern Anhui Province"
样品编号 | 深度/m | TOC/% | 氧化物含量/% | CIA | 元素含量比 | ||||||||||||
SiO2 | Al2O3 | Fe2O3 | FeO | MgO | CaO | Na2O | K2O | MnO | TiO2 | P2O5 | P/Ti | Fe/Ti | (Fe+Mn)/Ti | ||||
DL-1 | 984.9 | 3.54 | 47.33 | 15.71 | 2.60 | 0.55 | 1.15 | 10.95 | 1.39 | 2.03 | 0.11 | 0.29 | 0.13 | 69.89 | 0.33 | 12.87 | 13.34 |
DL-2 | 983.8 | 6.45 | 54.58 | 8.87 | 1.93 | 0.58 | 1.13 | 11.71 | 0.92 | 1.47 | 0.06 | 0.27 | 0.29 | 65.75 | 0.80 | 11.29 | 11.58 |
DL-3 | 982.0 | 1.89 | 50.20 | 11.67 | 2.21 | 0.67 | 2.04 | 12.51 | 0.80 | 1.08 | 0.08 | 0.22 | 0.25 | 75.40 | 0.82 | 15.53 | 15.99 |
DL-4 | 981.0 | 2.33 | 68.03 | 10.08 | 3.85 | 0.86 | 1.57 | 3.32 | 0.83 | 1.59 | 0.09 | 0.31 | 0.10 | 69.42 | 0.23 | 18.09 | 18.45 |
DL-5 | 979.3 | 2.02 | 56.52 | 13.60 | 2.36 | 0.91 | 2.10 | 9.17 | 0.77 | 1.05 | 0.08 | 0.20 | 0.05 | 78.80 | 0.19 | 19.66 | 20.19 |
DL-6 | 977.7 | 3.16 | 52.01 | 12.38 | 2.71 | 0.88 | 1.96 | 11.56 | 0.94 | 1.28 | 0.07 | 0.25 | 0.10 | 73.38 | 0.28 | 16.94 | 17.27 |
DL-7 | 975.5 | 4.35 | 57.41 | 13.43 | 4.35 | 0.82 | 1.18 | 5.06 | 1.52 | 2.03 | 0.04 | 0.45 | 0.13 | 65.11 | 0.21 | 13.76 | 13.86 |
DL-8 | 973.7 | 3.05 | 48.35 | 14.81 | 3.87 | 0.77 | 1.33 | 12.53 | 1.15 | 1.13 | 0.07 | 0.28 | 0.58 | 74.74 | 1.51 | 19.62 | 19.93 |
DL-9 | 971.7 | 2.67 | 63.41 | 12.46 | 3.65 | 0.77 | 1.29 | 3.84 | 1.49 | 1.85 | 0.03 | 0.45 | 0.15 | 64.35 | 0.24 | 11.76 | 11.85 |
DL-10 | 970.5 | 4.56 | 55.69 | 13.38 | 3.74 | 0.91 | 1.41 | 6.85 | 1.32 | 1.93 | 0.03 | 0.40 | 0.10 | 67.54 | 0.19 | 13.96 | 14.05 |
DL-11 | 967.5 | 3.68 | 51.21 | 16.56 | 5.45 | 1.60 | 1.96 | 4.64 | 1.46 | 2.36 | 0.03 | 0.56 | 0.77 | 69.24 | 1.01 | 15.17 | 15.23 |
DL-12 | 966.8 | 2.59 | 56.05 | 19.02 | 5.92 | 2.08 | 1.57 | 0.59 | 0.94 | 2.95 | 0.02 | 0.61 | 0.12 | 77.48 | 0.14 | 15.77 | 15.81 |
DL-13 | 964.0 | 3.20 | 54.35 | 18.99 | 6.20 | 1.51 | 1.61 | 0.86 | 0.90 | 2.80 | 0.02 | 0.63 | 0.09 | 76.42 | 0.10 | 14.50 | 14.53 |
DL-14 | 961.5 | 1.42 | 36.18 | 10.42 | 6.74 | 4.53 | 4.95 | 15.69 | 1.03 | 1.73 | 0.09 | 0.36 | 0.10 | 66.45 | 0.20 | 38.58 | 38.90 |
DL-15 | 959.1 | 3.52 | 57.14 | 9.80 | 6.40 | 2.77 | 3.53 | 7.40 | 0.87 | 1.60 | 0.08 | 0.54 | 0.10 | 68.03 | 0.14 | 20.44 | 20.63 |
DL-16 | 957.2 | 6.10 | 43.83 | 13.31 | 5.70 | 2.26 | 2.04 | 10.36 | 1.29 | 2.09 | 0.07 | 0.50 | 0.12 | 67.17 | 0.18 | 19.08 | 19.25 |
DL-17 | 955.6 | 1.19 | 59.88 | 16.84 | 5.00 | 1.61 | 1.55 | 2.34 | 0.96 | 2.12 | 0.04 | 0.37 | 0.09 | 75.51 | 0.17 | 21.23 | 21.36 |
DL-18 | 953.5 | 2.05 | 58.90 | 18.45 | 5.01 | 1.37 | 1.36 | 0.89 | 0.71 | 2.70 | 0.02 | 0.39 | 0.09 | 77.87 | 0.17 | 19.44 | 19.50 |
DL-19 | 950.4 | 3.94 | 52.72 | 19.35 | 6.22 | 1.49 | 1.34 | 1.32 | 0.74 | 2.56 | 0.03 | 0.44 | 0.08 | 78.78 | 0.13 | 21.07 | 21.15 |
