Oil & Gas Geology ›› 2022, Vol. 43 ›› Issue (2): 390-406.doi: 10.11743/ogg20220212
• Petroleum Geology • Previous Articles Next Articles
Xiaoning Liu(), Zaixing Jiang, Xiaodong Yuan, Chen Chen, Cheng Wang
Received:
2021-07-02
Revised:
2022-01-18
Online:
2022-04-01
Published:
2022-03-11
CLC Number:
Xiaoning Liu, Zaixing Jiang, Xiaodong Yuan, Chen Chen, Cheng Wang. Influence of the Cretaceous fine-grained volcanic materials on shale oil/gas, Luanping Basin[J]. Oil & Gas Geology, 2022, 43(2): 390-406.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Experiment on samples from Well Luanye 1, Luanping Basin"
样品 编号 | 深度/m | 岩性 | 岩石 热解 分析 | 镜质体 反射率 (Ro) | 全岩 衍射 分析 | 有机碳 稳定 同位素 | 微量 元素 分析 | 样品 编号 | 深度/m | 岩性 | 岩石 热解 分析 | 镜质体 反射率 (Ro) | 全岩 衍射 分析 | 有机碳 稳定 同位素 | 微量 元素 分析 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 704.30 | 泥页岩 | √ | 35 | 985.30 | 粉砂质白云岩 | √ | √ | |||||||
2 | 704.67 | 泥页岩 | √ | √ | 36 | 992.85 | 粉砂岩 | √ | √ | √ | √ | √ | |||
3 | 713.55 | 泥页岩 | √ | 37 | 999.70 | 白云岩 | √ | ||||||||
4 | 713.75 | 泥页岩 | √ | 38 | 1 005.70 | 白云质混合细粒岩 | √ | ||||||||
5 | 729.65 | 粉砂质泥页岩 | √ | 39 | 1 013.15 | 粉砂岩 | √ | √ | |||||||
6 | 773.30 | 泥质粉砂岩 | √ | √ | √ | 40 | 1 016.65 | 粉砂岩 | √ | √ | √ | ||||
7 | 777.50 | 泥质粉砂岩 | √ | 41 | 1 022.68 | 白云岩 | √ | ||||||||
8 | 781.60 | 长英质混合细粒岩 | √ | 42 | 1 028.20 | 粉砂质白云岩 | √ | √ | √ | √ | |||||
9 | 782.50 | 长英质混合细粒岩 | √ | 43 | 1 032.92 | 粉砂岩 | √ | ||||||||
10 | 798.00 | 泥页岩 | √ | 44 | 1 041.50 | 粉砂岩 | √ | √ | √ | ||||||
11 | 799.52 | 泥页岩 | √ | 45 | 1 046.32 | 白云质粉砂岩 | √ | √ | |||||||
12 | 808.20 | 泥页岩 | √ | 46 | 1 122.20 | 长英质混合细粒岩 | √ | √ | |||||||
13 | 808.56 | 泥页岩 | √ | 47 | 1 122.88 | 长英质混合细粒岩 | √ | √ | |||||||
14 | 811.30 | 泥页岩 | √ | √ | 48 | 1 126.27 | 长英质混合细粒岩 | √ | |||||||
15 | 822.16 | 泥页岩 | √ | 49 | 1 126.27 | 长英质混合细粒岩 | √ | ||||||||
16 | 822.26 | 泥页岩 | √ | 50 | 1 128.40 | 长英质混合细粒岩 | √ | √ | |||||||
17 | 831.40 | 长英质混合细粒岩 | √ | 51 | 1 129.33 | 泥页岩 | √ | ||||||||
18 | 837.18 | 粉砂岩 | √ | 52 | 1 129.80 | 长英质混合细粒岩 | √ | √ | |||||||
19 | 837.20 | 粉砂岩 | √ | √ | √ | 53 | 1 135.20 | 粉砂质泥页岩 | √ | ||||||
20 | 847.10 | 泥质粉砂岩 | √ | √ | 54 | 1 136.70 | 凝灰岩 | √ | √ | √ | |||||
21 | 868.17 | 粘土型混合细粒岩 | √ | 55 | 1 136.73 | 凝灰岩 | √ | ||||||||
22 | 869.45 | 粘土型混合细粒岩 | √ | 56 | 1 147.00 | 长英质混合细粒岩 | √ | ||||||||
23 | 877.73 | 长英质混合细粒岩 | √ | 57 | 1 150.19 | 泥页岩 | √ | ||||||||
24 | 881.32 | 白云岩 | √ | √ | 58 | 1 153.67 | 粉砂质白云岩 | √ | |||||||
25 | 911.36 | 白云质混合细粒岩 | √ | 59 | 1 157.88 | 粉砂质白云岩 | √ | √ | |||||||
26 | 911.40 | 白云质混合细粒岩 | √ | 60 | 1 167.12 | 粉砂质泥页岩 | √ | √ | |||||||
27 | 921.15 | 白云岩 | √ | √ | 61 | 1 173.01 | 粉砂质泥页岩 | √ | |||||||
28 | 928.60 | 泥质粉砂岩 | √ | 62 | 1 175.04 | 泥页岩 | √ | ||||||||
29 | 945.45 | 白云岩 | √ | 63 | 1 175.80 | 泥页岩 | √ | √ | |||||||
30 | 947.30 | 白云岩 | √ | 64 | 1 176.20 | 粉砂质泥页岩 | √ | ||||||||
31 | 956.80 | 粉砂岩 | √ | √ | 65 | 1 180.51 | 泥质粉砂岩 | √ | |||||||
32 | 975.90 | 粉砂岩 | √ | √ | 66 | 1 243.90 | 长英质混合细粒岩 | √ | |||||||
33 | 976.02 | 粉砂质泥页岩 | √ | 67 | 1 249.25 | 粉砂岩 | √ | ||||||||
34 | 982.45 | 粉砂质白云岩 | √ | √ | √ | √ | 68 | 1 254.63 | 长英质混合细粒岩 | √ | √ | √ |
Table 2
Mineral compositions (%) of fine?grained sedimentary rocks in the lower member of Xiguayuan Formation in Well Luanye 1, Luanping Basin"
样品编号 | 井深/m | 赤铁矿 | 硬石膏 | 方沸石 | 石英 | 钾长石 | 斜长石 | 方解石 | 铁白云石 | 白云石 | 黄铁矿 | 斜发沸石 | 粘土矿物总量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5 | 729.65 | 0 | 0.9 | 0 | 16.4 | 3.7 | 22.1 | 7.2 | 0 | 3.2 | 0 | 0 | 46.5 |
