Oil & Gas Geology ›› 2023, Vol. 44 ›› Issue (3): 553-564.doi: 10.11743/ogg20230303
• Petroleum Geology • Previous Articles Next Articles
Dongwei LI1,2(), Chenglin GONG1,2(), Lin HU3, Xiaohu HE3, Quanyuan LUO3
Received:
2023-02-04
Revised:
2023-04-01
Online:
2023-06-01
Published:
2023-06-05
Contact:
Chenglin GONG
E-mail:dongweilip2p@hotmail.com;chenglingong@cup.edu.cn
CLC Number:
Dongwei LI, Chenglin GONG, Lin HU, Xiaohu HE, Quanyuan LUO. Hierarchical division and fine architectural depiction of the interior of deep-water channel deposits[J]. Oil & Gas Geology, 2023, 44(3): 553-564.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Characteristics and interpretation of different facies belts in the channel-complex set"
相带单元 | 地震反射剖面 | 岩性 | 沉积过程 | 规模 | 剖面特点 |
---|---|---|---|---|---|
底部滞留 | 砂岩、含砾 砂岩 | 重力流侵蚀下切形成水道雏形之后,重力流粗粒组分在水道最深谷底线两翼滞留堆积而形成的沉积 | 厚度约十余米,宽度可达数百米 | 强振幅、低频、连续反射,通常无法识别凸起特征 | |
轴部充填 | 砂岩为主, 含砂率最高 | 浓度较大、粒度较粗、密度较大、限定性较强的底部高密度浊流多次冲刷滞留后形成的沉积 | 沿水道主体分布,宽度可达上千米,厚度可达数百米 | 透镜状强振幅、中-低频、中-低连续充填反射,通常具备向上凸起特点 | |
轴部侧翼沉积 | 砂、泥岩均有发育 | 沟道化浊流底部高密度组分和限定性较弱的低密度浊流多次冲刷沉积在水道翼部的沉积充填 | 与轴部充填伴生,宽度可达上千米,厚度可达数百米 | 不规则状中-弱振幅、中-低频、中-低连续反射,通常不具备向上凸起特点 | |
滑塌碎屑流沉积 | 砂岩、泥岩 混杂 | 粗细混杂、快速搬运堆积的块体流沉积 | 局部发育,宽度可达数百米,厚度数十米 | 杂乱地震反射,局部可见倾斜或揉皱变形 | |
水道泥 | 泥岩为主 | 浓度较小、密度较小、粒度较细、限定性较弱的低密度浊流形成的沉积 | 沿水道主体分布,宽度可达上千米,厚度可达数百米 | 弱振幅、高频、中-高连续透明反射 | |
天然堤 | 泥岩 | 浓度较小、粒度较细、密度较小、限定性较弱的低密度浊流溢岸形成的沉积 | 沿水道两翼分布,宽度可达上百米,厚度可达数十米 | 楔状弱振幅、低频、中-高连续反射 | |
砂质水道充填 | 砂质充填 为主 | 浓度较大、粒度较粗、密度较大、限定性较强的底部高密度浊流多次冲刷滞留后形成的沉积 | 沿水道主体分布,宽度可达上千米,厚度可达数百米 | 透镜状强振幅、中-低频、中连续充填反射 | |
泥质水道充填 | 泥质充填 为主 | 浓度较小、密度较小、粒度较细、限定性较弱的低密度浊流形成的沉积 | 沿水道主体分布,宽度可达上千米,厚度可达数百米 | 楔状弱振幅、低频、中-高连续反射 |
1 | CLARK J D, PICKERING K T. Architectural elements and growth patterns of submarine channels: Application to hydrocarbon exploration[J]. AAPG Bulletin, 1996, 80(2): 194-220. |
2 | PEAKALL B J, MCCAFFREY B, KNELLER B. A process model for the evolution, morphology, and architecture of sinuous submarine channels[J]. Journal of Sedimentary Research, 2000, 70(3): 434-448. |
3 | MAYALL M, JONES E, CASEY M. Turbidite channel reservoirs—Key elements in facies prediction and effective development[J]. Marine and Petroleum Geology, 2006, 23(8): 821-841. |
4 | ALPAK F O, BARTON M D, NARUK S J. The impact of fine-scale turbidite channel architecture on deep-water reservoir performance[J]. AAPG Bulletin, 2013, 97(2): 251-284. |
5 | GONG Chenglin, WANG Yingmin, ZHU Weilin, et al. Upper Miocene to Quaternary unidirectionally migrating deep-water channels in the Pearl River Mouth Basin, northern South China Sea[J]. AAPG Bulletin, 2013, 97(2): 285-308. |
6 | GONG Chenglin, STEEL R J, QI Kun, et al. Deep-water channel morphologies, architectures, and population densities in relation to stacking trajectories and climate states[J]. GSA Bulletin, 2021, 133(1/2): 287-306. |
7 | 李华, 何幼斌. 深水重力流水道沉积研究进展[J]. 古地理学报, 2020, 22(1): 161-174. |
LI Hua, HE Youbin. Research progress on deepwater gravity flow channel deposit[J]. Journal of Palaeogeography, 2020, 22(1): 161-174. | |
8 | 赵晓明, 刘飞, 葛家旺, 等. 深水水道沉积构型单元分级与结构样式[J]. 沉积学报, 2023, 41(1): 37-51. |
ZHAO Xiaoming, LIU Fei, GE Jiawang, et al. Sedimentary architecture unit classification and structural style of deep-water channels[J]. Acta Sedimentologica Sinica, 2023, 41(1): 37-51. | |
