Oil & Gas Geology ›› 2023, Vol. 44 ›› Issue (3): 539-552.doi: 10.11743/ogg20230302
• Petroleum Geology • Previous Articles Next Articles
Hongtao ZHU1(), Changgui XU2, Xiaofeng DU3, Qianghu LIU1, Zhongheng SUN1, Zhiwei ZENG1
Received:
2023-02-13
Revised:
2023-03-19
Online:
2023-06-01
Published:
2023-06-05
CLC Number:
Hongtao ZHU, Changgui XU, Xiaofeng DU, Qianghu LIU, Zhongheng SUN, Zhiwei ZENG. Quantitative reconstruction, hierarchical division and coupling mode establishment for ancient source-to-sink systems in continental basins[J]. Oil & Gas Geology, 2023, 44(3): 539-552.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | HELLAND-HANSEN W, SØMME T O, MARTINSEN O J, et al. Deciphering earth’s natural hourglasses: Perspectives on source-to-sink analysis[J]. Journal of Sedimentary Research, 2016, 86(9): 1008-1033. |
2 | 杨元合, 石岳, 孙文娟, 等. 中国及全球陆地生态系统碳源汇特征及其对碳中和的贡献[J]. 中国科学: 生命科学, 2022, 52(4): 534-574. |
YANG Yuanhe, SHI Yue, SUN Wenjuan, et al. Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality[J]. Scientia Sinica(Vitae), 2022, 52(4): 534-574. | |
3 | WALSH J P, WIBERG P L, AALTO R, et al. Source-to-sink research: Economy of the earth’s surface and its strata[J]. Earth-Science Reviews, 2016, 153: 1-6. |
4 | 刘强虎, 朱筱敏, 李顺利, 等. 沙垒田凸起西部断裂陡坡型源—汇系统[J]. 地球科学, 2017, 42(11): 1883-1896. |
LIU Qianghu, ZHU Xiaomin, LI Shunli, et al. Source-to-sink system of the steep slope fault in the western Shaleitian uplift[J]. Earth Science, 2017, 42(11): 1883-1896. | |
5 | 李顺利, 朱筱敏, 刘强虎, 等. 沙垒田凸起古近纪源—汇系统中有利储层评价与预测[J]. 地球科学, 2017, 42(11): 1994-2009. |
LI Shunli, ZHU Xiaomin, LIU Qianghu, et al. Evaluation and prediction of favorable reservoirs in source-to-sink systems of the Palaeogene, Shaleitian uplift[J]. Earth Science, 2017, 42(11): 1994-2009. | |
6 | 朱红涛, 朱筱敏, 刘强虎,等. 层序地层学与源-汇系统理论内在关联性与差异性[J]. 石油与天然气地质, 2022, 43(4): 763-776. |
ZHU Hongtao, ZHU Xiaomin, LIU Qianghu, et al. Sequence stratigraphy and source-to-sink system: Connections and distinctions[J]. Oil & Gas Geology, 2022, 43(4): 763-776. | |
7 | 朱筱敏, 陈贺贺, 葛家旺, 等. 陆相断陷湖盆层序构型与砂体发育分布特征[J]. 石油与天然气地质, 2022, 43(4): 746-762. |
ZHU Xiaomin, CHEN Hehe, GE Jiawang, et al. Characterization of sequence architectures and sandbody distribution in continental rift basins[J].Oil & Gas Geology, 2022, 43(4): 746-762. | |
8 | 朱红涛, 徐长贵, 朱筱敏, 等. 陆相盆地源—汇系统要素耦合研究进展[J]. 地球科学, 2017, 42(11): 1851-1870. |
ZHU Hongtao, XU Changgui, ZHU Xiaomin, et al. Advances of the source-to-sink units and coupling model research in continental basin[J]. Earth Science, 2017, 42(11): 1851-1870. | |
9 | PRIZOMWALA S P, BHATT N, BASAVAIAH N. Provenance discrimination and source-to-sink studies from a dryland fluvial regime: An example from Kachchh, western India[J]. International Journal of Sediment Research, 2014, 29(1): 99-109. |