DL-20 | 948.4 | 2.61 | 57.02 | 19.66 | 5.20 | 2.22 | 1.61 | 0.43 | 0.81 | 2.96 | 0.02 | 0.49 | 0.07 | 79.25 | 0.10 | 18.11 | 18.17 |
DL-21 | 945.9 | 2.81 | 34.38 | 10.64 | 5.33 | 3.16 | 3.14 | 18.52 | 0.82 | 1.62 | 0.11 | 0.43 | 0.16 | 70.51 | 0.28 | 24.04 | 24.37 |
DL-22 | 943.6 | 2.94 | 53.01 | 12.40 | 3.59 | 1.70 | 1.69 | 9.75 | 1.21 | 1.92 | 0.05 | 0.36 | 0.12 | 67.18 | 0.23 | 17.61 | 17.78 |
DL-23 | 941.8 | 1.86 | 57.05 | 17.36 | 5.08 | 1.15 | 1.55 | 2.96 | 1.05 | 2.75 | 0.03 | 0.42 | 0.07 | 72.97 | 0.13 | 17.58 | 17.66 |
DL-24 | 940.1 | 2.04 | 58.09 | 16.20 | 5.37 | 1.69 | 1.69 | 2.56 | 1.15 | 2.66 | 0.04 | 0.41 | 0.09 | 70.86 | 0.16 | 20.47 | 20.59 |
DL-25 | 937.8 | 1.70 | 57.76 | 16.55 | 4.66 | 1.56 | 1.64 | 3.45 | 1.20 | 2.53 | 0.04 | 0.42 | 0.10 | 71.23 | 0.17 | 17.72 | 17.85 |
DL-26 | 936.1 | 4.90 | 50.22 | 12.74 | 4.36 | 1.43 | 1.45 | 9.71 | 2.44 | 1.74 | 0.06 | 0.29 | 0.16 | 56.25 | 0.41 | 24.35 | 24.61 |
DL-27 | 934.2 | 1.71 | 56.33 | 15.12 | 4.51 | 1.32 | 1.91 | 5.09 | 1.58 | 2.29 | 0.05 | 0.33 | 0.09 | 66.33 | 0.20 | 21.00 | 21.18 |
DL-28 | 932.5 | 2.18 | 55.31 | 13.65 | 4.65 | 1.22 | 1.76 | 6.58 | 1.58 | 2.21 | 0.05 | 0.32 | 0.11 | 64.27 | 0.24 | 21.69 | 21.87 |
DL-29 | 929.5 | 2.89 | 61.97 | 10.82 | 3.77 | 1.22 | 1.22 | 6.28 | 1.17 | 1.87 | 0.03 | 0.22 | 0.08 | 64.82 | 0.27 | 26.94 | 27.10 |
DL-30 | 928.6 | 1.50 | 59.47 | 13.79 | 4.67 | 1.07 | 1.43 | 5.06 | 1.10 | 2.32 | 0.03 | 0.34 | 0.06 | 69.23 | 0.13 | 19.99 | 20.10 |
DL-31 | 920.7 | 1.18 | 60.95 | 15.51 | 4.66 | 2.28 | 1.61 | 1.87 | 1.02 | 2.96 | 0.02 | 0.46 | 0.09 | 70.28 | 0.14 | 18.32 | 18.39 |
DL-32 | 918.4 | 1.80 | 62.10 | 13.45 | 4.10 | 2.01 | 1.37 | 3.33 | 1.19 | 2.62 | 0.02 | 0.38 | 0.11 | 66.58 | 0.20 | 19.29 | 19.37 |
DL-33 | 916.7 | 1.24 | 54.33 | 10.92 | 3.28 | 1.84 | 1.33 | 12.16 | 0.95 | 2.09 | 0.06 | 0.28 | 0.09 | 67.03 | 0.25 | 22.59 | 22.87 |
平均值 | 2.82 | 54.60 | 14.18 | 4.46 | 1.54 | 1.77 | 6.65 | 1.13 | 2.09 | 0.05 | 0.38 | 0.15 | 70.25 | 0.30 | 19.04 | 19.24 |
Table 2
Trace element contents and several calculated parameters of the Upper Permian Dalong Formation shale samples in southern Anhui Province"
样品编号 | 微量元素含量/10-6 | 计算参数 | ||||||||||||||
V | Cr | Co | Ni | Mo | Th | U | U/Th | V/Cr | Ni/Co | EFU | EFMo | ΣREE | (La/Yb)N | δCe | ||
DL-1 | 444.0 | 69.0 | 10.6 | 91.4 | 26.5 | 11.3 | 13.9 | 1.23 | 6.43 | 8.62 | 3.97 | 10.99 | 151.12 | 1.18 | 0.87 | |
DL-2 | 384.0 | 75.0 | 6.8 | 74.6 | 60.8 | 10.2 | 18.7 | 1.83 | 5.12 | 10.92 | 9.47 | 44.65 | 114.33 | 0.76 | 0.75 | |
DL-3 | 306.0 | 61.0 | 6.2 | 45.9 | 4.8 | 6.1 | 8.0 | 1.31 | 5.02 | 7.36 | 3.09 | 2.67 | 87.24 | 1.01 | 0.70 | |