6 | 773.30 | 0 | 0 | 0 | 37.4 | 8.4 | 18.4 | 9.5 | 0 | 2.4 | 0 | 0 | 23.9 |
14 | 811.30 | 0.8 | 0 | 0 | 14.8 | 6.7 | 7.9 | 8.5 | 0 | 2.0 | 0 | 0 | 59.3 |
19 | 837.20 | 0 | 0 | 0 | 19.1 | 9.3 | 52.4 | 0.4 | 0 | 6.2 | 0 | 0 | 12.6 |
20 | 847.10 | 0 | 0 | 0 | 18.7 | 7.4 | 18.3 | 8.5 | 0 | 4.7 | 0.3 | 0 | 42.1 |
24 | 881.32 | 0 | 0 | 0 | 2.1 | 3.3 | 11.4 | 0.2 | 0 | 83.0 | 0 | 0 | 0 |
27 | 921.15 | 0 | 0 | 0 | 11.8 | 6.4 | 28.2 | 0.1 | 0 | 50.0 | 0 | 0 | 3.5 |
31 | 956.80 | 0 | 0 | 0 | 18.4 | 11.5 | 50.7 | 3.1 | 0 | 3.7 | 0.8 | 0 | 11.8 |
32 | 975.90 | 0 | 0 | 0 | 33.4 | 2.5 | 22.4 | 5.5 | 18.6 | 0 | 1.7 | 0 | 15.9 |
34 | 982.45 | 0 | 0 | 0 | 16.9 | 6.3 | 23.5 | 8.5 | 35.3 | 0 | 1.9 | 0 | 7.6 |
35 | 985.30 | 0 | 0 | 0.1 | 14.2 | 6.8 | 22.6 | 9.2 | 34.1 | 0 | 1.6 | 0 | 11.4 |
36 | 992.85 | 0 | 0 | 0 | 8.8 | 6.4 | 39.4 | 1.6 | 31.9 | 0 | 3.3 | 0 | 8.6 |
37 | 999.70 | 0 | 0 | 0 | 9.2 | 5.2 | 12.5 | 1.8 | 59.1 | 0 | 5.6 | 0 | 6.6 |
39 | 1 013.15 | 0 | 0 | 0 | 17.9 | 4.0 | 36.1 | 3.7 | 22.6 | 0 | 3.3 | 0 | 12.4 |
40 | 1 016.65 | 0 | 0 | 0 | 24.4 | 15.8 | 23.8 | 5.2 | 0 | 5.0 | 3.9 | 0 | 21.9 |
41 | 1 022.68 | 0 | 0 | 0 | 4.2 | 4.3 | 12.8 | 0.1 | 71.0 | 0 | 1.5 | 0 | 6.1 |
43 | 1 032.92 | 0 | 0 | 0 | 14.1 | 15.3 | 26.9 | 11.5 | 10.9 | 0 | 2.9 | 0 | 18.4 |
44 | 1 041.50 | 0 | 0 | 0 | 25.5 | 10.2 | 21.3 | 7.9 | 0 | 5.1 | 4.8 | 1.5 | 23.7 |
67 | 1 249.25 | 0 | 0 | 0 | 29.2 | 35.8 | 8.6 | 8.3 | 0 | 1.6 | 5.2 | 0 | 11.3 |
68 | 1 254.63 | 0 | 0 | 0 | 24.1 | 6.6 | 13.2 | 29.4 | 0 | 2.9 | 4.1 | 0 | 19.7 |
Table 3
Organic matter abundance of mudstone and fine?grained tuffaceous sedimentary rocks in the lower member of Xiguayuan Formation in Well Luanye 1,Luanping Basin"
样品编号 | 深度/m | TOC/% | (S1+S2) /(mg·g-1) | Tmax/℃ | 样品编号 | 深度/m | TOC/% | (S1+S2) /(mg·g-1) | Tmax/℃ |
---|---|---|---|---|---|---|---|---|---|
1 | 704.30 | 0.75 | 0.370 4 | 446.7 | 33 | 976.02 | 2.45 | 4.690 0 | 437.0 |
2 | 704.67 | 1.10 | 0.450 0 | 448.0 | 34 | 982.45 | 2.97 | 3.572 6 | 457.1 |
3 | 713.55 | 0.43 | 0.076 9 | 561.7 | 35 | 985.30 | 1.77 | 1.972 7 | 457.1 |
4 | 713.75 | 0.28 | 0.030 0 | 466.0 | 36 | 992.85 | 1.90 | 1.905 6 | 463.5 |
8 | 781.60 | 0.47 | 0.062 5 | 460.1 | 39 | 1 013.15 | 1.22 | 1.095 6 | 455.2 |
9 | 782.50 | 0.62 | 0.150 0 | 458.0 | 42 | 1 028.20 | 1.52 | 2.480 4 | 447.0 |
10 | 798.00 | 0.62 | 0.339 4 | 451.3 | 44 | 1 041.50 | 0.55 | 0.264 8 | 448.5 |
11 | 799.52 | 1.34 | 0.650 0 | 451.0 | 45 | 1 046.32 | 2.98 | 4.850 0 | 461.0 |
12 | 808.20 | 0.32 | 0.010 0 | 476.0 | 46 | 1 122.20 | 1.66 | 2.360 0 | 466.0 |
13 | 808.56 | 0.36 | 0.147 0 | 562.2 | 47 | 1 122.88 | 1.98 | 2.166 8 | 457.8 |
14 | 811.30 | 0.35 | 0.155 6 | 561.7 | 48 | 1 126.27 | 1.70 | 3.180 0 | 447.0 |
15 | 822.16 | 0.35 | 0.050 0 | 550.0 | 49 | 1 126.27 | 1.69 | 2.140 2 | 452.0 |
16 | 822.26 | 0.38 | 0.137 1 | 562.0 | 51 | 1 129.33 | 1.91 | 2.610 0 | 461.0 |
18 | 837.18 | 0.90 | 0.515 3 | 458.6 | 52 | 1 129.80 | 2.44 | 5.564 1 | 444.6 |
20 | 847.10 | 0.22 | 0.139 2 | 468.2 | 53 | 1 135.20 | 2.07 | 2.044 3 | 452.7 |
21 | 868.17 | 1.35 | 2.237 0 | 447.0 | 54 | 1 136.70 | 2.96 | 3.497 8 | 455.2 |
22 | 869.45 | 0.84 | 0.360 0 | 446.0 | 55 | 1 136.73 | 2.34 | 2.920 0 | 465.0 |
23 | 877.73 | 0.42 | 0.120 0 | 474.0 | 57 | 1 150.19 | 1.81 | 2.732 8 | 453.2 |