10 | LIU J T, HSU R T, HUNG J J, et al. From the highest to the deepest: The Gaoping River-Gaoping Submarine Canyon dispersal system[J]. Earth-Science Reviews, 2016, 153: 274-300. |
11 | SØMME T O, JACKSON C A L. Source-to-sink analysis of ancient sedimentary systems using a subsurface case study from the Møre-Trøndelag area of southern Norway: Part 2-sediment dispersal and forcing mechanisms[J]. Basin Research, 2013, 25(5): 512-531. |
12 | SU Ming, HSIUNG K H, ZHANG Cuimei, et al. The linkage between longitudinal sediment routing systems and basin types in the northern South China Sea in perspective of source-to-sink[J]. Journal of Asian Earth Sciences, 2015, 111: 1-13. |
13 | ZHAO Qian, ZHU Hongtao, ZHANG Xiangtao, et al. Geomorphologic reconstruction of an uplift in a continental basin with a source-to-sink balance: An example from the Huizhou-Lufeng uplift, Pearl River Mouth Basin, South China Sea[J]. Marine and Petroleum Geology, 2021, 128: 104984. |
14 | 庞雄, 彭大钧, 陈长民, 等. 三级 “源-渠-汇” 耦合研究珠江深水扇系统[J]. 地质学报, 2007, 81(6): 857-864. |
PANG Xiong, PENG Dajun, CHEN Changmin, et al. Three hierarchies “source-conduit-sink” coupling analysis of the Pearl River deep-water fan system[J]. Acta Geologica Sinica, 2007, 81(6): 857-864. | |
15 | 林畅松, 夏庆龙, 施和生, 等. 地貌演化、源—汇过程与盆地分析[J]. 地学前缘, 2015, 22(1): 9-20. |
LIN Changsong, XIA Qinglong, SHI Hesheng, et al. Geomorphological evolution, source to sink system and basin analysis[J]. Earth Science Frontiers, 2015, 22(1): 9-20. | |
16 | HINDERER M. From gullies to mountain belts: A review of sediment budgets at various scales[J]. Sedimentary Geology, 2012, 280: 21-59. |
17 | ALLEN P A. From landscapes into geological history[J]. Nature, 2008, 451(7176): 274-276. |
18 | ALLEN P A. Time scales of tectonic landscapes and their sediment routing systems[J]. Geological Society, London, Special Publications, 2008, 296(1): 7-28. |
19 | BARTOL J, MATENCO L, GARCIA-CASTELLANOS D, et al. Modelling depositional shifts between sedimentary basins: Sediment pathways in Paratethys basins during the Messinian Salinity Crisis[J]. Tectonophysics, 2012, 536/537: 110-121. |
20 | BHATTACHARYYA P, BHATTACHARYA J P, KHAN S D. Paleo-channel reconstruction and grain size variability in fluvial deposits, Ferron Sandstone, Notom Delta, Hanksville, Utah[J]. Sedimentary Geology, 2015, 325: 17-25. |
21 | ANTHONY E J, JULIAN M. Source-to-sink sediment transfers, environmental engineering and hazard mitigation in the steep Var River catchment, French Riviera, southeastern France[J]. Geomorphology, 1999, 31(1/4): 337-354. |
22 | BENDA L, DUNNE T. Stochastic forcing of sediment routing and storage in channel networks[J]. Water Resources Research, 1997, 33(12): 2865-2880. |
23 | BRISSET E, MIRAMONT C, ANTHONY E J, et al. Sediment budget quantification of a sub-Alpine river catchment since the end of the last glaciation[J]. Catena, 2014, 114: 169-179. |