DL-4 | 334.0 | 76.0 | 7.8 | 62.7 | 8.7 | 9.5 | 14.1 | 1.49 | 4.39 | 8.08 | 6.30 | 5.60 | 222.55 | 1.38 | 0.85 | |
DL-5 | 404.0 | 90.0 | 6.2 | 43.7 | 10.0 | 7.6 | 16.6 | 2.18 | 4.49 | 7.07 | 5.48 | 4.79 | 89.71 | 1.06 | 0.86 | |
DL-6 | 379.0 | 68.0 | 7.1 | 55.3 | 33.5 | 8.9 | 16.3 | 1.84 | 5.57 | 7.80 | 5.92 | 17.63 | 89.33 | 1.02 | 0.83 | |
DL-7 | 491.0 | 94.0 | 11.9 | 108.0 | 35.9 | 12.9 | 13.9 | 1.08 | 5.22 | 9.08 | 4.65 | 17.41 | 131.72 | 1.11 | 0.85 | |
DL-8 | 525.0 | 114.0 | 9.2 | 68.0 | 39.2 | 7.4 | 14.0 | 1.88 | 4.61 | 7.39 | 4.25 | 17.24 | 150.25 | 0.76 | 0.78 | |
DL-9 | 463.0 | 92.0 | 9.5 | 69.2 | 18.1 | 15.8 | 18.1 | 1.14 | 5.03 | 7.28 | 6.52 | 9.46 | 182.88 | 0.93 | 0.86 | |
DL-10 | 528.0 | 103.0 | 11.3 | 87.3 | 32.9 | 13.6 | 20.7 | 1.52 | 5.13 | 7.73 | 6.96 | 16.02 | 176.88 | 1.18 | 0.86 | |
DL-11 | 447.0 | 98.0 | 13.8 | 107.3 | 33.6 | 14.5 | 31.4 | 2.17 | 4.56 | 7.78 | 8.53 | 13.22 | 288.94 | 1.07 | 0.87 | |
DL-12 | 643.0 | 139.0 | 12.3 | 95.3 | 13.0 | 17.5 | 17.2 | 0.98 | 4.63 | 7.75 | 4.06 | 4.45 | 173.06 | 1.20 | 0.86 | |
DL-13 | 616.0 | 125.0 | 10.4 | 80.9 | 24.4 | 17.4 | 21.6 | 1.24 | 4.93 | 7.78 | 5.12 | 8.37 | 170.82 | 1.07 | 0.87 | |
DL-14 | 337.0 | 63.0 | 8.1 | 64.4 | 16.5 | 10.2 | 14.8 | 1.45 | 5.35 | 7.95 | 6.37 | 10.31 | 108.17 | 0.89 | 0.83 | |
DL-15 | 355.0 | 85.0 | 8.6 | 64.4 | 8.7 | 13.2 | 15.5 | 1.18 | 4.18 | 7.51 | 7.12 | 5.76 | 128.39 | 0.96 | 0.83 | |
DL-16 | 498.0 | 105.0 | 14.5 | 110.0 | 51.8 | 13.0 | 26.7 | 2.05 | 4.74 | 7.59 | 9.02 | 25.35 | 149.00 | 0.76 | 0.83 | |
DL-17 | 557.0 | 123.0 | 6.5 | 41.4 | 15.8 | 18.2 | 18.8 | 1.03 | 4.53 | 6.37 | 5.01 | 6.11 | 202.41 | 1.32 | 0.88 | |
DL-18 | 512.0 | 117.0 | 8.6 | 68.6 | 13.3 | 18.3 | 27.3 | 1.49 | 4.38 | 7.98 | 6.64 | 4.70 | 192.93 | 0.98 | 0.85 | |
DL-19 | 715.0 | 135.0 | 11.4 | 111.0 | 36.1 | 19.6 | 21.9 | 1.12 | 5.30 | 9.74 | 5.09 | 12.15 | 201.41 | 1.21 | 0.88 | |
DL-20 | 485.0 | 94.0 | 9.6 | 70.0 | 3.5 | 17.4 | 25.6 | 1.47 | 5.16 | 7.29 | 5.86 | 1.17 | 174.30 | 1.25 | 0.95 | |
DL-21 | 281.0 | 65.0 | 7.3 | 53.5 | 4.2 | 11.0 | 17.5 | 1.59 | 4.32 | 7.33 | 7.40 | 2.57 | 164.77 | 0.80 | 0.84 | |
DL-22 | 290.0 | 155.0 | 7.6 | 55.2 | 10.8 | 11.0 | 16.8 | 1.53 | 1.87 | 7.26 | 6.09 | 5.67 | 116.52 | 1.14 | 0.85 | |
DL-23 | 244.0 | 135.0 | 17.1 | 66.1 | 15.7 | 17.4 | 7.1 | 0.41 | 1.81 | 3.87 | 1.84 | 5.89 | 167.34 | 1.06 | 0.88 | |
DL-24 | 255.0 | 133.0 | 16.2 | 60.5 | 29.0 | 16.1 | 7.8 | 0.48 | 1.92 | 3.73 | 2.16 | 11.66 | 161.22 | 1.12 | 0.88 | |
DL-25 | 243.0 | 174.0 | 15.0 | 61.4 | 10.7 | 16.6 | 5.8 | 0.35 | 1.40 | 4.09 | 1.57 | 4.21 | 171.14 | 1.21 | 0.88 | |
DL-26 | 219.0 | 208.0 | 13.3 | 99.1 | 17.6 | 12.3 | 8.2 | 0.67 | 1.05 | 7.45 | 2.91 | 9.00 | 131.77 | 0.92 | 0.86 | |