24 | 881.32 | 0.34 | 0.335 9 | 453.1 | 58 | 1 153.67 | 1.42 | 1.905 7 | 454.8 |
25 | 911.36 | 1.87 | 2.260 0 | 457.0 | 60 | 1 167.12 | 2.02 | 2.760 0 | 468.0 |
26 | 911.40 | 1.69 | 2.234 3 | 450.6 | 61 | 1 173.01 | 1.75 | 1.520 0 | 448.0 |
29 | 945.45 | 1.82 | 2.923 5 | 447.5 | 62 | 1 175.04 | 0.50 | 0.210 0 | 449.0 |
30 | 947.30 | 1.57 | 2.750 0 | 437.0 | 63 | 1 175.80 | 0.68 | 0.952 2 | 461.3 |
31 | 956.80 | 1.59 | 2.313 0 | 453.3 | 64 | 1 176.20 | 1.66 | 1.569 5 | 455.7 |
32 | 975.90 | 2.09 | 3.060 5 | 455.1 | 65 | 1 180.51 | 1.70 | 2.050 0 | 459.0 |
Table 5
Regular sterane C27-C29 content in Well Luanye 1, Luanping Bain"
样品编号 | 深度/m | C27甾烷含量/% | C28甾烷含量/% | C29甾烷含量/% |
---|---|---|---|---|
6 | 773.30 | 34.19 | 30.62 | 35.19 |
19 | 837.20 | 48.72 | 29.38 | 21.90 |
27 | 921.15 | 29.26 | 25.19 | 45.55 |
34 | 982.45 | 55.60 | 25.09 | 19.31 |
36 | 992.85 | 37.40 | 22.61 | 39.99 |
40 | 1 016.65 | 40.83 | 23.64 | 35.53 |
42 | 1 028.20 | 36.33 | 27.36 | 36.31 |
44 | 1 041.50 | 35.09 | 28.65 | 36.25 |
47 | 1 122.88 | 38.87 | 26.29 | 34.84 |
50 | 1 128.40 | 51.44 | 26.21 | 22.35 |
52 | 1 129.80 | 44.84 | 12.68 | 42.48 |
54 | 1 136.70 | 32.71 | 30.80 | 36.49 |
59 | 1 157.88 | 40.58 | 24.55 | 34.87 |
68 | 1 254.63 | 50.41 | 30.86 | 18.72 |
Table 6
Trace element content in the lower member of the Xiguayuan Formation in Well Luanye 1, Luanping Basin"
样品编号 | 深度/m | 微量元素含量/(μg·g-1) | V/(V+Ni) | |||
---|---|---|---|---|---|---|
Cr | Ni | V | Mo | |||
7 | 777.50 | 63.58 | 26.53 | 83.30 | 0.49 | 0.76 |
17 | 831.40 | 63.12 | 29.57 | 90.22 | 0.70 | 0.75 |
28 | 928.60 | 190.41 | 42.14 | 128.24 | 0.65 | 0.75 |
36 | 992.85 | 58.89 | 26.61 | 75.96 | 36.10 | 0.74 |
38 | 1 005.70 | 94.45 | 31.79 | 82.97 | 11.95 | 0.72 |
42 | 1 028.20 | 35.39 | 23.96 | 63.78 | 8.18 | 0.73 |
50 | 1 128.40 | 49.37 | 25.88 | 78.83 | 4.74 | 0.75 |
54 | 1 136.70 | 81.59 | 30.82 | 96.07 | 1.60 | 0.76 |
59 | 1 157.88 | 54.13 | 25.87 | 80.13 | 27.15 | 0.76 |
66 | 1 243.90 | 49.99 | 27.56 | 97.20 | 14.42 | 0.78 |
1 | White J D L, Hughton B F. Primary volcaniclastic rocks[J].Geology,2006,34(8): 677-680. |
2 | 张少敏,操应长,朱如凯,等.湖相细粒混合沉积岩岩石类型划分:以准噶尔盆地吉木萨尔凹陷二叠系芦草沟组为例[J].地学前缘,2018,25(4):198-209. |
Zhang Shaomin, Cao Yingchang, Zhu Rukai,et al.Lithofacies classification of fine⁃grained mixed sedimentary rocks in the Permian Lucaogou Formation, Jimsar Sag, Junggar Basin[J].Science Frontiers,2018,25(4):198-209. | |
3 | 周中毅,盛国英,闵育顺,等.凝灰质岩生油岩的有机地球化学初步研究[J].沉积学报,1989,7(3):3-9. |
Zhou Zhongyi, Sheng Guoying, Min Yushun,et al.A primary study of tuffaceous source rock by organic geochemistry[J].Acta Sedimentologica Sinica,1989,7(3):3-9. | |
4 | 姜在兴,张文昭,梁超,等.页岩油储层基本特征及评价要素[J].石油学报,2014,35(1):184-196. |
Jiang Zaixing, Zhang Wenzhao, Liang Chao,et al.Characteristics and evaluation elements of shale oil reservoir[J].Acta Petrolei Sinica, 2014,35(1):184-196. | |
5 | 张金川,林腊梅,李玉喜,等.页岩油分类与评价[J].地学前缘,2012,19(5):322-331. |
Zhang Jinchuan, Lin Lamei, Li Yuxi,et al.Classification and evaluation of shale oil[J].Earth Science Frontiers,2012,19(5):322-331. | |
6 | 梁新平,金之钧,刘全有,等.火山灰对富有机质页岩形成的影响——以西西伯利亚盆地中生界巴热诺夫组为例[J].石油与天然气地质,2021,42(1):201-211. |
Liang Xinping, Jin Zhijun, Liu Quanyou,et al.Impact of volcanic ash on the formation of organic⁃rich shale: A case study on the Mesozoic Bazhenov Formation,West Siberian Basin[J].Oil & Gas Geology,2021,42(1):201-211. | |