24 | CASTELLTORT S, VAN DEN DRIESSCHE J. How plausible are high-frequency sediment supply-driven cycles in the stratigraphic record?[J]. Sedimentary Geology, 2003, 157(1/2): 3-13. |
25 | COVAULT J A, GRAHAM S A. Submarine fans at all sea-level stands: Tectono-morphologic and climatic controls on terrigenous sediment delivery to the deep sea[J]. Geology, 2010, 38(10): 939-942. |
26 | 朱秀, 朱红涛, 曾洪流, 等. 云南洱海现代湖盆源—汇系统划分、特征及差异[J]. 地球科学, 2017, 42(11): 2010-2024. |
ZHU Xiu, ZHU Hongtao, ZENG Hongliu, et al. Subdivision, characteristics, and varieties of the source-to-sink systems of the modern lake Erhai Basin, Yunnan Province[J]. Earth Science, 2017, 42(11): 2010-2024. | |
27 | 徐长贵. 陆相断陷盆地古源-汇时空耦合控砂原理: 基本思想、概念体系及控砂模式[J]. 中国海上油气, 2013, 25(4): 1-11, 21. |
XU Changgui. Controlling sand principle of source-sink coupling in time and space in continental rift basins: Basic idea, conceptual systems and controlling sand models[J]. China Offshore Oil and Gas, 2013, 25(4): 1-11, 21. | |
28 | 龚承林, 齐昆, 徐杰, 等. 深水源—汇系统对多尺度气候变化的过程响应与反馈机制[J]. 沉积学报, 2021, 39(1): 231-252. |
GONG Chenglin, QI Kun, XU Jie, et al. Process-product linkages and feedback mechanisms of deepwater source-to-sink responses to multi-scale climate changes[J]. Acta Sedimentologica Sinica, 2021, 39(1): 231-252. | |
29 | 万延周, 张年念. 东海盆地西湖凹陷花港组物源分析[J]. 长江大学学报(自科版), 2016, 13(35): 24-27. |
WAN Yanzhou, ZHANG Niannian. Analysis on provenance in Huagang Formation of Xihu Depression in the East China Sea basin[J]. Journal of Yangtze University(Natural Science Edition), 2016, 13(35): 24-27. | |
30 | 秦兰芝, 刘金水, 李帅, 等. 东海西湖凹陷中央反转带花港组锆石特征及物源指示意义[J]. 石油实验地质, 2017, 39(4): 498-504, 526. |
QIN Lanzhi, LIU Jinshui, LI Shuai, et al. Characteristics of zircon in the Huagang Formation of the central inversion zone of Xihu Sag and its provenance indication[J]. Petroleum Geology and Experiment, 2017, 39(4): 498-504, 526. | |
31 | 韩志宇, 王非, 师文贝. 沉积岩定年及应用:问题与展望[J]. 沉积学报, 2022, 40(2): 360-379. |
HAN Zhiyu, WANG Fei, SHI Wenbei. Dating and application for sedimentary rocks: Problems and prospects[J]. Acta Sedimentologica Sinica, 2022, 40(2): 360-379. | |
32 | ZHAO Qian, ZHU Hongtao, ZHOU Xinhuai, et al. Continental margin sediment dispersal under geomorphic control in Xihu Depression, East China Sea Shelf Basin[J]. Journal of Petroleum Science and Engineering, 2021, 205: 108738. |
33 | 张青林, 张向涛, 许长海, 等. 裂变径迹热年代学在珠江口盆地渐新统珠海组物源分析中的应用[J]. 古地理学报, 2022, 24(1): 129-138. |
ZHANG Qinglin, ZHANG Xiangtao, XU Changhai, et al. Application of fission track thermochronology in provenance analysis of the Oligocene Zhuhai Formation in Pearl River Mouth Basin[J]. Journal of Palaeogeography, 2022, 24(1): 129-138. | |
34 | 李秋玲, 乔淑卿, 石学法, 等. 北极东西伯利亚陆架沉积物物源: 来自黏土矿物和化学元素的证据[J]. 海洋学报, 2021, 43(3): 76-89. |
LI Qiuling, QIAO Shuqing, SHI Xuefa, et al. Sediment provenance of the East Siberian Arctic Shelf: Evidence from clay minerals and chemical elements[J]. Acta Oceanologica Sinica, 2021, 43(3): 76-89. | |