DL-27 | 206.0 | 144.0 | 11.8 | 47.6 | 11.3 | 15.6 | 6.5 | 0.42 | 1.43 | 4.03 | 1.94 | 4.87 | 156.38 | 1.22 | 0.87 | |
DL-28 | 310.0 | 197.0 | 15.9 | 67.0 | 16.3 | 13.1 | 7.2 | 0.55 | 1.57 | 4.21 | 2.36 | 7.78 | 147.42 | 1.09 | 0.87 | |
DL-29 | 227.0 | 143.0 | 10.1 | 59.4 | 19.6 | 9.0 | 7.9 | 0.88 | 1.59 | 5.88 | 3.29 | 11.80 | 124.56 | 1.11 | 0.85 | |
DL-30 | 245.0 | 169.0 | 12.8 | 50.0 | 19.3 | 14.4 | 7.3 | 0.51 | 1.45 | 3.91 | 2.38 | 9.12 | 148.75 | 1.20 | 0.87 | |
DL-31 | 196.0 | 172.0 | 14.7 | 46.6 | 12.5 | 15.8 | 5.9 | 0.38 | 1.14 | 3.17 | 1.72 | 5.25 | 185.43 | 1.29 | 0.90 | |
DL-32 | 191.0 | 178.0 | 14.0 | 51.8 | 10.4 | 13.9 | 7.5 | 0.54 | 1.07 | 3.70 | 2.51 | 5.04 | 171.70 | 1.19 | 0.92 | |
DL-33 | 145.0 | 132.0 | 11.0 | 37.3 | 4.1 | 10.9 | 4.8 | 0.44 | 1.10 | 3.39 | 1.96 | 2.46 | 129.44 | 1.14 | 0.86 | |
平均值 | 378.0 | 119.1 | 10.8 | 68.9 | 20.3 | 13.3 | 14.7 | 1.16 | 3.65 | 6.70 | 4.77 | 9.80 | 156.42 | 1.08 | 0.85 |
Table 3
Pyrolytic parameters and maceral compositions of the Upper Permian Dalong Formation shale samples, southern Anhui Province"
样品编号 | 热解参数/(mg·g-1) | Tmax/℃ | (S1+S2)/(mg·g-1) | HI/(mg·g-1) | 组分含量/% | 类型指数 | 类型 | |||||
S1 | S2 | S3 | 腐泥组 | 壳质组 | 镜质组 | 惰质组 | ||||||
DL-1 | 0.90 | 4.33 | 0.28 | 453 | 5.23 | 122.32 | 73.7 | 0 | 25.0 | 1.3 | 53.7 | Ⅱ1 |
DL-5 | 0.37 | 1.61 | 0.14 | 455 | 1.98 | 79.70 | 92.7 | 0 | 6.7 | 0.7 | 87.0 | Ⅰ |
DL-8 | 0.61 | 2.67 | 0.25 | 452 | 3.28 | 87.54 | 89.7 | 0 | 9.3 | 1.0 | 81.7 | Ⅰ |
DL-11 | 0.22 | 0.81 | 0.27 | 455 | 1.03 | 22.01 | 87.7 | 0 | 10.7 | 1.7 | 78.0 | Ⅱ1 |
DL-13 | 0.65 | 2.40 | 0.20 | 454 | 3.05 | 75.00 | — | — | — | — | — | — |
DL-18 | 0.41 | 1.52 | 0.16 | 450 | 1.93 | 74.15 | 86.6 | 3.0 | 9.3 | 1.1 | 80.0 | Ⅰ |
DL-21 | 0.51 | 2.00 | 0.22 | 453 | 2.51 | 71.17 | 94.5 | 0 | 5.0 | 0.5 | 90.3 | Ⅰ |
DL-23 | 0.29 | 1.19 | 0.18 | 448 | 1.48 | 63.98 | 90.2 | 0 | 8.4 | 1.4 | 82.5 | Ⅰ |
DL-25 | 0.47 | 1.73 | 0.21 | 450 | 2.20 | 101.76 | — | — | — | — | — | — |
DL-28 | 0.33 | 1.42 | 0.18 | 452 | 1.75 | 65.14 | 91.8 | 0 | 7.4 | 0.8 | 85.5 | Ⅰ |
DL-31 | 0.35 | 1.35 | 0.18 | 448 | 1.70 | 114.41 | 86.3 | 1.0 | 11.8 | 0.9 | 77.1 | Ⅱ1 |
平均值 | 0.46 | 1.91 | 0.21 | 452 | 2.38 | 79.74 | 88.1 | 0.4 | 10.4 | 1.0 | 79.5 |
1 |
梁狄刚, 郭彤楼, 陈建平, 等. 中国南方海相生烃成藏研究的若干新进展(一): 南方四套区域性海相烃源岩的分布[J]. 海相油气地质, 2008, 13 (2): 1- 16.
doi: 10.3969/j.issn.1672-9854.2008.02.001 |
Liang Digang , Guo Tonglou , Chen Jianping , et al. Some progresses on studies of hydrocarbon generation and accumulation in marine sedimentary regions, Southern China(Part 1): Distribution of four suits of regional marine source rocks[J]. Marine Origin Hydrocarbon Geology, 2008, 13 (2): 1- 16.
