Oil & Gas Geology ›› 2024, Vol. 45 ›› Issue (5): 1456-1482.doi: 10.11743/ogg20240518
• Methods and Technologies • Previous Articles Next Articles
Xi LI1,2(), Anping HU1,2(), Anjiang SHEN1,2, Jianyong ZHANG1,2, Zhanfeng QIAO1,2, Junmao DUAN1,2
Received:
2024-03-06
Revised:
2024-07-30
Online:
2024-10-30
Published:
2024-11-06
Contact:
Anping HU
E-mail:geolixi@126.com;huap_hz@petrochina.com.cn
CLC Number:
Xi LI, Anping HU, Anjiang SHEN, Jianyong ZHANG, Zhanfeng QIAO, Junmao DUAN. Recent advances in the study of the origin and reservoir space of dolomites and emerging experimental techniques[J]. Oil & Gas Geology, 2024, 45(5): 1456-1482.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | PETRASH D A, BIALIK O M, BONTOGNALI T R R, et al. Microbially catalyzed dolomite formation: From near-surface to burial[J]. Earth-Science Reviews, 2017, 171: 558-582. |
2 | KOESHIDAYATULLAH A, CORLETT H, HOLLIS C. An overview of structurally-controlled dolostone-limestone transitions in the stratigraphic record[J]. Earth-Science Reviews, 2021, 220: 103751. |
3 | GUO Pei, WEN Huaguo, LI Changzhi, et al. Lacustrine dolomite in deep time: What really matters in early dolomite formation and accumulation?[J]. Earth-Science Reviews, 2023, 246: 104575. |
4 | 马永生, 蔡勋育, 赵培荣. 深层、超深层碳酸盐岩油气储层形成机理研究综述[J]. 地学前缘, 2011, 18(4): 181-192. |
MA Yongsheng, CAI Xunyu, ZHAO Peirong. The research status and advances in porosity evolution and diagenesis of deep carbonate reservoir[J]. Earth Science Frontiers, 2011, 18(4): 181-192. | |
5 | 马永生, 何治亮, 赵培荣, 等. 深层—超深层碳酸盐岩储层形成机理新进展[J]. 石油学报, 2019, 40(12): 1415-1425. |
MA Yongsheng, HE Zhiliang, ZHAO Peirong, et al. A new progress in formation mechanism of deep and ultra-deep carbonate reservoir[J]. Acta Petrolei Sinica, 2019, 40(12): 1415-1425. | |
6 | 何治亮, 马永生, 朱东亚, 等. 深层-超深层碳酸盐岩储层理论技术进展与攻关方向[J]. 石油与天然气地质, 2021, 42(3): 533-546. |
HE Zhiliang, MA Yongsheng, ZHU Dongya, et al. Theoretical and technological progress and research direction of deep and ultra-deep carbonate reservoirs[J]. Oil & Gas Geology, 2021, 42(3): 533-546. | |
7 | SCHMOKER J W, KRYSTINIK K B, HALLEY R B. Selected characteristics of limestone and dolomite reservoirs in the United States[J]. AAPG Bulletin, 1985, 69(5): 733-741. |
8 | WILSON M E J, EVANS M J, OXTOBY N H, et al. Reservoir quality, textural evolution, and origin of fault-associated dolomites[J]. AAPG Bulletin, 2007, 91(9): 1247-1272. |
9 | OMIDPOUR A, MAHBOUBI A, MOUSSAVI-HARAMI R, et al. Effects of dolomitization on porosity-Permeability distribution in depositional sequences and its effects on reservoir quality, a case from Asmari Formation, SW Iran[J]. Journal of Petroleum Science and Engineering, 2022, 208(Part A): 109348. |
10 | 乔占峰, 张哨楠, 沈安江, 等. 塔里木和四川盆地白云岩规模优质储层形成与发育控制因素[J]. 石油与天然气地质, 2022, 43(1): 92-104. |
QIAO Zhanfeng, ZHANG Shaonan, SHEN Anjiang, et al. Controls on formation and development of large-sized high-quality dolomite reservoirs in the Tarim and Sichuan basins[J]. Oil & Gas Geology, 2022, 43(1): 92-104. | |
11 | CAI Wenkai, LIU Jiahui, ZHOU Chunhui, et al. Structure, genesis and resources efficiency of dolomite: New insights and remaining enigmas[J]. Chemical Geology, 2021, 573: 120191. |
12 | MOHAMMED SAJED O K, GLOVER P W J. Dolomitisation, cementation and reservoir quality in three Jurassic and Cretaceous carbonate reservoirs in north-western Iraq[J]. Marine and Petroleum Geology, 2020, 115: 104256. |
13 | WARREN J. Dolomite: occurrence, evolution and economically important associations[J]. Earth-Science Reviews, 2000, 52(1/3): 1-81. |
14 | CHANG Biao, LI Chao, LIU Deng, et al. Massive formation of early diagenetic dolomite in the Ediacaran ocean: Constraints on the “dolomite problem”[J]. Proceedings of the National Academy of Sciences, 2020, 117(25): 14005-14014. |
15 | LAND L S. Failure to precipitate dolomite at 25 °C from dilute solution despite 1000-fold oversaturation after 32 years[J]. Aquatic Geochemistry, 1998, 4(3): 361-368. |
16 | GREGG J M, BISH D L, KACZMAREK S E, et al. Mineralogy, nucleation and growth of dolomite in the laboratory and sedimentary environment: A review[J]. Sedimentology, 2015, 62(6): 1749-1769. |
17 | CHEN Chao, ZHONG Hanting, WANG Xinyu, et al. Thermodynamic and kinetic studies of dolomite formation: A review[J]. Minerals, 2023, 13(12): 1479. |
18 | FENTER P, ZHANG Z, PARK C, et al. Structure and reactivity of the dolomite (104)-water interface: New insights into the dolomite problem[J]. Geochimica et Cosmochimica acta, 2007, 71(3): 566-579. |