35 | 呼其图, 关平, 王大华, 等. 柴达木盆地北缘东段中侏罗统物源分析——来自重矿物、元素地球化学及碎屑锆石年代学的证据[J/OL]. 沉积学报: 1-25[2023-02-01]. . |
HU Qitu, GUAN Ping, WANG Dahua, et al. Provenance analysis of the Middle Jurassic in northeastern Qaidam Basin: Evidence from heavy minerals, elemental geochemistry and detrital zircon U-Pb geochronology[J/OL]. Acta Sedimentologica Sinica: 1-25[2023-02-01]. . | |
36 | 马子宁, 韩中鹏, 李亚林, 等. 西藏南部康巴穹隆剥露历史分析: 来自低温热年代学的证据[J]. 沉积与特提斯地质, 2022, 42(2): 300-309. |
MA Zining, HAN Zhongpeng, LI Yalin, et al. Exhumation history of the Kampa dome in the southern Tibet: Evidence from low-temperature thermochronology[J]. Sedimentary Geology and Tethyan Geology, 2022, 42(2): 300-309. | |
37 | 黄勇, 付山岭, 赵成海, 等. 低温热年代学方法及其在矿床学研究中的应用[J]. 矿物岩石地球化学通报, 2021, 40(4): 958-973. |
HUANG Yong, FU Shanling, ZHAO Chenghai, et al. Low-temperature thermochronology and its applications for studying ore deposits[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2021, 40(4): 958-973. | |
38 | MALUSÀ M G, CARTER A, LIMONCELLI M, et al. Bias in detrital zircon geochronology and thermochronometry[J]. Chemical Geology, 2013, 359: 90-107. |
39 | 李小犁. 电子探针分析锆石Hf和Ti含量的结果意义与技术优势[J]. 岩矿测试, 2023, 42(1): 89-101. |
LI Xiaoli. Electron probe microanalysis of Hf and Ti in zircon: Significance and advantage[J]. Rock and Mineral Analysis, 2023, 42(1): 89-101. | |
40 | SAYLOR J E, SUNDELL K E, SHARMAN G R. Characterizing sediment sources by non-negative matrix factorization of detrital geochronological data[J]. Earth and Planetary Science Letters, 2019, 512: 46-58. |
41 | SUNDELL K E, SAYLOR J E. Unmixing detrital geochronology age distributions[J]. Geochemistry, Geophysics, Geosystems, 2017, 18(8): 2872-2886. |
42 | VERMEESCH P. Multi-sample comparison of detrital age distributions[J]. Chemical Geology, 2013, 341: 140-146. |
43 | VERMEESCH P, RESENTINI A, GARZANTI E. An R package for statistical provenance analysis[J]. Sedimentary Geology, 2016, 336: 14-25. |
44 | BOJAR A V, BOJAR H P, OTTNER F, et al. Heavy mineral distributions of Maastrichtian deposits from the Haţeg Basin, South Carpathians: Tectonic and palaeogeographic implications[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 293(3/4): 319-328. |
45 | GARZANTI E, ANDÒ S. Chapter 29 plate tectonics and heavy mineral suites of modern sands[J]. Developments in Sedimentology, 2007, 58: 741-763. |
46 | MORTON A C, HALLSWORTH C. Identifying provenance-specific features of detrital heavy mineral assemblages in sandstones[J]. Sedimentary Geology, 1994, 90(3/4): 241-256. |
47 | WELTJE G J. Quantitative analysis of detrital modes: Statistically rigorous confidence regions in ternary diagrams and their use in sedimentary petrology[J]. Earth-Science Reviews, 2002, 57(3/4): 211-253. |
48 | ZHU Hongtao, ZENG Zhiwei, ZENG Hongliu, et al. 3D seismic data attribute-based characterization of volcanic reservoirs in the BZ34-9 Block, Bohai Bay Basin, eastern China[J]. Geophysics, 2020, 85(3): IM1-IM13. |