doi: 10.3969/j.issn.1672-9854.2008.02.001 |
|
2 | 廖志伟, 胡文瑄, 曹剑, 等. 下扬子皖南大隆组黑色岩系发育特征及油气资源潜力初探[J]. 高校地质学报, 2016, 22 (1): 138- 151. |
Liao Zhiwei , Hu Wenxuan , Cao Jian , et al. A preliminary investigation of the development and hydrocarbon potential of the black shales in the Upper Permian Dalong Formation, Southern Anhui Province in the Lower Yangze Region, China[J]. Geological Journal of China Universities, 2016, 22 (1): 138- 151. | |
3 | 张金川, 霍志鹏, 唐玄, 等. 中国页岩气地质[M]. 上海: 华东理工大学出版社, 2016: 73- 79. |
Zhang Jinchuan , Huo Zhipeng , Tang Xuan , et al. Shale gas geological characteristics in China[M]. East China University of Technology Press: Shanghai in China, 2016: 73- 79. | |
4 | 石刚, 黄正清, 郑红军, 等. 下扬子地区二叠系"三气一油"钻探发现[J]. 中国地质, 2018, 45 (2): 416- 417. |
Shi Gang , Huang Zhengqing , Zheng Hongjun , et al. Drilling discovery of "three gas and one oil" in the Permian strata of Lower Yangtze area[J]. Geology in China, 2018, 45 (2): 416- 417. | |
5 | 黄保家, 施荣富, 赵幸滨, 等. 下扬子皖南地区古生界页岩气形成条件及勘探潜力评价[J]. 煤炭学报, 2013, 38 (5): 877- 882. |
Huang Baojia , Shi Rongfu , Zhao Xingbin , et al. Geological conditions of Paleozoic shale gas formation and its exploration potential in the South Anhui, Lower Yangtze area[J]. Journal of China Coal Society, 2013, 38 (5): 877- 882. | |
6 | 潘继平, 乔德武, 李世臻, 等. 下扬子地区古生界页岩气地质条件与勘探前景[J]. 地质通报, 2011, 30 (2-3): 337- 343. |
Pan Jiping , Qiao Dewu , Li Shizhen , et al. Shale gas geological conditions and exploration prospect of the Paleozoic marine strata in lower Yangtze area, China[J]. Geological Bulletin of China, 2011, 30 (2-3): 337- 343. | |
7 | 陈平, 张敏强, 许永哲, 等. 下扬子巢湖-泾县地区上二叠统大隆组泥页岩储层特征[J]. 岩石学报, 2013, 29 (8): 2925- 2935. |
Chen Ping , Zhang Minqiang , Xu Yongzhe , et al. The shale reservoir characteristic of Dalong Formation Upper Permian in Chaohu-Jing-xian, Lower Yangtze area[J]. Acta Petrologica Sinica, 2013, 29 (8): 2925- 2935. | |
8 | 遇昊, 陈代钊, 韦恒叶, 等. 鄂西地区上二叠乐平统大隆组硅质岩成因及有机质富集机理[J]. 岩石学报, 2012, 28 (3): 785- 800. |
Yu Hao , Chen Daizhao , Wei Hengye , et al. Origin of bedded chert and organic matter accumulation in the Dalong Formation of Upper Permian in western Hubei Province[J]. Acta Petrologica Sinica, 2012, 28 (3): 1017- 1027. | |
9 | 胡文瑄, 姚素平, 陆现彩, 等. 典型陆相页岩油层系成岩过程中有机质演化对储集性的影响[J]. 石油与天然气地质, 2019, 40 (5): 947- 956. |
Hu Wenxuan , Yao Suping , Lu Xiancai , et al. Effects of organic matter evolution on oil reservoir property during diagenesis of typical continental shale sequences[J]. Oil & Gas Geology, 2019, 40 (5): 947- 956. | |
10 |
Ross D J K , Bustin R M . Investigating the use of sedimentary geochemical proxies for paleoenvironment interpretation of thermally mature organic-rich strata: Examples from the Devonian-Mississippian shales, Western Canadian Sedimentary Basin[J]. Chemical Geology, 2009, 260 (1-2): 1- 19.
doi: 10.1016/j.chemgeo.2008.10.027 |
11 | 聂海宽, 张柏桥, 刘光祥, 等. 四川盆地五峰组-龙马溪组页岩气高产地质原因及启示——以涪陵页岩气田JY6-2HF为例[J]. 石油与天然气地质, 2020, 41 (3): 463- 473. |
Nie Haikuan , Zhang Baiqiao , Liu Guangxiang , et al. Geological factors contributing to high shale gas yield in the Wufeng-Longmaxi Fms of Sichuan Basin: A case study of Well JY6-2HF in Fuling shale gas field[J]. Oil & Gas Geology, 2020, 41 (3): 463- 473. | |
12 | 金之钧, 胡宗全, 高波, 等. 川东南地区五峰组-龙马溪组页岩气富集与高产控制因素[J]. 地学前缘, 2016, 23 (1): 1- 10. |
Jin Zhijun , Hu Zongquan , Gao Bo , et al. Controlling factors on the enrichment and high productivity of shale gas in the Wufeng-Longmaxi Formations, southeastern Sichuan Basin[J]. Earth Science Frontiers, 2016, 23 (1): 1- 10. | |
13 |
Arthur M A , Sageman B B . Marine black shales: Depositional mechanisms and environments of ancient deposits[J]. Annual Review of Earth and Planetary Sciences, 1994, 22, 499- 551.
doi: 10.1146/annurev.ea.22.050194.002435 |
14 | Pedersen T F , Calvert S E . Anoxia vs. productivity: What controls the formation of organic-carbon-rich sediments and sedimentary rocks?[J]. AAPG Bulletin, 1990, 74, 454- 466. |
15 |
Ding J H , Zhang J C , Tang X , et al. Elemental geochemical evidence for depositional conditions and organic matter enrichment of black rock series strata in an inter-platform basin: The Lower Carboniferous Datang Formation, Southern Guizhou, Southwest China[J]. Minerals, 2018, 8 (11): 509.