19 | ZENGER D H, BOURROUILH-LE JAN F G, CAROZZI A V. Dolomieu and the first description of dolomite[M]//PURSER B, TUCKER M, ZENGER D. Dolomites: A Volume in Honour of Dolomieu. Chichester, UK: The International Association of Sedimentologists, 1994: 21-28. |
20 | REEDER R J, NAKAJIMA Y. The nature of ordering and ordering defects in dolomite[J]. Physics and Chemistry of Minerals, 1982, 8(1): 29-35. |
21 | GARCÍA-RUIZ J M. A fluctuating solution to the dolomite problem[J]. Science, 2023, 382(6673): 883-884. |
22 | RODRIGUEZ-BLANCO J D, SHAW S, BENNING L G. A route for the direct crystallization of dolomite[J]. American Mineralogist, 2015, 100(5/6): 1172-1181. |
23 | PINA C M, PIMENTEL C, CRESPO Á. The dolomite problem: A matter of time[J]. ACS Earth and Space Chemistry, 2022, 6(6): 1468-1471. |
24 | KIM J, KIMURA Y, PUCHALA B, et al. Dissolution enables dolomite crystal growth near ambient conditions[J]. Science, 2023, 382(6673): 915-920. |
25 | FANG Yihang, HOBBS F, YANG Yiping, et al. Dissolved silica-driven dolomite precipitation in the Great Salt Lake, Utah, and its implication for dolomite formation environments[J]. Sedimentology, 2023, 70(4): 1328-1347. |
26 | HASHIM M S, ROSE K G, COHEN H F, et al. Effects of sodium and potassium concentrations on dolomite formation rate, stoichiometry and crystallographic characteristics[J]. Sedimentology, 2023, 70(7): 2355-2370. |
27 | ZHANG Fangfu, XU Huifang, SHELOBOLINA E S, et al. Precipitation of low-temperature disordered dolomite induced by extracellular polymeric substances of methanogenic Archaea Methanosarcina barkeri: Implications for sedimentary dolomite formation[J]. American Mineralogist, 2021, 106(1): 69-81. |
28 | DONG Hailiang, HUANG Liuqin, ZHAO Linduo, et al. A critical review of mineral-microbe interaction and co-evolution: mechanisms and applications[J]. National Science Review, 2022, 9(10): nwac128. |
29 | 沈安江, 胡安平, 张杰, 等. 微生物碳酸盐岩 “三因素” 控储地质认识和分布规律[J]. 石油与天然气地质, 2022, 43(3): 582-596. |
SHEN Anjiang, HU Anping, ZHANG Jie, et al. “Three-factor” driven microbial carbonate reservoirs and their distribution[J]. Oil & Gas Geology, 2022, 43(3): 582-596. | |
30 | VASCONCELOS C, MCKENZIE J A. Microbial mediation of modern dolomite precipitation and diagenesis under anoxic conditions (Lagoa Vermelha, Rio de Janeiro, Brazil)[J]. Journal of Sedimentary Research, 1997, 67(3): 378-390. |
31 | KENWARD P A, GOLDSTEIN R H, GONZÁLEZ L A, et al. Precipitation of low-temperature dolomite from an anaerobic microbial consortium: the role of methanogenic Archaea[J]. Geobiology, 2009, 7(5): 556-565. |
32 | LU Yang, SUN Xiaoming, XU Huifang, et al. Formation of dolomite catalyzed by sulfate-driven anaerobic oxidation of methane: Mineralogical and geochemical evidence from the northern South China Sea[J]. American Mineralogist, 2018, 103(5): 720-734. |
33 | SÁNCHEZ-ROMÁN M, VASCONCELOS C, SCHMID T, et al. Aerobic microbial dolomite at the nanometer scale: Implications for the geologic record[J]. Geology, 2008, 36(11): 879-882. |
34 | LIU Deng, YU Na, PAPINEAU D, et al. The catalytic role of planktonic aerobic heterotrophic bacteria in protodolomite formation: Results from Lake Jibuhulangtu Nuur, Inner Mongolia, China[J]. Geochimica et Cosmochimica Acta, 2019, 263: 31-49. |
35 | DENG Shicai, DONG Hailiang, LV Guo, et al. Microbial dolomite precipitation using sulfate reducing and halophilic bacteria: Results from Qinghai Lake, Tibetan Plateau, NW China[J]. Chemical Geology, 2010, 278(3/4): 151-159. |
36 | WANG Jiajia, ZHAO Yangang, LI Dan, et al. Extreme halophilic bacteria promote the surface dolomitization of calcite crystals in solutions with various magnesium concentrations[J]. Chemical Geology, 2022, 606: 120998. |
37 | KENWARD P A, FOWLE D A, GOLDSTEIN R H, et al. Ordered low-temperature dolomite mediated by carboxyl-group density of microbial cell walls[J]. AAPG Bulletin, 2013, 97(11): 2113-2125. |
38 | WEN Yixiong, SÁNCHEZ-ROMÁN M, LI Yalin, et al. Nucleation and stabilization of Eocene dolomite in evaporative lacustrine deposits from central Tibetan Plateau[J]. Sedimentology, 2020, 67(6): 3333-3354. |
39 | ZHAO Yangang, WEI Xiangyu, GAO Xiao, et al. Proto-dolomite spherulites with heterogeneous interior precipitated in brackish water cultivation of freshwater cyanobacterium Leptolyngbya boryana [J]. Science of the Total Environment, 2024, 906: 167552. |
40 | LI Mingtao, WIGNALL P B, DAI Xu, et al. Phanerozoic variation in dolomite abundance linked to oceanic anoxia[J]. Geology, 2021, 49(6): 698-702. |