49 | ZHAO Qian, ZHU Hongtao, ZHOU Xinhuai, et al. Tidal sand ridges seismic identification and its application in the Xihu Depression, East China Sea Shelf Basin: Enlightenment to hydrocarbon exploration[J]. Journal of Petroleum Science and Engineering, 2022, 212: 110246. |
50 | LI Guangxue, LI Pin, LIU Yong, et al. Sedimentary system response to the global sea level change in the East China seas since the last glacial maximum[J]. Earth-Science Reviews, 2014, 139: 390-405. |
51 | SØMME T O, HELLAND-HANSEN W, MARTINSEN O J, et al. Relationships between morphological and sedimentological parameters in source-to-sink systems: A basis for predicting semi-quantitative characteristics in subsurface systems[J]. Basin Research, 2009, 21(4): 361-387. |
52 | 任晓海, 刘子平, 周一博, 等. 威远地区龙马溪组地层沉积古地貌恢复及其意义[C]//第32届全国天然气学术年会(2020)论文集. 重庆: 中国石油学会天然气专业委员会, 2020: 407-413. |
REN Xiaohai, LIU Ziping, ZHOU Yibao, et al. Restoration of sedimentary palaeogeomorphology of Longmaxi Formation in Weiyuan area and its significance[C]//Proceedings of the 32nd National Natural Gas Academic Annual Conference (2020). Chongqing: Natural Gas Professional Committee of China Petroleum Institute, 2020: 407-413. | |
53 | 程逸凡, 董艳蕾, 朱筱敏, 等. 准噶尔盆地春光探区白垩纪古地貌恢复及其控砂机制[J]. 古地理学报, 2020, 22(6): 1127-1142. |
CHENG Yifan, DONG Yanlei, ZHU Xiaomin, et al. Cretaceous paleogeomorphology restoration and its controlling mechanism on sand-bodies in Chunguang exploration area, Junggar Basin[J]. Journal of Palaeogeography, 2020, 22(6): 1127-1142. | |
54 | 刘国志. 古地貌恢复方法及过程——以渤海湾Z构造为例[J]. 中国石油和化工标准与质量, 2020, 40(11): 155-156. |
LIU Guozhi. Restoration methods and process of paleogeomorphology: A case study of Z structure in Bohai Bay[J]. China Petroleum and Chemical Standard and Quality, 2020, 40(11): 155-156. | |
55 | 王红岩. 西湖凹陷曲流河三角洲古地貌恢复及沉积特征[J]. 成都理工大学学报(自然科学版), 2020, 47(3): 318-327. |
WANG Hongyan. Paleogeomorphic restoration and sedimentary characteristics of meandering river delta in Xihu Depression, East China Sea[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2020, 47(3): 318-327. | |
56 | 张晨, 李进步, 陈存良, 等. 苏里格东南区古地貌恢复及其与气水分布关系[J]. 西安科技大学学报, 2019, 39(3): 498-506. |
ZHANG Chen, LI Jinbu, CHEN Cunliang, et al. Palaeogeomorphologic restoration and relation to the distribution of gas and water in the southeast of Sulige area[J]. Journal of Xi’an University of Science and Technology, 2019, 39(3): 498-506. | |
57 | 左丽群. 古地貌恢复方法综述[J]. 石油地质与工程, 2019, 33(3): 12-16, 21. |
ZUO Liqun. Review on methods of paleo-geomorphologic restoration[J]. Petroleum Geology and Engineering, 2019, 33(3): 12-16, 21. | |
58 | 李媛, 丁文秀, 林松. 基于钻井和地震数据恢复福山凹陷古地貌[J]. 大地测量与地球动力学, 2021, 41(9): 945-948. |
LI Yuan, DING Wenxiu, LIN Song. Restoration of paleogeomorphology in Fushan Sag based on drilling and seismic data[J]. Journal of Geodesy and Geodynamics, 2021, 41(9): 945-948. | |