doi: 10.3390/min8110509 |
16 | 王鹏万, 张磊, 李昌, 等. 黑色页岩氧化还原条件与有机质富集机制——以昭通页岩气示范区A井五峰组-龙马溪组下段为例[J]. 石油与天然气地质, 2017, 38 (5): 933- 943. |
Wang Pengwan , Zhang Lei , Li Chang , et al. Redox conditions and organic enrichment mechanisms of black shale: A case from the Wufeng-lower Longmaxi Formations in Well A in Zhaotong shale gas demonstration area[J]. Oil & Gas Geology, 2017, 38 (5): 933- 943. | |
17 | Wei H Y , Chen D Z , Wang J G , et al. Organic accumulation in the lower Chihsia Formation(Middle Permian) of South China: Constraints from pyrite morphology and multiple geochemical proxies[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 53-355 (3): 73- 86. |
18 | 袁伟, 柳广弟, 徐黎明, 等. 鄂尔多斯盆地延长组7段有机质富集主控因素[J]. 石油与天然气地质, 2019, 40 (2): 326- 334. |
Yuan Wei , Liu Guangdi , Xu Liming , et al. Main controlling factors for organic matter enrichment in Chang 7 member of the Yanchang Formation, Ordos Basin[J]. Oil & Gas Geology, 2019, 40 (2): 326- 334. | |
19 | 张玉玺, 陈建文, 周江羽. 苏北地区早寒武世黑色页岩地球化学特征与有机质富集模式[J]. 石油与天然气地质, 2020, 41 (4): 838- 851. |
Zhang Yuxi , Chen Jianwen , Zhou Jiangyu . Geochemical features and organic matter enrichment in the Early Cambrian black shale, nort-hern Jiangsu area[J]. Oil & Gas Geology, 2020, 41 (4): 838- 851. | |
20 | Tyson R V , Pearson T H . Modern and ancient continental shelf anoxia: An overview[J]. Arctic & Alpine Research, 1991, 58 (1): 1- 24. |
21 | Sageman B B , Murphy A E , Werne J P , et al. A tale of shales: The relative roles of production, decomposition, and dilution in the accumulation of organic-rich strata, Middle-Upper Devonian, Appalachian Basin[J]. Chemical Geology, 2003, 195 (1): 229- 273. |
22 | Gallego-Torres D , Martinez-Ruiz F , Paytan A , et al. Pliocene-Holocene evolution of depositional conditions in the eastern Mediterranean: Role of anoxia vs. productivity at time of sapropel deposition[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 246 (2): 424- 439. |
23 |
Mort H , Jacquat O , Adatte T , et al. The Cenomanian/Turonian anoxic event at the Bonarelli level in Italy and Spain: Enhanced productivity and/or better preservation?[J]. Cretaceous Research, 2007, 28 (4): 597- 612.
doi: 10.1016/j.cretres.2006.09.003 |
24 | Ibach , L E J . Relationship between sedimentation rate and total organic carbon content in ancient marine sediments[J]. AAPG Bulletin, 1982, 66, 170- 183. |
25 |
Murphy A E , Sageman B B , Hollander D J , et al. Black shale deposition and faunal overturn in the Devonian Appalachian Basin: Clastic starvation, seasonal water-column mixing, and efficient biolimiting nutrient recycling[J]. Paleoceanography, 2000, 15, 280- 291.
doi: 10.1029/1999PA000445 |
26 | 丁江辉, 张金川, 李兴起, 等. 黔南坳陷下石炭统台间黑色岩系有机质富集特征及控制因素[J]. 岩性油气藏, 2019, 31 (2): 83- 95. |
Ding Jianghui , Zhang Jinchuan , Li Xingqi , et al. Characteristics and controlling factors of organic matter enrichment of Lower Carbonife-rous black rock series deposited in inter-platform region, Southern Guizhou Depression[J]. Lithologic Reservoirs, 2019, 31 (2): 83- 95. | |
27 | Tribovillard N , Algeo T J , Lyons T , et al. Trace metals as paleoredox and paleoproductivity proxies: An update[J]. Chemical Geology, 2006, 232 (1/2): 12- 32. |
28 | Wedepohl K H . Environmental influences on the chemical composition of shales and clays[J]. Physics & Chemistry of the Earth, 1971, 8 (71): 305- 333. |
29 | Taylor S R , Mclennan S M . The continental crust: Its composition and evolution[M]. London: Blackwell Scientific Publications, 1985: 312 |
30 |
Haskin L A , Wildeman T R , Haskin M A . An accurate procedure for the determination of the rare earths by neutron activation[J]. Journal of Radioanalytical Chemistry, 1968, 1, 337- 348.
doi: 10.1007/BF02513689 |
31 |
Johannesson K H , Hendry M J . Rare earth element geochemistry of groundwaters from a thick till and clay-rich aquitard sequence, Saskatchewan, Canada[J]. Geochimica Et Cosmochimica Acta, 2000, 64 (9): 1493- 1509.
doi: 10.1016/S0016-7037(99)00402-0 |
32 |
张水昌, 张宝民, 边立曾, 等. 中国海相烃源岩发育控制因素[J]. 地学前缘, 2005, 12 (3): 39- 48.
doi: 10.3321/j.issn:1005-2321.2005.03.006 |
Zhang Shuichang , Zhang Baomin , Bian Lizeng , et al. Development constraints of marine source rocks in China[J]. Earth Science Frontiers, 2005, 12 (3): 39- 48.