41 | ZHENG Weili, LIU Deng, YANG Shanshan, et al. Transformation of protodolomite to dolomite proceeds under dry-heating conditions[J]. Earth and Planetary Science Letters, 2021, 576: 117249. |
42 | ZHANG Yifan, YAO Qizhi, QIAN Feijin, et al. Formation pathway of norsethite dominated by solution chemistry under ambient conditions[J]. American Mineralogist, 2021, 106(8): 1306-1318. |
43 | ZHANG Fangfu, XU Huifang, KONISHI H, et al. Dissolved sulfide-catalyzed precipitation of disordered dolomite: Implications for the formation mechanism of sedimentary dolomite[J]. Geochimica et Cosmochimica Acta, 2012, 97: 148-165. |
44 | VANDEGINSTE V, SNELL O, HALL M R, et al. Acceleration of dolomitization by zinc in saline waters[J]. Nature Communications, 2019, 10(1): 1851. |
45 | FANG Yihang, XU Huifang. Dissolved silica-catalyzed disordered dolomite precipitation[J]. American Mineralogist, 2022, 107(3): 443-452. |
46 | CHENG Jianru, MENG Xianqiang, ZHANG Enlou, et al. An Early Holocene primary dolomite layer of abiotic origin in Lake Sayram, Central Asia[J]. Geophysical Research Letters, 2021, 48(23): e2021GL096309. |
47 | JIAO Xin, LIU Yiqun, YANG Wan, et al. Microcrystalline dolomite in a Middle Permian volcanic lake: Insights on primary dolomite formation in a non-evaporitic environment[J]. Sedimentology, 2023, 70(1): 48-77. |
48 | BADIOZAMANI K. The Dorag dolomitization model, application to the Middle Ordovician of Wisconsin[J]. Journal of Sedimentary Research, 1973, 43(4): 965-984. |
49 | WARD W C, HALLEY R B. Dolomitization in a mixing zone of near-seawater composition, late Pleistocene, northeastern Yucatan Peninsula[J]. Journal of Sedimentary Research, 1985, 55(3): 407-420. |
50 | HARDIE L A. Dolomitization; a critical view of some current views[J]. Journal of Sedimentary Research, 1987, 57(1): 166-183. |
51 | PETRASH D A, BIALIK O M, STAUDIGEL P T, et al. Biogeochemical reappraisal of the freshwater-seawater mixing-zone diagenetic model[J]. Sedimentology, 2021, 68(5): 1797-1830. |
52 | MEHMOOD M, YASEEN M, KHAN E U, et al. Dolomite and dolomitization model-a short review[J]. International Journal of Hydrology, 2018, 2(5): 549-553. |
53 | SANZ-MONTERO M E, RODRÍGUEZ-ARANDA J P, CALVO J P. Mediation of endoevaporitic microbial communities in early replacement of gypsum by dolomite: A case study from Miocene lake deposits of the Madrid Basin, Spain[J]. Journal of Sedimentary Research, 2006, 76(12): 1257-1266. |
54 | GABELLONE T, WHITAKER F. Secular variations in seawater chemistry controlling dolomitization in shallow reflux systems: Insights from reactive transport modelling[J]. Sedimentology, 2016, 63(5): 1233-1259. |
55 | PRATHER B E, GOLDSTEIN R H, KOPASKA-MERKEL D C, et al. Dolomitization of reservoir rocks in the Smackover Formation, southeastern Gulf Coast, U.S.A[J]. Earth-Science Reviews, 2023, 244: 104512. |
56 | 沈安江, 罗宪婴, 胡安平, 等. 从准同生到埋藏环境的白云石化路径及其成储效应[J]. 石油勘探与开发, 2022, 49(4): 637-647. |
SHEN Anjiang, LUO Xianying, HU Anping, et al. Dolomitization evolution and its effects on hydrocarbon reservoir formation from penecontemporaneous to deep burial environment[J]. Petroleum Exploration and Development, 2022, 49(4): 637-647. | |
57 | ZENGER D H. Burial dolomitization in the Lost Burro Formation (Devonian), east-central California, and the significance of late diagenetic dolomitization[J]. Geology, 1983, 11(9): 519-522. |
58 | 马锋, 许怀先, 顾家裕, 等. 塔东寒武系白云岩成因及储集层演化特征[J]. 石油勘探与开发, 2009, 36(2): 144-155. |
MA Feng, XU Huaixian, GU Jiayu, et al. Cambrian dolomite origin and reservoir evolution in east Tarim Basin[J]. Petroleum Exploration and Development, 2009, 36(2): 144-155. | |
59 | 李斌, 彭军, 夏青松, 等. 塔北地区寒武系下丘里塔格群白云石化模式[J]. 吉林大学学报(地球科学版), 2019, 49(2): 310-322. |
LI Bin, PENG Jun, XIA Qingsong, et al. Dolomitization model of Lower Qiulitage Group in Tabei area[J]. Journal of Jilin University (Earth Science Edition), 2019, 49(2): 310-322. | |
60 | 乔占峰, 沈安江, 梁峰, 等. 基于镁同位素的规模埋藏白云岩形成过程——以塔里木盆地蓬莱坝组为例[J]. 地质学报, 2023, 97(7): 2293-2310. |
QIAO Zhanfeng, SHEN Anjiang, LIANG Feng, et al. Magnesium isotope-based forming process of large sized burial dolomite: A case study of the Penglaiba Formation in Tarim Basin[J]. Acta Geologica Sinica, 2023, 97(7): 2293-2310. | |
61 | LUKOCZKI G, HAAS J, GREGG J M, et al. Early dolomitization and partial burial recrystallization: A case study of Middle Triassic peritidal dolomites in the Villány Hills (SW Hungary) using petrography, carbon, oxygen, strontium and clumped isotope data[J]. International Journal of Earth Sciences, 2020, 109(3): 1051-1070. |