7 | Iyer K, Schmid D W, Planke S,et al.Modelling hydrothermal venting in volcanic sedimentary basins: Impact on hydrocarbon maturation and paleoclimate[J]. Earth and Planetary Science Letters,2017,467: 30-42. |
8 | 张文正,杨华,彭平安,等.晚三叠世火山活动对鄂尔多斯盆地长7优质烃源岩发育的影响[J].地球化学,2009,38(6):573-582. |
Zhang Wenzheng, Yang Ha, Peng Pingan,et al.The Influence of Late Triassic volcanism on the development of Chang 7 high grade hydrocarbon source rock in Ordos Basin[J].Geochimica, 2009,38(6):573-582. | |
9 | He C, Ji L M, Wu Y D.Characteristics of hydrothermal sedimentation process in the Yanchang Formation, south Ordos Basin, China: Evidence from element geochemistry[J]. Sedimentary Geology,2016,345:33-41. |
10 | 高有峰,王璞珺,程日辉,等.松科1井南孔白垩系青山口组一段沉积序列精细描述:岩石地层、沉积相与旋回地层[J].地学前缘,2009,16(2):314-323. |
Gao Youfeng, Wang Pujun, Cheng Rihui,et al.Description of cretaceous sedimentary sequence of the first member of the Qingshankou Formation recovered by CCSD⁃SK⁃Ⅰ s borehole in Song⁃liao Basin:Lithostratigraphy,sedimentary facies and cyclic stratigraphy[J].Earth Science Frontiers,2009,16(2):314-323. | |
11 | 商斐,周海燕,刘勇,等.松辽盆地嫩江组泥页岩有机质富集模式探讨——以嫩江组一、二段油页岩为例[J].中国地质,2020,47(1):236-248. |
Shang Fei, Zhou Haiyan, Liu Yong,et al.A discussion on the organic matter enrichment model of the Nenjiang Formation, Song⁃liao Basin: A case study of oil shale in the 1st and 2nd members of the Nenjiang Formation[J].Geology in China, 2020,47(1):236-248. | |
12 | 冯子辉,柳波,邵红梅,等. 松辽盆地古龙地区青山口组泥页岩成岩演化与储集性能[J]大庆石油地质与开发,2020,39(3):72-85. |
Feng Zihui, Liu Bo, Shao Hongmei,et al.The diagenesis evolution and accumulating performance of the mud shale in Qingshankou Formation in Gulong area, Songliao Basin[J].Petroleum Geology & Oilfield Development in Daqing,2020,39(3):72-85. | |
13 | 柳蓉,张坤,刘招君,等.中国油页岩富集与地质事件研究[J].沉积学报,2021,39(1):10-28. |
Liu Rong, Zhang Kun, Liu Zhaojun,et al.Oil shale mineralization and geological events in China[J].Acta Sedimentologica Sinica, 2021,39(1):10-28. | |
14 | 刘招君,柳蓉,孙平昌,等.中国典型盆地油页岩特征及赋存规律[J].吉林大学学报(地球科学版),2020,50(2):313-325. |
Liu Zhaojun, Liu Rong, Sun Pingchang,et al. oil shale characteristics and distribution in typical basins of China[J]. Journal of Jilin University (Earth Science Edition),2020,50(2):313-325. | |
15 | 王书荣,宋到福,何登发.三塘湖盆地火山灰对沉积有机质的富集效应及凝灰质烃源岩发育模式[J].石油学报,2013,34(6):1077-1087. |
Wang Shurong, Song Daofu, He Dengfa.The enrichment effect of organic materials by volcanic ash in sediments of the Santanghu Basin and the evolutionary pattern of tuffaceous source rocks[J].Acta Petrolei Sinica,2013,34(6):1077-1087. | |
16 | 徐雄飞,于祥春,卿忠,等.三塘湖盆地芦草沟组岩相特征及其与页岩油藏的关系[J].新疆石油地质,2020,41(6):677-684. |
Xu Xiongfei, Yu Xiangchun, Zhong Qing,et al. Lithofacies characteristics and its relationship with shale oil reservoirs of Lucaogou Formation in Santanghu Basin[J]. Xinjiang Petroleum Geology,2020,41(6):677-684. | |
17 | 柳益群,周鼎武,焦鑫,等.深源物质参与湖相烃源岩生烃作用的初步研究——以准噶尔盆地吉木萨尔凹陷二叠系黑色岩系为例[J].古地理学报,2019,21(6):983-998. |
Liu Yiqun, Zhou Dingwu, Jiao Xin,et al.A preliminary study on the relationship between deep⁃sourced materials and hydrocarbon generation in lacustrine source rocks: An example from the permian black rock series in Jimusar Sag,Junggar Basin[J].Journal of Palaeogeography(Chinese Edition),2019,21(6):983-998. | |
18 | 焦鑫,柳益群,周鼎武,等.湖相烃源岩中的火山-热液深源物质与油气生成耦合关系研究进展[J].古地理学报,2021,23(4):789-809. |