59 | 袁慧, 吴晓明, 谭成仟, 等. 鄂尔多斯盆地洪德地区侏罗系古地貌恢复与油气成藏特征[J]. 桂林理工大学学报, 2021, 41(4): 752-759. |
YUAN Hui, WU Xiaoming, TAN Chengqian, et al. Paleogeomorphology restoration and hydrocarbon accumulation characteristics of Jurassic in Hongde area, Ordos Basin[J]. Journal of Guilin University of Technology, 2021, 41(4): 752-759. | |
60 | 王振嘉, 张子为, 张延斌, 等. 靖边气田岩溶古地貌精细恢复及有利储层评价[J]. 内蒙古石油化工, 2021, 47(11): 113-117. |
WANG Zhenjia, ZHANG Ziwei, ZHANG Yanbin, et al. Detailed recovery of the karst paleogeomorphology in Jingbian gas field and its favorable reservoir evaluation[J]. Inner Mongolia Petrochemical Industry, 2021, 47(11): 113-117. | |
61 | AMIN I E, JACOBS A M. Accounting for sediment sources and sinks in the linear regression analysis of the suspended sediment load of streams: The Rio Puerco, New Mexico, as an example[J]. Environmental Geosciences, 2007, 14(1): 1-14. |
62 | ZENG Zhiwei, ZHU Hongtao, MEI Lianfu, et al. Multilevel source-to-sink (S2S) subdivision and application of an ancient uplift system in South China Sea: Implications for further hydrocarbon exploration[J]. Journal of Petroleum Science and Engineering, 2019, 181: 106220. |
63 | ALLEN P A, HOVIUS N, HOVIUS N, et al. Sediment supply from landslide-dominated catchments: Implications for basin-margin fans[J]. Basin Research, 1998, 10(1): 19-35. |
64 | 施和生, 高阳东, 刘军, 等. 珠江口盆地惠州26洼“源-汇-聚”特征与惠州26-6大油气田发现启示[J]. 石油与天然气地质, 2022, 43(4): 777-791. |
SHI Hesheng, GAO Yangdong, LIU Jun, et al. Characteristics of hydrocarbon source-migration-accumulation in Huizhou 26 Sag and implications of the major Huizhou 26-6 discovery in Pearl River Mouth Basin[J]. Oil & Gas Geology, 2022, 43(4): 777-791. | |
65 | 陆威延, 朱红涛, 徐长贵, 等. 古源-汇系统级次划分方法及应用[J]. 地球科学, 2020, 45(4): 1327-1336. |
LU Weiyan, ZHU Hongtao, XU Changgui, et al. Methods and applications of level subdivision of source-to-sink system[J]. Earth Science, 2020, 45(4): 1327-1336. | |
66 | LI Zhiyao, LIU Qianghu, ZHU Hongtao, et al. Compositional relationship between the source-to-sink segments and their sedimentary response to diverse geomorphology types in the intrabasinal lower uplift of continental basins[J]. Marine and Petroleum Geology, 2021, 123: 104716. |
[1] | Dongwei LI, Chenglin GONG, Lin HU, Xiaohu HE, Quanyuan LUO. Hierarchical division and fine architectural depiction of the interior of deep-water channel deposits [J]. Oil & Gas Geology, 2023, 44(3): 553-564. |
[2] | Yang Minghui, Liu Chiyang. Sequence stratigraphic framework and its control on accumulation of various energy resources in the Mesozoic continental basins in Ordos [J]. Oil & Gas Geology, 2006, 27(4): 563-570. |
[3] | Cai Xiyuan, Feng Zihui. FORMATION CONDITIONS OF IMMATURE OIL IN CONTINENTAL BASINS [J]. Oil & Gas Geology, 1999, 20(4): 311-315. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||