62 | MACHEL H G, LONNEE J. Hydrothermal dolomite—A product of poor definition and imagination[J]. Sedimentary Geology, 2002, 152(3/4): 163-171. |
63 | KOESHIDAYATULLAH A, CORLETT H, STACEY J, et al. Origin and evolution of fault-controlled hydrothermal dolomitization fronts: A new insight[J]. Earth and Planetary Science Letters, 2020, 541: 116291. |
64 | AFIFY A M, SANZ-MONTERO M E, GONZÁLEZ-ACEBRÓN L. Dolomite-magnesite formation and polymetallic mineralization in a rift-sag basin on the western margin of the Red Sea: Paleoenvironmental, hydrothermal, and tectonic implications[J]. Journal of Sedimentary Research, 2022, 92(2): 144-165. |
65 | FRIEDMAN G M. Structurally controlled hydrothermal dolomite reservoir facies: An overview: Discussion[J]. AAPG Bulletin, 2007, 91(9): 1339-1341. |
66 | SIMANDL G J, PARADIS S. Carbonatites: Related ore deposits, resources, footprint, and exploration methods[J]. Applied Earth Science, 2018, 127(4): 123-152. |
67 | DAVIES G R, SMITH L B, Jr. Structurally controlled hydrothermal dolomite reservoir facies: An overview[J]. AAPG Bulletin, 2006, 90(11): 1641-1690. |
68 | MARTÍN-MARTÍN J D, TRAVÉ A, GOMEZ-RIVAS E, et al. Fault-controlled and stratabound dolostones in the Late Aptian-Earliest Albian Benassal Formation (Maestrat Basin, E Spain): Petrology and geochemistry constrains[J]. Marine and Petroleum Geology, 2015, 65: 83-102. |
69 | JIANG Yuqiang, TAO Yanzhong, GU Yifan, et al. Hydrothermal dolomitization in Dengying Formation, Gaoshiti-Moxi area, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2016, 43(1): 54-64. |
70 | CENTRELLA S, BEAUDOIN N E, KOEHN D, et al. How fluid-mediated rock transformations can mimic hydro-fracturing patterns in hydrothermal dolomite[J]. Marine and Petroleum Geology, 2022, 140: 105657. |
71 | WALLACE M W, HOOD A V S. Zebra textures in carbonate rocks: Fractures produced by the force of crystallization during mineral replacement[J]. Sedimentary Geology, 2018, 368: 58-67. |
72 | HIEMSTRA E J, GOLDSTEIN R H. Repeated injection of hydrothermal fluids into downdip carbonates: A diagenetic and stratigraphic mechanism for localization of reservoir porosity, Indian Basin Field, New Mexico, USA[J]. Geological Society, London, Special Publications, 2015, 406(1): 141-177. |
73 | MCCORMICK C A, CORLETT H, CLOG M, et al. Basin scale evolution of zebra textures in fault-controlled, hydrothermal dolomite bodies: Insights from the Western Canadian Sedimentary Basin[J]. Basin Research, 2023, 35(5): 2010-2039. |
74 | 何治亮, 赵向原, 张文彪, 等. 深层-超深层碳酸盐岩储层精细地质建模技术进展与攻关方向[J]. 石油与天然气地质, 2023, 44(1): 16-33. |
HE Zhiliang, ZHAO Xiangyuan, ZHANG Wenbiao, et al. Progress and direction of geological modeling for deep and ultra-deep carbonate reservoirs[J]. Oil & Gas Geology, 2023, 44(1): 16-33. | |
75 | XIAO Di, CAO Jian, TAN Xiucheng, et al. Marine carbonate reservoirs formed in evaporite sequences in sedimentary basins: A review and new model of epeiric basin-scale moldic reservoirs[J]. Earth-Science Reviews, 2021, 223: 103860. |
76 | FENG Jun, ZHANG Yajin, ZHANG Zhenwei, et al. Characteristics and main control factors of Ordovician shoal dolomite gas reservoir in Gucheng area, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2022, 49(1): 52-63. |
77 | SEN S, ABIOUI M, GANGULI S S, et al. Petrophysical heterogeneity of the Early Cretaceous Alamein dolomite reservoir from North Razzak oil field, Egypt integrating well logs, core measurements, and machine learning approach[J]. Fuel, 2021, 306: 121698. |
78 | 陈娅娜, 沈安江, 潘立银, 等. 微生物白云岩储集层特征、成因和分布——以四川盆地震旦系灯影组四段为例[J]. 石油勘探与开发, 2017, 44(5): 704-715. |
CHEN Yana, SHEN Anjiang, PAN Liyin, et al. Features, origin and distribution of microbial dolomite reservoirs: A case study of 4th Member of Sinian Dengying Formation in Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2017, 44(5): 704-715. | |
79 | 张建勇, 罗文军, 周进高, 等. 四川盆地安岳特大型气田下寒武统龙王庙组优质储层形成的主控因素[J]. 天然气地球科学, 2015, 26(11): 2063-2074. |
ZHANG Jianyong, LUO Wenjun, ZHOU Jingao, et al. Main origins of high quality reservoir of Lower Cambrian Longwangmiao Formation in the giant Anyue Gas Field, Sichuan Basin, SW China[J]. Natural Gas Geoscience, 2015, 26(11): 2063-2074. | |
80 | 管树巍, 吴林, 任荣, 等. 中国主要克拉通前寒武纪裂谷分布与油气勘探前景[J]. 石油学报, 2017, 38(1): 9-22. |
GUAN Shuwei, WU Lin, REN Rong, et al. Distribution and petroleum prospect of Precambrian rifts in the main cratons, China[J]. Acta Petrolei Sinica, 2017, 38(1): 9-22. | |
81 | 马新华, 杨雨, 文龙, 等. 四川盆地海相碳酸盐岩大中型气田分布规律及勘探方向[J]. 石油勘探与开发, 2019, 46(1): 1-13. |