Jiao Xin, Liu Yiqun, Zhou Dingwu,et al.Progress on coupling relationship between volcanic and hydrothermal⁃originated sediments and hydrocarbon generation in lacustrine source rocks[J].Journal of Palaeogeography(Chinese Edition),2021,23(4):789-809. | |
19 | 曹宇森 .辽河油田大洼地区中生界基性火山岩油气成藏特征[J].石油地质与工程,2019,33(3):29-32. |
Cao Yusen. Hydrocarbon accumulation characteristics of Mesozoic basic volcanic rocks in Dawa area of Liaohe oilfield[J]. Petroleum Geology & Engineering, 2019, 33(3): 29-32. | |
20 | 宁超众,李勇,邓晓娟,等. 哈拉哈塘地区热液岩溶形成演化与油气分布[J]. 新疆石油地质,2021,42(4):399-409. |
Ning Chaozhong, Li Yong, Deng Xiaojuan, et al. Formation and evolution of hydrothermal karst and hydrocarbon distribution in Halahatang area[J]. Xinjiang Petroloeum Geology, 2021,42(4):399-409. | |
21 | 刘全有,朱东亚,孟庆强,等.深部流体及有机-无机相互作用下油气形成的基本内涵[J].中国科学:地球科学,2019,49(3):499-520. |
Liu Quanyou, Zhu Dongya, Meng Qingqiang,et al.The scientific connotation of oil and gas formations under deep fluids and organic⁃inorganic interaction[J].Scientia Sinica(Terrae),2019,49(3):499-520. | |
22 | Li J T, Cui J M, Yang Q H, et al.Oxidative weathering and microbial diversity of an inactive seafloor hydrothermal sulfide chimney[J]. Frontiers in Microbiology, 2017, 8:1378. |
23 | 朱东亚,金之钧,胡文瑄.塔中地区热液改造型白云岩储层[J].石油学报,2009,30(5):698-704. |
Zhu Dongya, Jin Zhijun, Hu Wenxuan.Hydrothermal alteration dolomite reservoir in Tazhong area[J].Acta Petrolei Sinica,2009,30(5):698-704. | |
24 | Zhong L R, Cantrell K, Mitroshkov J,et al.Mobilization and transport of organic compounds from reservoir rock and caprock in geological carbon sequestration sites[J]. Environmental Earth Sciences, 2014, 71(9): 4261-4272. |
25 | 陈代钊.构造-热液白云岩化作用与白云岩储层[J].石油与天然气地质,2008,29(5):614-622. |
Chen Daizhao.Structure⁃controlled hydrothermal dolomitization and hydrothermal dolomite reservoirs[J].Oil & Gas Geology,2008,29(5):614-622. | |
26 | Carl J, Hamdy E D, Dave H,et al.Dolomitization of the Latemar Platform: Fluid flow and dolomite evolution[J]. Marine and Petroleum Geology, 2014, 55: 43-67. |
27 | 姜在兴,孔祥鑫,杨叶芃,等.陆相碳酸盐质细粒沉积岩及油气甜点多源成因[J].石油勘探与开发,2021,48(1):26-37. |
Jiang Zaixing, Kong Xiangxin, Yang Yepeng,et al.Multi⁃source genesis of continental carbonate⁃rich fine⁃grained sedimentary ro⁃cks and hydrocarbon sweet spots[J].Petroleum Exploration and Development,2021,48(1):26-37. | |
28 | 丁聪,孙平昌,热西提·亚力坤,等.松辽盆地青山口乡青山口组细粒沉积岩分类及其成因[J]. 新疆石油地质,2021,42(4):418-427. |
Ding Cong, Sun Pingchang, Rexiti·yalikun, et al.Classification and genesis of fine⁃grained sedimentary rocks of Qingshankou Formation in Songliao Basin[J]. Xinjiang Petroloeum Geology, 2021,42(4):418-427. | |
29 | 孔祥鑫.湖相含碳酸盐细粒沉积岩特征、成因与油气聚集[D].北京:中国地质大学(北京),2020. |
Kong Xiangxin.Sedimentary characteristics, origin and hydrocarbon accumulation of lacustrine carbonate⁃bearing finegrained sedimentary rocks[D].Beijing:China University of Geosciences (Beijing),2020. | |
30 | Fang Y, Xu H. Study of an ordovician carbonate with alternating dolomite⁃calcite laminations and its implication for catalytic effects of microbes on the formation of sedimentary dolomite[J].Journal of Sedimentary Research,2018,88(6): 679-695. |
31 | 袁晓冬,姜在兴,张元福 等.滦平盆地白垩系陆相页岩油储层特征[J].石油学报,2020,41(10):1197-1208. |
Yuan Xiaodong, Jiang Zaixing, Zhang Yuanfu,et al.Characteristics of the cretaceous continental shale oil reservoirs in Luanping Basin[J].Acta Petrolei Sinica,2020,41(10):1197-1208. | |