9 | 童晓光, 张光亚, 王兆明, 等. 全球油气资源潜力与分布[J]. 石油勘探与开发, 2018, 45(4): 727-736. |
TONG Xiaoguang, ZHANG Guangya, WANG Zhaoming, et al. Distribution and potential of global oil and gas resources[J]. Petroleum Exploration and Development, 2018, 45(4): 727-736. | |
10 | KOLLA V, POSAMENTIER H W, WOOD L J. Deep-water and fluvial sinuous channels—Characteristics, similarities and dissimilarities, and modes of formation[J]. Marine and Petroleum Geology, 2007, 24(6/9): 388-405. |
11 | MCARTHUR A D, KNELLER B C, SOUZA P A, et al. Characterization of deep-marine channel-levee complex architecture with palynofacies: An outcrop example from the Rosario Formation, Baja California, Mexico[J]. Marine and Petroleum Geology, 2016, 73: 157-173. |
12 | DEPTUCK M E, SYLVESTER Z. Submarine fans and their channels, levees, and lobes[M]//MICALLEF A, KRASTEL S, SAVINI A. Submarine Geomorphology. Cham: Springer, 2018: 273-299. |
13 | HE Zhiguo, ZHAO Liang, HU Peng, et al. Investigations of dynamic behaviors of lock-exchange turbidity currents down a slope based on direct numerical simulation[J]. Advances in Water Resources, 2018, 119: 164-177. |
14 | THOTA S T, ISLAM M A, SHALABY M R. Reservoir quality evaluation using sedimentological and petrophysical characterization of deep-water turbidites: A case study of Tariki Sandstone Member, Taranaki Basin, New Zealand[J]. Energy Geoscience, 2023, 4(1): 13-32. |
15 | 李华, 何幼斌, 谈梦婷, 等. 深水重力流水道-朵叶体系形成演化及储层分布——以鄂尔多斯盆地西缘奥陶系拉什仲组露头为例[J]. 石油与天然气地质, 2022, 43(4): 917-928. |
LI Hua, HE Youbin, TAN Mengting, et al. Evolution of and reservoir distribution within deep-water gravity flow channel-lobe system: A case study of the Ordovician Lashenzhong Formation outcrop at western margin of Ordos Basin[J]. Oil & Gas Geology, 2022, 43(4): 917-928. | |
16 | 孙辉, 范国章, 邵大力, 等. 深水局部限制型水道复合体沉积特征及其对储层性质的影响——以东非鲁武马盆地始新统为例[J]. 石油与天然气地质, 2021, 42(6): 1440-1450. |
SUN Hui, FAN Guozhang, SHAO Dali, et al. Depositional characteristics of locally restricted channel complex in deep water and its influence on reservoir properties: A case study of the Eocene series, Rovuma Basin[J]. Oil & Gas Geology, 2021, 42(6): 1440-1450. | |
17 | 张文彪, 陈志海, 刘志强, 等. 深水水道形态定量分析及沉积模拟——以西非Gengibre油田为例[J]. 石油学报, 2015, 36(1): 41-49. |
ZHANG Wenbiao, CHEN Zhihai, LIU Zhiqiang, et al. Morphology quantitative analysis and simulation of deepwater channel: A case study of Gengibre Oilfield in West Africa[J]. Acta Petrolei Sinica, 2015, 36(1): 41-49. | |
18 | 李全, 吴伟, 康洪全, 等. 西非下刚果盆地深水水道沉积特征及控制因素[J]. 石油与天然气地质, 2019, 40(4): 917-929. |
LI Quan, WU Wei, KANG Hongquan, et al. Characteristics and controlling factors of deep-water channel sedimentation in Lower Congo Basin, West Africa[J]. Oil & Gas Geology, 2019, 40(4): 917-929. | |
19 | 陈华, 林畅松, 张忠民, 等. 西非下刚果—刚果扇盆地A区块中新统深水水道体系沉积特征及演化[J]. 石油实验地质, 2021, 43(3): 476-486. |
CHEN Hua, LIN Changsong, ZHANG Zhongmin, et al. Depositional characteristics and evolution of Miocene deep-water channel systems in Block A of Lower Congo-Congo Fan Basin, West Africa[J]. Petroleum Geology and Experiment, 2021, 43(3): 476-486. | |
20 | PICKERING K T, CANTALEJO B. Deep-marine environments of the Middle Eocene Upper Hecho Group, Spanish Pyrenees: Introduction[J]. Earth-Science Reviews, 2015, 144: 1-9. |