MA Xinhua, YANG Yu, WEN Long, et al. Distribution and exploration direction of medium-and large-sized marine carbonate gas fields in Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2019, 46(1): 1-13. | |
82 | 杨威, 魏国齐, 谢武仁, 等. 川中地区龙王庙组优质储层发育的主控因素及成因机制[J]. 石油学报, 2020, 41(4): 421-432. |
YANG Wei, WEI Guoqi, XIE Wuren, et al. Main controlling factors and genetic mechanism for the development of high-quality reservoirs in Longwangmiao Formation, central Sichuan Basin[J]. Acta Petrolei Sinica, 2020, 41(4): 421-432. | |
83 | 李茜, 朱光有, 张志遥. 超深层白云岩成因与规模储层控制因素——以四川盆地震旦系灯影组和寒武系龙王庙组为例[J]. 中国科学: 地球科学, 2024, 54(7): 2389-2418. |
LI Xi, ZHU Guangyou, ZHANG Zhiyao. Genesis of ultra-deep dolostone and controlling factors of large-scale reservoir: A case study of the Sinian Dengying Formation and the Cambrian Longwangmiao Formation in the Sichuan Basin[J]. Science China Earth Sciences, 2024, 54(7): 2389-2418. | |
84 | 黄擎宇, 刘伟, 张艳秋, 等. 白云石化作用及白云岩储层研究进展[J]. 地球科学进展, 2015, 30(5): 539-551. |
HUANG Qingyu, LIU Wei, ZHANG Yanqiu, et al. Progress of research on dolomitization and dolomite reservoir[J]. Advances in Earth Science, 2015, 30(5): 539-551. | |
85 | 钱一雄, 武恒志, 周凌方, 等. 深埋条件下微生物碳酸盐岩成岩作用与孔隙演化——以四川盆地西部中三叠统雷口坡组为例[J]. 石油与天然气地质, 2023, 44(1): 55-74. |
QIAN Yixiong, WU Hengzhi, ZHOU Lingfang, et al. Diagenesis and porosity evolution of microbial carbonate rocks undergone a deep burial history: Taking the Leikoupo Formation of Middle Triassic in western Sichuan Basin as an example[J]. Oil & Gas Geology, 2023, 44(1): 55-74. | |
86 | ZHAO Wenzhi, SHEN Jiangng, ZHENG Jianfeng, et al. The porosity origin of dolostone reservoirs in the Tarim, Sichuan and Ordos basins and its implication to reservoir prediction[J]. Science China Earth Sciences, 2014, 57(10): 2498-2511. |
87 | LUCIA F J. Origin and petrophysics of dolostone pore space[J]. Geological Society, London, Special Publications, 2004, 235(1): 141-155. |
88 | WEYL P K. Porosity through dolomitization--Conservation-of-mass requirements[J]. Journal of Sedimentary Research, 1960, 30(1): 85-90. |
89 | GUO Ruixin, ZHANG Shaonan, BAI Xiaoliang, et al. Hydrothermal dolomite reservoirs in a fault system and the factors controlling reservoir formation-A case study of Lower Paleozoic carbonate reservoirs in the Gucheng area, Tarim Basin[J]. Marine and Petroleum Geology, 2020, 120: 104506. |
90 | BIEHL B C, REUNING L, SCHOENHERR J, et al. Impacts of hydrothermal dolomitization and thermochemical sulfate reduction on secondary porosity creation in deeply buried carbonates: A case study from the Lower Saxony Basin, northwest Germany[J]. AAPG Bulletin, 2016, 100(4): 597-621. |
91 | 于炳松, 樊太亮, 黄文辉, 等. 层序地层格架中岩溶储层发育的预测模型[J]. 石油学报, 2007, 28(4): 41-45. |
YU Bingsong, FAN Tailiang, HUANG Wenhui, et al. Predictive model for karst reservoirs in sequence stratigraphic framework[J]. Acta Petrolei Sinica, 2007, 28(4): 41-45. | |
92 | JIN Zhijun, ZHU Dongya, HU Wenxuan, et al. Mesogenetic dissolution of the middle Ordovician limestone in the Tahe Oilfield of Tarim Basin, NW China[J]. Marine and Petroleum Geology, 2009, 26(6): 753-763. |
93 | 金之钧, 朱东亚, 胡文瑄, 等. 塔里木盆地热液活动地质地球化学特征及其对储层影响[J]. 地质学报, 2006, 80(2): 245-253, 314. |
JIN Zhijun, ZHU Dongya, HU Wenxuan, et al. Geological and geochemical signatures of hydrothermal activity and their influence on carbonate reservoir beds in the Tarim Basin[J]. Acta Geologica Sinica, 2006, 80(2): 245-253, 314. | |
94 | 张军涛, 胡文瑄, 王小林, 等. 塔里木盆地西北缘寒武系中热水白云石团块特征及成因研究[J]. 地质学报, 2011, 85(2): 234-245. |
ZHANG Juntao, HU Wenxuan, WANG Xiaolin, et al. Character and origin of Cambrian hydrothermal dolomite Conglomeration in the northwestern margin of Tarim Basin[J]. Acta Geologica Sinica, 2011, 85(2): 234-245. | |
95 | 张兵, 郑荣才, 王绪本, 等. 四川盆地东部黄龙组古岩溶特征与储集层分布[J]. 石油勘探与开发, 2011, 38(3): 257-267. |
ZHANG Bing, ZHENG Rongcai, WANG Xuben, et al. Paleokarst and reservoirs of the Huanglong Formation in eastern Sichuan Basin[J]. Petroleum Exploration and Development, 2011, 38(3): 257-267. | |
96 | 何江, 冯春强, 马岚, 等. 风化壳古岩溶型碳酸盐岩储层成岩作用与成岩相[J]. 石油实验地质, 2015, 37(1): 8-16. |
HE Jiang, FENG Chunqiang, MA Lan, et al. Diagenesis and diagenetic facies of crust-weathered ancient karst carbonate reservoirs[J]. Petroleum Geology and Experiment, 2015, 37(1): 8-16. | |
97 | 朱东亚, 金之钧, 张荣强, 等. 震旦系灯影组白云岩多级次岩溶储层叠合发育特征及机制[J]. 地学前缘, 2014, 21(6): 335-345. |
ZHU Dongya, JIN Zhijun, ZHANG Rongqiang, et al. Characteristics and developing mechanism of Sinian Dengying Formation dolomite reservoir with multi-stage karst[J]. Earth Science Frontiers, 2014, 21(6): 335-345. | |