32 | 潘树彪.滦平盆地下白垩统黑色泥页岩地球化学特征与油气潜力[D]. 北京:中国地质大学(北京),2020. |
Pan Shubiao.Geochemical characteristics and oil⁃gas potential of the Lower Cretaceous black mudrocks in Luanping Basin[D].Beijing:China University of Geosciences (Beijing),2020. | |
33 | 武法东,陈永进,李寅,等.河北滦平盆地构造演化及对扇三角洲发育的控制作用[J].现代地质,2000,14(2):179-184. |
Wu Fadong, Chen Yongjin, Li Yan,et al.Tectonic evolutions and their control on development of fan⁃deltic depositional system in the Luanping Basin[J].Geoscience,2000,14(2):179-184. | |
34 | 刘少峰,李忠,张金芳.燕山地区中生代盆地演化及构造体制[J].中国科学(D辑:地球科学),2004(S1):19-31. |
Liu Shaofeng, Li Zhong, Zhang Jinfang,et al.Mesozoic basin evolution and tectonic mechanism in Yanshan,China[J].Science in China(SeriesD:Earth Sciences),2004(S1):19-31. | |
35 | 姜在兴,梁超,吴靖,等.含油气细粒沉积岩研究的几个问题[J].石油学报,2013,34(6):1031-1039. |
Jiang Zaixing, Liang Chao, Wu Jing,et al.Several issues in sedimentological studies on hydrocarbon⁃bearing fine⁃grained sedimentary rocks[J].Acta Petrolei Sinica,2013,34(6):1031-1039. | |
36 | 张文伟 .细粒沉积岩储层微观特征研究方法及应用[J].石油地质与工程,2019,33(4):11-15. |
Zhang Wenwei. Microcosmic characteristics of fine⁃grained sedimentary reservoirs and its application[J]. Petroleum Geology & Engineering, 2019, 33(4): 11-15. | |
37 | 聂银兰,谢庆宾,朱筱敏,等.基于岩相表征的细粒沉积物沉积机制和研究展望[J].断块油气田,2021,28(3):305-310. |
Nie Yinlan, Xie Qingbin, Zhu Xiaomin, et al.The sedimentary mechanism and research prospect of fine grain sediments based on lithofacies characterization[J].Fault⁃Block Oil and Gas Field,2021,28(3):305-310. | |
38 | 周立宏,蒲秀刚,邓远,等.细粒沉积岩研究中几个值得关注的问题[J].岩性油气藏,2016,28(1):6-15. |
Zhou Lihong, Pu Xiugang, Deng Yuan,et al.Several issues in studies on fine⁃grained sedimentary rocks[J].Lithologic Reservoirs,2016,28(1):6-15. | |
39 | 焦鑫,柳益群,杨晚,等.水下火山喷发沉积特征研究进展[J].地球科学进展,2017,32(9):926-936. |
Jiao Xin, Liu Yiqun, Yang Wan,et al.Progress on sedimentation of subaqueous volcanic eruption[J].Advances in Earth Science,2017,32(9):926-936. | |
40 | 侯读杰,冯子辉.油气地球化学[M].北京:石油工业出版社,2011. |
Hou Dujie, Feng Zihui.Petroleum geochemistry[M].Beijing:Petroleum Industry Press,2011. | |
41 | Tissot B P, Welte D H.Petroleum formation and occurrence[M]. Heidelberg: Springer⁃verlag, 1978. |
42 | Lin I I, Hu C M, Li Y H, et al. Fertilization potential of volcanic dust in the low⁃nutrient low⁃chlorophyll western North Pacific subtropical gyre: Satellite evidence and laboratory study[J].Global Biogeochemical Cycles, 2011, 25 (1) :1-12. |
43 | Langmann B, Zaksek K, Hort M,et al.Volcanic ash as fertiliser for the surface ocean[J].Atmospheric Chemistry and Physics,2010,10:3891-3899. |
44 | Zhang R, Jiang T, Tian Y,et al .Volcanic ash stimulates growth of marine autotrophic and heterotrophic microorganisms[J]. Geology, 2017,45,479-682. |
45 | 李长志,郭佩,柯先启,等.火山活动影响下的碱湖优质烃源岩成因及其对页岩油气勘探和开发的启示[J].石油与天然气地质,2021, 42(6):1423-1434. |
Li Changzhi, Guo Pei, Ke Xianqi,et al.Genesis of high⁃quality source rocks in volcano⁃related alkaline lakes and implications for the exploration and development of shale oil and gas[J].Oil & Gas Geology,2021,42(6):1423-1434. | |
46 | 李登华,李建忠,黄金亮,等.火山灰对页岩油气成藏的重要作用及其启示[J].天然气工业,2014,34(5):56-65. |
Li Denghua, Li Jianzhong, Huang Jinliang,et al.An important role of volcanic ash in the formation of shale plays and its inspiration[J].Natural Gas Industry, 2014,34(5):56-65. | |
47 | 常晓琳,黄元耕,陈中强,等.沉积地层中草莓状黄铁矿分析方法及其在古海洋学上的应用[J].沉积学报,2020,38(1):150-165. |