doi: 10.3321/j.issn:1005-2321.2005.03.006 |
|
33 |
陈代钊, 汪建国, 严德天, 等. 扬子地区古生代主要烃源岩有机质富集的环境动力学机制与差异[J]. 地质科学, 2011, 46 (1): 5- 26.
doi: 10.3969/j.issn.0563-5020.2011.01.003 |
Chen Daizhao , Wang Jianguo , Yan Detian , et al. Environmental dynamics of organic accumulation for the principal Paleozoic source rocks on Yangtze block[J]. Chinese Journal of Geology, 2011, 46 (1): 5- 26.
doi: 10.3969/j.issn.0563-5020.2011.01.003 |
|
34 |
Nesbitt H W , Young G M . Early proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299 (5885): 715- 717.
doi: 10.1038/299715a0 |
35 | Bai Y Y , Liu Z J , Sun P C , et al. Rare earth and major element geochemistry of Eocene fine-grained sediments in oil shale- and coal-bearing layers of the Meihe Basin, Northeast China[J]. Journal of Asian Earth Sciences, 2015, 97 (97): 89- 101. |
36 | Mclennan S M , Hemming S , Mcdaniel D K , et al. Geochemical approaches to sedimentation, provenance, and tectonics[J]. Special Paper of the Geological Society of America, 1993, 284, 21- 40. |
37 | Hatch J R , Leventhal J S . Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian(Missourian) Stark shale member of the Dennis limestone, Wabaunsee county, Kansas, U. S. A.[J]. Chemical Geology, 1992, 99 (1/3): 65- 82. |
38 | Jones B , Manning D A C . Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 1994, 111 (111): 111- 129. |
39 |
Algeo T J , Tribovillard N . Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation[J]. Chemical Geology, 2009, 268 (3-4): 211- 225.
doi: 10.1016/j.chemgeo.2009.09.001 |
40 | 丁江辉, 张金川, 石刚, 等. 宣城地区龙潭组页岩沉积环境与有机质富集[J]. 沉积学报, https://doi.org/10.14027/j.issn.1000-0550.2020.056. |
Ding Jianghui, Zhang Jinchuan, Shi Gang, et al. Sedimentary environment and organic matter accumulation for the Longtan Formation shale in Xuancheng area[J]. Acta Sedimentologica Sinica, https://doi.org/10.14027/j.issn.1000-0550.2020.056. | |
41 |
Tyrrell T . The relative influences of nitrogen and phosphorus on oceanic primary production[J]. Nature, 1999, 400, 523- 531.
doi: 10.1038/22934 |
42 |
Rimmer S M , Thompson J A , Goodnight S A , et al. Multiple controls on the preservation of organic matter in Devonian-Mississippian marine black shales: Geochemical and petrographic evidence[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 215 (1-2): 125- 154.
doi: 10.1016/S0031-0182(04)00466-3 |
43 | Algeo T J , Lyons T W . Mo-total organic carbon covariation in modern anoxic marine environments: Implications for analysis of paleoredox and paleohydrographic conditions[J]. Paleoceanography, 2006, 21 (1): PA1016. |
44 | Cao J , Yang R F , Yin W , et al. Mechanism of organic matter accumulation in residual bay environments: The Early Cretaceous Qiangtang Basin, Tibet[J]. Energy & Fuels, 2018, 32 (2): 1024- 1037. |
45 |
Murray R W , Brink M R B T , Gerlach D C . Rare earth, major, and trace elements in chert from the Franciscan Complex and Monterey Group, California: Assessing REE sources to fine-grained marine sediments[J]. Geochimica Et Cosmochimica Acta, 1991, 55 (7): 1875- 1895.
doi: 10.1016/0016-7037(91)90030-9 |
46 |
陈践发, 张水昌, 孙省利, 等. 海相碳酸盐岩优质烃源岩发育的主要影响因素[J]. 地质学报, 2006, 80 (3): 467- 472.
doi: 10.3321/j.issn:0001-5717.2006.03.021 |
Chen Jianfa , Zhang Shuichang , Sun Shengli , et al. Main factors inf-luencing marine carbonate source rock formation[J]. Acta Geologica Sinica, 2006, 80 (3): 467- 472.
doi: 10.3321/j.issn:0001-5717.2006.03.021 |
|
47 | 赵建华, 金之钧, 林畅松, 等. 上扬子地区下寒武统筇竹寺组页岩沉积环境[J]. 石油与天然气地质, 2019, 40 (4): 701- 715. |
Zhao Jianhua , Jin Zhijun , Lin Changsong , et al. Sedimentary environment of the Lower Cambrian Qiongzhusi Formation shale in the Upper Yangtze region[J]. Oil & Gas Geology, 2019, 40 (4): 701- 715. | |
48 | 储呈林, 陈强路, 张博, 等. 热液活动对东二沟剖面玉尔吐斯组烃源岩形成的影响[J]. 沉积学报, 2016, 34 (4): 803- 810. |
Chu Chenglin , Chen Qianglu , Zhang Bo , et al. Influence on formation of Yuertusi source rock by hydrothermal activities at Dongergou Section, Tarim Basin[J]. Acta Sedimentologica Sinica, 2016, 34 (4): 803- 810. | |
49 |
Shen S Z , Crowley J L , Wang Y , et al. Calibrating the end-Permian mass extinction[J]. Science, 2011, 334 (6061): 1367- 1372.