98 | 黄康俊, 王炜, 鲍征宇, 等. 埋藏有机酸性流体对四川盆地东北部飞仙关组储层的溶蚀改造作用:溶解动力学实验研究[J]. 地球化学, 2011, 40(3): 289-300. |
HUANG Kangjun, WANG Wei, BAO Zhengyu, et al. Dissolution and alteration of Feixianguan Formation in the Sichuan Basin by organic acid fluids under burial condition: Kinetic dissolution experiments[J]. Geochimica, 2011, 40(3): 289-300. | |
99 | 佘敏, 寿建峰, 沈安江, 等. 从表生到深埋藏环境下有机酸对碳酸盐岩溶蚀的实验模拟[J]. 地球化学, 2014, 43(3): 276-286. |
SHE Min, SHOU Jianfeng, SHEN Anjiang, et al. Experimental simulation of dissolution for carbonate rocks in organic acid under the conditions from epigenesis to deep burial environments[J]. Geochimica, 2014, 43(3): 276-286. | |
100 | LI Yong, WANG Xingzhi, FENG Mingyou, et al. Reservoir characteristics and genetic differences between the second and fourth members of Sinian Dengying Formation in northern Sichuan Basin and its surrounding areas[J]. Petroleum Exploration and Development, 2019, 46(1): 54-66. |
101 | 陈代钊. 构造-热液白云岩化作用与白云岩储层[J]. 石油与天然气地质, 2008, 29(5): 614-622. |
CHEN Daizhao. Structure-controlled hydrothermal dolomitization and hydrothermal dolomite reservoirs[J]. Oil & Gas Geology, 2008, 29(5): 614-622. | |
102 | 李双建, 杨天博, 韩月卿, 等. 四川盆地中二叠统热液白云岩化作用及其储层改造意义[J]. 石油与天然气地质, 2021, 42(6): 1265-1280. |
LI Shuangjian, YANG Tianbo, HAN Yueqing, et al. Hydrothermal dolomitization and its role in improving Middle Permian reservoirs for hydrocarbon accumulation, Sichuan Basin[J]. Oil & Gas Geology, 2021, 42(6): 1265-1280. | |
103 | HEYDARI E. Meteoric versus burial control on porosity evolution of the Smackover Formation[J]. AAPG Bulletin, 2003, 87(11): 1779-1797. |
104 | 曲长伟, 林春明, 蔡明俊, 等. 渤海湾盆地北塘凹陷古近系沙河街组三段白云岩储层特征[J]. 地质学报, 2014, 88(8): 1588-1602. |
QU Changwei, LIN Chunming, CAI Mingjun, et al. Characteristics of dolostone reservoir in Sha 3 group from Palaeogene Shahejie Formation in Beitang Sag, Bohaiwan Basin[J]. Acta Geologica Sinica, 2014, 88(8): 1588-1602. | |
105 | 王琼仙, 宋晓波, 陈洪德, 等. 川西龙门山前雷口坡组四段 白云岩储层胶结物对早期孔隙的影响[J]. 石油实验地质, 2018, 40(6): 757-763. |
WANG Qiongxian, SONG Xiaobo, CHEN Hongde, et al. Cement characteristics and effects on dolomite reservoir pores in the fourth member of Leikoupo Formation, Longmen Mountain front, western Sichuan Basin[J]. Petroleum Geology and Experiment, 2018, 40(6): 757-763. | |
106 | 刘文栋, 钟大康, 尹宏, 等. 川西北栖霞组超深层白云岩储层特征及主控因素[J]. 中国矿业大学学报, 2021, 50(2): 342-362. |
LIU Wendong, ZHONG Dakang, YIN Hong, et al. Development characteristics and main controlling factors of ultra-deep dolomite reservoirs of the Qixia Formation in the northwestern Sichuan Basin[J]. Journal of China University of Mining & Technology, 2021, 50(2): 342-362. | |
107 | LIU Yan, JIN Siding, CAO Qian, et al. Tertiary hydrothermal activity and its effect on reservoir properties in the Xihu Depression, East China Sea[J]. Petroleum Science, 2019, 16(1): 14-31. |
108 | 黎霆, 诸丹诚, 杨明磊, 等. 热液活动对四川盆地中西部地区二叠系茅口组白云岩的影响[J]. 石油与天然气地质, 2021, 42(3): 639-651. |
LI Ting, ZHU Dancheng, YANG Minglei, et al. Influence of hydrothermal activity on the Maokou Formation dolostone in the central and western Sichuan Basin[J]. Oil & Gas Geology, 2021, 42(3): 639-651. | |
109 | 韩月卿, 张军涛, 何治亮, 等. 川西中二叠统栖霞组白云岩特征与成因[J]. 石油与天然气地质, 2023, 44(1): 75-88. |
HAN Yueqing, ZHANG Juntao, HE Zhiliang, et al. Characteristics and genesis of the Middle Permian Qixia Formation dolostone in western Sichuan Basin[J]. Oil & Gas Geology, 2023, 44(1): 75-88. | |
110 | 张静, 胡见义, 罗平, 等. 深埋优质白云岩储集层发育的主控因素与勘探意义[J]. 石油勘探与开发, 2010, 37(2): 203-210. |
ZHANG Jing, HU Jianyi, LUO Ping, et al. Master control factors of deep high-quality dolomite reservoirs and the exploration significance[J]. Petroleum Exploration and Development, 2010, 37(2): 203-210. | |
111 | 马永生, 蔡勋育, 李国雄. 四川盆地普光大型气藏基本特征及成藏富集规律[J]. 地质学报, 2005, 79(6): 858-865. |
MA Yongsheng, CAI Xunyu, LI Guoxiong. Basic characteristics and concentration of the Puguang gas Field in the Sichuan Basin[J]. Acta Geologica Sinica, 2005, 79(6): 858-865. | |
112 | 赵文智, 沈安江, 胡素云, 等. 塔里木盆地寒武-奥陶系白云岩储层类型与分布特征[J]. 岩石学报, 2012, 28(3): 758-768. |
ZHAO Wenzhi, SHEN Anjiang, HU Suyun, et al. Types and distributional features of Cambrian-Ordovician dolostone reservoirs in Tarim Basin, northwestern China[J]. Acta Petrologica Sinica, 2012, 28(3): 758-768. | |
113 | 李朋威, 何治亮, 罗平, 等. 华北北部地区蓟县系高于庄组-雾迷山组白云岩储层特征与形成主控因素[J]. 石油与天然气地质, 2020, 41(1): 26-36, 49. |
LI Pengwei, HE Zhiliang, LUO Ping, et al. Characteristics of and main factors controlling the dolomite reservoir of Gaoyuzhuang-Wumishan Formations in the Jixian System, the North of North China[J]. Oil & Gas Geology, 2020, 41(1): 26-36, 49. | |