Chang Xiaolin, Huang Yuangeng, Chen Zhongqiang,et al.The Microscopic analysis of pyrite framboids and application in paleo⁃oceanography[J].Acta Sedimentologica Sinica,2020,38(1):150-165. | |
48 | David P G. Bond P B. Wignall M M. An abrupt extinction in the Middle Permian (Capitanian) of the Boreal Realm (Spitsbergen) and its link to anoxia and acidification[J]. Geological Society of America Bulletin,2015,127(9-10):1411-1421. |
49 | 邱振,卢斌,陈振宏 等.火山灰沉积与页岩有机质富集关系探讨——以五峰组-龙马溪组含气页岩为例[J].沉积学报,2019,37(6):1296-1308. |
Qiu Zhen, Lu Bin, Chen Zhenhong,et al.Discussion of the relationship between volcanic ash layers and organic enrichment of black shale: A case study of the Wufeng⁃Longmaxi gas shales in the Sichuan Basin[J].Acta Sedimentologica Sinica,2019,37(6):1296-1308. | |
50 | 邱振,韦恒叶,刘翰林,等.异常高有机质沉积富集过程与元素地球化学特征[J].石油与天然气地质,2021, 42(4):931-948. |
Qiu Zhen, Wei Hengye, Liu Hanlin,et al.Accumulation of sediments with extraordinary high organic matter content: Insight gained through geochemical characterization of indicative elements[J].Oil & Gas Geology,2021, 42(4):931-948. | |
51 | 孔祥鑫,姜在兴,韩超,等.束鹿凹陷沙三段下亚段细粒碳酸盐纹层特征与储集意义[J].油气地质与采收率,2016,23(4):19-26. |
Kong Xiangxin, Jiang Zaixing, Han Chao,et al.Laminations chara⁃cteristics and reservoir significance of fine⁃grained carbonate in the lower 3rd member of Shahejie Formation of Shulu Sag[J].Petroleum Geology and Recovery Efficiency,2016,23(4):19-26. | |
52 | 朱光有,金强,张水昌,等.济阳坳陷东营凹陷古近系沙河街组深湖相油页岩的特征及成因[J].古地理学报,2005,7(1):59-69. |
Zhu Guangyou, Jin Qiang, Zhang Shuichang,et al.Characteristics and origin of deep lake oil shale of the Shahejie formation of paleogene in Dongying Sag,Jiyang Depression[J].Journal of palaeogeography,2005,7(1):59-69. | |
53 | Jiao X, Liu Y Q, Wan Y,et al. Fine⁃grained volcanic⁃hydrothermal sedimentary rocks in Permian Lucaogou Formation, Santanghu Basin, NW China: Implications on hydrocarbon source rocks and accumulation in lacustrine rift basins[J]. Marine and Petroleum Geology,2020,114:104201. |
54 | 石万忠,孟福林,王晓龙,等.松辽盆地南部孤店断陷火石岭组烃源岩评价及预测[J].石油学报,2018,39(12):1344-1354,1388. |
Shi Wanzhong, Meng Fulin, Wang Xiaolong,et al.The evaluation and prediction of source rocks in Huoshiling Formation of Gudian fault depression,south of Songliao Basin[J].Acta Petrolei Sinica,2018,39(12):1344-1354,1388. | |
55 | 翟庆龙.火山热液活动对烃源岩生排烃的作用——以东营凹陷西部沙三段为例[J].油气地质与采收率,2003,10(3):19-21,3. |
Zhai Qinglong.Effect of volcanic hydrothermal fluid activities on hydrocarbon generation and expulsion from source rocks-taking Es 3 of the western Dongying Sag as example[J].Petroleum Geology and Recovery Efficiency,2003,10(3):19-21,3. |
[1] | Tongfei HUANG, Guangya ZHANG, Beiwei LUO, Zhihua YU, Lei ZHANG, Zhiliang HE, Guoping BAI, Jiquan YIN, Houqin ZHU, Jinyin YIN, Jianhuan YAO. Cretaceous prototype basins and lithofacies paleogeography in the Tethyan domain and their role in hydrocarbon accumulation [J]. Oil & Gas Geology, 2024, 45(3): 658-672. |
[2] | Zhiyong GAO, Yongping WU, Zhaolong LIU, Cong WEI, Yongzhong ZHANG, Cuili WANG, Qunming LIU. Development model and significance of favorable lithofacies association of sandy braided river facies of the Cretaceous Bashijiqike Formation in Zhongqiu 1 well block, Kuqa Depression, Tarim Basin [J]. Oil & Gas Geology, 2023, 44(5): 1141-1158. |