doi: 10.1126/science.1213454 |
[1] | Xiugang PU, Jiangchang DONG, Gongquan CHAI, Shunyao SONG, Zhannan SHI, Wenzhong HAN, Wei ZHANG, Delu XIE. Enrichment model of high-abundance organic matter in shales in the 2nd member of the Paleogene Kongdian Formation, Cangdong Sag, Bohai Bay Basin [J]. Oil & Gas Geology, 2024, 45(3): 696-709. |
[2] | Changbo ZHAI, Liangbiao LIN, Donghua YOU, Fengbin LIU, Siyu LIU. Sedimentary microfacies characteristics and organic matter enrichment pattern of the 1st member of the Middle Permian Maokou Formation, southwestern Sichuan Basin [J]. Oil & Gas Geology, 2024, 45(2): 440-456. |
[3] | Heyi ZHANG, Shuai YANG, Xihua ZHANG, Hanlin PENG, Qian LI, Cong CHEN, Zhaolong GAO, Anqing CHEN. Sedimentary microfacies and environmental evolution of the Middle Permian Maokou Formation in the eastern Sichuan Basin: A case study of the Yangjiao section in Wulong District, Chongqing, China [J]. Oil & Gas Geology, 2024, 45(2): 457-470. |
[4] | Dujie HOU, Keqiang WU, Li YOU, Ziming ZHANG, Yajun LI, Xiaofeng XIONG, Min XU, Xiazhe YAN, Weihe CHEN, Xiong CHENG. Organic matter enrichment mechanisms of terrigenous marine source rocks in the Qiongdongnan Basin [J]. Oil & Gas Geology, 2024, 45(1): 31-43. |
[5] | Xusheng GUO, Xiaoxiao MA, Maowen LI, Menhui QIAN, Zongquan HU. Mechanisms for lacustrine shale oil enrichment in Chinese sedimentary basins [J]. Oil & Gas Geology, 2023, 44(6): 1333-1349. |
[6] | Qian ZHANG, Zhijun JIN, Rukai ZHU, Quanyou LIU, Rui ZHANG, Guanping WANG, Wanli CHEN, Ralf Littke. Remarkable issues of Rock-Eval pyrolysis in the assessment of shale oil/gas [J]. Oil & Gas Geology, 2023, 44(4): 1020-1032. |
[7] | Rui ZHANG, Zhijun JIN, Rukai ZHU, Mingsong LI, Xiao HUI, Ren WEI, Xiangwu HE, Qian ZHANG. Investigation of deposition rate of terrestrial organic-rich shales in China and its implications for shale oil exploration [J]. Oil & Gas Geology, 2023, 44(4): 829-845. |
[8] | Dan LYU, Huajian WANG, Gang LI, Jiangyong ZHANG, Xiuli FU, Chang LIU, Xiaomei WANG, Rukai ZHU, Shuichang ZHANG. Paleobiological evidence of the paleowater environment evolution during deposition of the Qingshankou shale in the Songliao Basin [J]. Oil & Gas Geology, 2023, 44(4): 857-868. |
[9] | Tianshu ZHANG, Rukai ZHU, Yi CAI, Huajian WANG, Dan LYU, Haiyan ZHOU, Xiuli FU, Chang LIU, Kunning CUI, Surong ZHANG, Bo WANG, Songtao WU, Jingya ZHANG, Xiaohua JIANG, Youliang FENG, He LIU. Distribution of organic matter in the Qingshankou Formation Shale, Gulong Sag, Songliao Basin observed within an isochronous sequence stratigraphic framework [J]. Oil & Gas Geology, 2023, 44(4): 869-886. |
[10] | Jianxiang PEI, Xiaoxiao GUO, Haitao XUE, Yangyu WU, Shanshan LI, Wenhao LI. Environment and controlling factors of the Miocene marine source rocks in the Yinggehai Basin [J]. Oil & Gas Geology, 2023, 44(4): 937-945. |
[11] | Jiaquan ZHOU, Yue WANG, Ziyi SONG, Jiting LIU, Sainan CHENG. Characterizing hydrothermal siliceous nodules to guide shale oil exploration in the Middle Permian Lucaogou Formation, Bogda area, Junggar Basin [J]. Oil & Gas Geology, 2023, 44(3): 789-800. |
[12] | Pengwei WANG, Zhongbao LIU, Dianwei ZHANG, Xiong LI, Wei DU, Haotian LIU, Peng LI, Ruyue WANG. Control of organic matter enrichment on organic pore development in the Permian marine organic-rich shale, eastern Sichuan Basin [J]. Oil & Gas Geology, 2023, 44(2): 379-392. |
[13] | Bojiang Fan, Liang Shi, Jie Yang, Shan Su, Rong Ma, Yaoli Yuan, Cengyu Zeng. Sedimentary environment of lacustrine organic matter in the central Ordos Basin [J]. Oil & Gas Geology, 2022, 43(3): 648-657. |
[14] | Rukai Zhu, Mengying Li, Jingru Yang, Surong Zhang, Yi Cai, Yan Cao, Yuan Kang. Advances and trends of fine-grained sedimentology [J]. Oil & Gas Geology, 2022, 43(2): 251-264. |
[15] | Yang Chen, Qinhong Hu, Jianhua Zhao, Mianmo Meng, Na Yin, Xiaobei Zhang, Gefei Xu, Huimin Liu. Lamina characteristics and their influence on reservoir property of lacustrine organic-rich shale in the Dongying Sag, Bohai Bay Basin [J]. Oil & Gas Geology, 2022, 43(2): 307-324. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||