21 | SYLVESTER Z, PIRMEZ C, CANTELLI A. A model of submarine channel-levee evolution based on channel trajectories: Implications for stratigraphic architecture[J]. Marine and Petroleum Geology, 2011, 28(3): 716-727. |
22 | JOBE Z R, HOWES N C, AUCHTER N C. Comparing submarine and fluvial channel kinematics: Implications for stratigraphic architecture[J]. Geology, 2016, 44(11): 931-934. |
23 | NAVARRE J C, CLAUDE D, LIBERELLE E, et al. Deepwater turbidite system analysis, West Africa: Sedimentary model and implications for reservoir model construction[J]. The Leading Edge, 2002, 21(11): 1132-1139. |
24 | WYNN R B, CRONIN B T, PEAKALL J. Sinuous deep-water channels: Genesis, geometry and architecture[J]. Marine and Petroleum Geology, 2007, 24(6/9): 341-387. |
25 | STRIGHT L, STEWART J, CAMPION K, et al. Geologic and seismic modeling of a coarse-grained deep-water channel reservoir analog (Black’s Beach, La Jolla, California)[J]. AAPG Bulletin, 2014, 98(4): 695-728. |
26 | MUTTI E, NORMARK W R. Comparing examples of modern and ancient turbidite systems: Problems and concepts[M]//LEGGETT J K, ZUFFA G G. Marine Clastic Sedimentology: Concepts and Case Studies. Dordrecht: Springer, 1987: 1-38. |
27 | SPRAGUE A R G, GARFIELD T R, GOULDING F J, et al. Integrated slope channel depositional models: The key to successful prediction of reservoir presence and quality in offshore West Africa[C]. Veracruz: CIPM, 2005: 1-13. |
28 | CAMPBELL C V. Lamina, laminaset, bed and bedset[J]. Sedimentology, 1967, 8(1): 7-26. |
29 | BOUMA A H. Sedimentology of some Flysch deposits; a graphic approach to facies interpretation[M]. Amsterdam: Elsevier, 1962: 168. |
30 | JANOCKO M, NEMEC W, HENRIKSEN S, et al. The diversity of deep-water sinuous channel belts and slope valley-fill complexes[J]. Marine and Petroleum Geology, 2013, 41: 7-34. |
31 | MAYALL M, KNELLER B. Seismic interpretation workflows for deep-water systems: A practical guide for the subsurface[J]. AAPG Bulletin, 2021, 105(11): 2127-2157. |
32 | 蔡露露, 刘春成, 吕明, 等. 西非下刚果盆地深水水道发育特征及沉积储层预测[J]. 中国海上油气, 2016, 28(2): 60-70. |
CAI Lulu, LIU Chuncheng, Ming LYU, et al. The development characteristics of deep water channel and sedimentary reservoir prediction in Lower Congo Basin, West Africa[J]. China Offshore Oil and Gas, 2016, 28(2): 60-70. |
[1] | Liqing ZHOU, Donghui JIANG, Pengcheng YANG, Rufeng ZHANG, Xin DONG, Yadi SANG. Philosophy and potential breakthroughs for hydrocarbon exploration in block LS13-2 on the northern slope of the Lingshui Sag, Qiongdongnan Basin [J]. Oil & Gas Geology, 2024, 45(3): 673-683. |
[2] | Zicheng CAO, Lu YUN, Lixin QI, Haiying LI, Jun HAN, Feng GENG, Bo LIN, Jingping CHEN, Cheng HUANG, Qingyan MAO. A major discovery of hydrocarbon-bearing layers over 1,000-meter thick in well Shunbei 84X, Shunbei area, Tarim Basin and its implications [J]. Oil & Gas Geology, 2024, 45(2): 341-356. |
[3] | Chao FU, Yuhong XIE, Yuchu ZHAO, Hui WANG, Zhiwang YUAN, Wei XU, Guoning CHEN. Types and distribution patterns of complex turbidite sandstone reservoirs in the upper reaches of deep-water canyons—A case study of the Lingshui gas field in the Central Canyon of Qiongdongnan Basin [J]. Oil & Gas Geology, 2024, 45(2): 516-529. |