[3] | Jianping Fan, Jinmin Song, Qingchun Jiang, Shugen Liu, Yuehao Ye, Shipeng Huang, Jiarui Wang, Wang Su, Liji Li, Xin Jin, Yuxiang Feng. Reservoir characteristics and development model of the Middle Permian Mao-1 Member in eastern Sichuan Basin [J]. Oil & Gas Geology, 2022, 43(6): 1413-1430. |
[4] | Zaixing Jiang, Yunzeng Wang, Li Wang, Xiangxin Kong, Yepeng Yang, Jianguo Zhang, Xinyu Xue. Review on provenance, transport-sedimentation dynamics and multi-source hydrocarbon sweet spots of continental fine-grained sedimentary rocks [J]. Oil & Gas Geology, 2022, 43(5): 1039-1048. |
[5] | Shengjun Wang, Yongliang Tang, Songbai Zhu, Wei Xie, Changan Shan, Yanbo Nie, Yong Wang, Yimin Wang, Guojun Jiang, Jianbo Shao, Congchen Ye. High-resolution sequence stratigraphy of the third member of Cretaceous Bashijiqike Formation in a typical outcrop section,northern Kuqa Depression, Tarim Basin [J]. Oil & Gas Geology, 2022, 43(4): 804-822. |
[6] | Qingfan Zhou. Discussion on key issues of shale oil/gas resource assessment [J]. Oil & Gas Geology, 2022, 43(1): 26-33. |
[7] | Xianyu Mao, Benbiao Song, Rubing Han, Changbing Tian, Baozhu Li, Haiqiang Song. Depositional characteristics of tidal channel facies in carbonate ramp of the Cretaceous Mishrif Formation in southern Iraq [J]. Oil & Gas Geology, 2020, 41(6): 1233-1243, 1256. |
[8] | Yue Gong, Zhiqiang Feng, Changwu Wu, Naxin Tian, Tianbi Ma, Dapeng Wang, Chongzhi Tao, Weiyuan Gao. Sedimentary system of the Cretaceous terrigenous clastics and its controlling factors in Senegal Basin, northern West Africa [J]. Oil & Gas Geology, 2020, 41(6): 1244-1256. |
[9] | Xixian Wang. Characteristics and hydrocarbon accumulation pattern of heavy oil reservoir of fracture-pore limestone in EBANO oilfield, Mexico [J]. Oil & Gas Geology, 2020, 41(2): 416-422. |
[10] | Wang Ya, Yang Shaochun, Lu Yan, Ma Baoquan, Zhao Yongfu, Wang Yongchao. Characteristics and controlling factors of effective reservoirs of Mesozoic low-permeability clastic rocks in Gaoqing Region,Dongying Depression, Bohai Bay Basin,China [J]. Oil & Gas Geology, 2019, 40(2): 271-283. |
[11] | Chen Zhipeng, Ren Zhanli, Cui Junping, Qi Kai, Zhang Yuanyuan, Yu Chunyong, Ren Wenbo, Yang Guiling, Liu Runchuan. Age and petroleum geological implications of prolific formations in Ha'ri Depression Well YHC1,Yin'e Basin [J]. Oil & Gas Geology, 2019, 40(2): 354-368. |
[12] | Wang Xiuping, Mou Chuanlong, Xiao Zhaohui, Chen Yao, Wang Qiyu. Petrologic characteristics and genesis analysis of the Ordovician Wufeng Formation-Silurian Longmaxi Formation in Laifeng-Xianfeng area of western Hubei [J]. Oil & Gas Geology, 2019, 40(1): 50-66. |
[13] | Zhou Jian, Shan Xuanlong, Hao Guoli, Zhao Rongsheng, Chen Peng. Geochemical characteristics of Cretaceous source rocks and oil-source correlation in the Songjiang Basin [J]. Oil & Gas Geology, 2018, 39(3): 578-586. |
[14] | Ma Pinghua, Shao Xianjie, Huo Mengying, Chu Qingzhong, Huo Chunliang, Liang Wubin. Concepts and methods for coalbed geology modeling: A case study in the Hancheng mining area,Southeastern margin of Ordos Basin [J]. Oil & Gas Geology, 2018, 39(3): 601-610. |
[15] | Ma Anlai, Sun Hongjun, Zheng Lei, Li Yuzhan, Xu Hai, Zhang Zhongming. A study on forming mechanisms of CO2-rich reservoirs in Jupiter oilfield,Santos Basin,Brazil [J]. Oil & Gas Geology, 2017, 38(2): 371-378. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||