114 | 刘伟, 黄擎宇, 王坤, 等. 深埋藏阶段白云岩化作用及其对储层的影响——以塔里木盆地下古生界白云岩为例[J]. 天然气地球科学, 2016, 27(5): 772-779. |
LIU Wei, HUANG Qingyu, WANG Kun, et al. Dolomization and influence on reservoir development in deep-burial stage: A case study of Lower Paleozoic in Tarim Basin[J]. Natural Gas Geoscience, 2016, 27(5): 772-779. | |
115 | ZHAO Wenzhi, SHEN Jiangng, QIAO Zhanfeng, et al. Genetic types and distinguished characteristics of dolomite and the origin of dolomite reservoirs[J]. Petroleum Exploration and Development, 2018, 45(6): 983-997. |
116 | 李茜, 朱光有, 李婷婷, 等. 川中地区寒武系洗象池组白云岩Mg同位素特征与成因机制[J]. 石油学报, 2022, 43(11): 1585-1603. |
LI Xi, ZHU Guangyou, LI Tingting, et al. Mg isotopic characteristics and genetic mechanism of dolomite of Cambrian Xixiangchi Formation in central Sichuan Basin[J]. Acta Petrolei Sinica, 2022, 43(11): 1585-1603. | |
117 | 毕义泉, 田海芹, 赵勇生, 等. 论泥晶套与次生白云岩原岩结构特征的恢复及意义[J]. 岩石学报, 2001, 17(3): 491-496. |
BI Yiquan, TIAN Haiqin, ZHAO Yongsheng, et al. On the micrite envelope to restoration of primary texture character of secondary dolomites and its significance[J]. Acta Petrologica Sinica, 2001, 17(3): 491-496. | |
118 | 王恕一, 蒋小琼, 管宏林, 等. 川东北普光气田下三叠统飞仙关组储层成岩作用研究[J]. 石油实验地质, 2010, 32(4): 366-372. |
WANG Shuyi, JIANG Xiaoqiong, GUAN Honglin, et al. Diagenesis effects of Lower Triassic Feixianguan formation reservoir in Puguang gas field, northeast Sichuan[J]. Petroleum Geology and Experiment, 2010, 32(4): 366-372. | |
119 | 强深涛, 沈平, 张健, 等. 四川盆地川中地区震旦系灯影组碳酸盐沉积物成岩作用与孔隙流体演化[J]. 沉积学报, 2017, 35(4): 797-811. |
QIANG Shentao, SHEN Ping, ZHANG Jian, et al. The evolution of carbonate sediment diagenesis and pore fluid in Dengying Formation, central Sichuan Basin[J]. Acta Sedimentologica Sinica, 2017, 35(4): 797-811. | |
120 | REZAEI GOMARI K A, HAMOUDA A A. Effect of fatty acids, water composition and pH on the wettability alteration of calcite surface[J]. Journal of Petroleum Science and Engineering, 2006, 50(2): 140-150. |
121 | 赵文智, 汪泽成, 王一刚. 四川盆地东北部飞仙关组高效气藏形成机理[J]. 地质论评, 2006, 52(5): 708-718. |
ZHAO Wenzhi, WANG Zecheng, WANG Yigang. Formation mechanism of highly effective gas pools in the Feixianguan Formation in the NE Sichuan Basin[J]. Geological Review, 2006, 52(5): 708-718. | |
122 | TIAN Hui, XIAO Xianming, WILKINS R W T, et al. New insights into the volume and pressure changes during the thermal cracking of oil to gas in reservoirs: Implications for the in-situ accumulation of gas cracked from oils[J]. AAPG Bulletin, 2008, 92(2): 181-200. |
123 | 朱东亚, 张殿伟, 张荣强, 等. 深层白云岩储层油充注对孔隙保存作用研究[J]. 地质学报, 2015, 89(4): 794-804. |
ZHU Dongya, ZHANG Dianwei, ZHANG Rongqiang, et al. Role of oil charge in preservation of deep dolomite reservoir space[J]. Acta Geologica Sinica, 2015, 89(4): 794-804. | |
124 | CHOQUETTE P W, PRAY L C. Geologic nomenclature and classification of porosity in sedimentary carbonates[J]. AAPG Bulletin, 1970, 54(2): 207-250. |
125 | MA Yongsheng, GUO Tonglou, ZHAO Xuefeng, et al. The formation mechanism of high-quality dolomite reservoir in the deep of Puguang Gas Field[J]. Science in China Series D: Earth Sciences, 2008, 51(): 53-64. |
126 | 黄思静, QING Hairuo, 胡作维, 等. 封闭系统中的白云石化作用及其石油地质学和矿床学意义——以四川盆地东北部三叠系飞仙关组碳酸盐岩为例[J]. 岩石学报, 2007, 23(11): 2955-2962. |
HUANG Sijing, QING Hairuo, HU Zuowei, et al. Closed-system dolomitization and the significance for petroleum and economic geology: An example from Feixianguan carbonates, Triassic, NE Sichuan Basin of China[J]. Acta Petrologica Sinica, 2007, 23(11): 2955-2962. | |
127 | 沈安江, 胡安平, 梁峰, 等. 碳酸盐岩储层模拟与地球化学实验技术进展及应用[J]. 中国石油勘探, 2022, 27(4): 16-29. |
SHEN Anjiang, HU Anping, LIANG Feng, et al. Progress and application of carbonate reservoir simulation and geochemical experiment technology[J]. China Petroleum Exploration, 2022, 27(4): 16-29. | |
128 | SHE Min, LIANG Jintong, LV Yuzhen, et al. Dolomite dissolution and porosity enhancement simulation with acetic acid: Insights into the influence of temperature and Ionic effects[J]. Applied Geochemistry, 2024, 160: 105856. |
129 | DEVARAPALLI R S, ISLAM A, FAISAL T F, et al. Micro-CT and FIB-SEM imaging and pore structure characterization of dolomite rock at multiple scales[J]. Arabian Journal of Geosciences, 2017, 10(16): 361. |
130 | FRIMMEL H E. Trace element distribution in Neoproterozoic carbonates as palaeoenvironmental indicator[J]. Chemical Geology, 2009, 258(3/4): 338-353. |