[4] | Rui LI, Jiao YANG, Yukun CHAI, Hua WANG, Jianwen DAI, Yonghui DENG, Shuang SUN, Xiaolin MA, Tengfei TIAN. A novel sedimentary pattern of wave-induced sandbars under high-angle wave incidence [J]. Oil & Gas Geology, 2024, 45(2): 530-541. |
[5] | Hongguo ZHANG, Haifeng YANG, Wen SU, Chunqiang XU, Zhi HUANG, Yanjun CHENG. Key stages in hydrocarbon migration and accumulation in layers outside source rocks and the evaluation methods related: A case study of the lower member of the Minghuazhen Formation, Bozhong Sag, Bohai Bay Basin [J]. Oil & Gas Geology, 2024, 45(1): 281-292. |
[6] | Dujie HOU, Keqiang WU, Li YOU, Ziming ZHANG, Yajun LI, Xiaofeng XIONG, Min XU, Xiazhe YAN, Weihe CHEN, Xiong CHENG. Organic matter enrichment mechanisms of terrigenous marine source rocks in the Qiongdongnan Basin [J]. Oil & Gas Geology, 2024, 45(1): 31-43. |
[7] | Li YOU, Yongbin QUAN, Lei TUO, Changyu TENG, Gaokun ZUO. Natural gas sources and migration pathways of the Baodao 21-1 gas field in the deep-water area of the Qiongdongnan Basin [J]. Oil & Gas Geology, 2023, 44(5): 1270-1278. |
[8] | Hongtao ZHU, Changgui XU, Xiaofeng DU, Qianghu LIU, Zhongheng SUN, Zhiwei ZENG. Quantitative reconstruction, hierarchical division and coupling mode establishment for ancient source-to-sink systems in continental basins [J]. Oil & Gas Geology, 2023, 44(3): 539-552. |
[9] | Mingcai HOU, Xiaohu HE, Qiuyue JIN, Haiyang CAO, Liwen HE, Youyuan QUE, Anqing CHEN. Factors controlling the formation and distribution of Mesozoic buried hill reservoirs in the Qiongdongnan Basin [J]. Oil & Gas Geology, 2023, 44(3): 637-650. |
[10] | Keqiang WU, Xinong XIE, Jianxiang PEI, Jianye REN, Li YOU, Tao JIANG, Yongbin QUAN. Deep architecture of hyperextended marginal basin and implications for hydrocarbon exploration:A case study of Qiongdongnan Basin [J]. Oil & Gas Geology, 2023, 44(3): 651-661. |
[11] | Yueyi HUANG, Yuhong LIAO, Chengsheng CHEN, Shuyong SHI, Yunpeng WANG, Ping’an PENG. Numerical simulation and prediction of hydrocarbon phase evolution of wells Shunnan 1 and 4, Tarim Basin [J]. Oil & Gas Geology, 2023, 44(1): 138-149. |
[12] | Zengxue Li, Ying Liu, Xiaojing Li, Gongcheng Zhang, Rui Sun, Dongdong Wang, Lusheng Yin, Jiamin Liu. The control of Paleogene peat swamp destruction and reconstruction on the formation of coal-type source material in the Qiongdongnan Basin [J]. Oil & Gas Geology, 2022, 43(6): 1309-1320. |
[13] | Hu Xun, Yin Yanshu, Feng Wenjie, Wang Lixin, Duan Taizhong, Zhao Lei, Zhang Wenbiao. Establishment of training images of turbidity channels in deep waters and application of multi-point geostatistical modeling [J]. Oil & Gas Geology, 2019, 40(5): 1126-1134. |
[14] | Li Quan, Wu Wei, Kang Hongquan, Ren Shijun, Pang Lin'an, Yang Ting, Cai Lulu, Liu Xiaolong. Characteristics and controlling factors of deep-water channel sedimentation in Lower Congo Basin, West Africa [J]. Oil & Gas Geology, 2019, 40(4): 917-929. |
[15] | Liu Ying, Liu Haiyan, Yang Haizhang, Wang Dongdong, Song Guangzeng, Lyu Dawei, Chen Ying, Li Zengxue. Types and characteristics of Paleogene coal-forming sedimentary systems in Qiongdongnan Basin [J]. Oil & Gas Geology, 2019, 40(1): 142-151. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||