131 | BALDWIN G J, THURSTON P C, KAMBER B S. High-precision rare earth element, nickel, and chromium chemistry of chert microbands pre-screened with in-situ analysis[J]. Chemical Geology, 2011, 285(1/4): 133-143. |
132 | NING Meng, LANG Xianguo, HUANG Kangjun, et al. Towards understanding the origin of massive dolostones[J]. Earth and Planetary Science Letters, 2020, 545: 116403. |
133 | RIECHELMANN S, MAVROMATIS V, BUHL D, et al. Controls on formation and alteration of early diagenetic dolomite: A multi-proxy δ44/40Ca, δ26Mg, δ18O and δ13C approach[J]. Geochimica et Cosmochimica Acta, 2020, 283: 167-183. |
134 | GUO Bijun, ZHU Xiangkun, DONG Aiguo, et al. Mg isotopic systematics and geochemical applications: A critical review[J]. Journal of Asian Earth Sciences, 2019, 176: 368-385. |
135 | HIGGINS J A, SCHRAG D P. The Mg isotopic composition of Cenozoic seawater-evidence for a link between Mg-clays, seawater Mg/Ca, and climate[J]. Earth and Planetary Science Letters, 2015, 416: 73-81. |
136 | HUANG Kangjun, SHEN Bing, LANG Xianguo, et al. Magnesium isotopic compositions of the Mesoproterozoic dolostones: Implications for Mg isotopic systematics of marine carbonates[J]. Geochimica et Cosmochimica Acta, 2015, 164: 333-351. |
137 | PENG Yang, SHEN Bing, LANG Xianguo, et al. Constraining dolomitization by Mg isotopes: A case study from partially dolomitized limestones of the middle Cambrian Xuzhuang Formation, North China[J]. Geochemistry, Geophysics, Geosystems, 2016, 17(3): 1109-1129. |
138 | MURRAY S T, HIGGINS J A, HOLMDEN C, et al. Geochemical fingerprints of dolomitization in Bahamian carbonates: Evidence from sulphur, calcium, magnesium and clumped isotopes[J]. Sedimentology, 2021, 68(1): 1-29. |
139 | KIMMIG S R, NADEAU M D, SWART P K, et al. Mg and Sr isotopic evidence for basin wide alteration of early diagenetic dolomite in the Williston Basin by ascending crustal fluids[J]. Geochimica et Cosmochimica Acta, 2021, 311: 198-225. |
140 | 李茜, 朱光有, 李婷婷, 等. 塔里木盆地鹰山组白云岩成因与Mg同位素证据[J]. 地学前缘, 2023, 30(4): 352-375. |
LI Xi, ZHU Guangyou, LI Tingting, et al. Genesis of dolostone of the Yingshan Formation in Tarim Basin and Mg isotope evidence[J]. Earth Science Frontiers, 2023, 30(4): 352-375. | |
141 | WEI Guangyi, HOOD A V S, CHEN Xi, et al. Ca and Sr isotope constraints on the formation of the Marinoan cap dolostones[J]. Earth and Planetary Science Letters, 2019, 511: 202-212. |
142 | GODEAU N, DESCHAMPS P, GUIHOU A, et al. U-Pb dating of calcite cement and diagenetic history in microporous carbonate reservoirs: Case of the Urgonian Limestone, France[J]. Geology, 2018, 46(3): 247-250. |
143 | XIONG Suofei, JIANG Shaoyong, ZHAO Jianxin, et al. Dating precambrian sedimentary carbonate strata by in situ U-Pb isotopes of dolomite[J]. Precambrian Research, 2023, 393: 107088. |
144 | ZHOU Jingao, YU Zhou, WU Dongxu, et al. Restoration of formation processes of dolomite reservoirs based on laser U-Pb dating: A case study of Ordovician Majiagou Formation, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2022, 49(2): 327-338. |
145 | GASPARRINI M, MORAD D, MANGENOT X, et al. Dolomite recrystallization revealed by Δ47/U-Pb thermochronometry in the Upper Jurassic Arab Formation, United Arab Emirates[J]. Geology, 2023, 51(5): 471-475. |
146 | ISABEL MILLÁN M, MACHEL H, BERNASCONI S M. Constraining temperatures of formation and composition of dolomitizing fluids in the Upper Devonian Nisku Formation (alberta, Canada) with clumped isotopes[J]. Journal of Sedimentary Research, 2016, 86(1): 107-112. |
147 | 刘嘉庆, 李忠, 颜梦珂, 等. 塔里木盆地塔中地区下奥陶统白云岩的成岩流体演化: 来自团簇同位素的证据[J]. 石油与天然气地质, 2020, 41(1): 68-82. |
LIU Jiaqing, LI Zhong, YAN Mengke, et al. Diagenetic fluid evolution of dolomite from the Lower Ordovician in Tazhong area, Tarim Basin: Clumped isotopic evidence[J]. Oil & Gas Geology, 2020, 41(1): 68-82. | |
148 | LU Chaojin, SWART P K. The application of dual clumped isotope thermometer (Δ47 and Δ48) to the understanding of dolomite formation[J]. Geology, 2024, 52(1): 56-60. |
149 | JIN Zhijun. Formation and accumulation of oil and gas in marine carbonate sequences in Chinese sedimentary basins[J]. Science China Earth Sciences, 2012, 55(3): 368-385. |
150 | SHEN Anjiang, HU Anping, CHENG Ting, et al. Laser ablation in situ U-Pb dating and its application to diagenesis-porosity evolution of carbonate reservoirs[J]. Petroleum Exploration and Development, 2019, 46(6): 1127-1140. |
151 | 胡安平, 沈安江, 陈亚娜, 等. 基于U-Pb同位素年龄和团簇同位素(Δ47)温度约束的四川盆地震旦系灯影组构造—埋藏史重建[J]. 石油实验地质, 2021, 43(5): 896-905, 914. |
HU Anping, SHEN Anjiang, CHEN Yana, et al. Reconstruction of tectonic-burial evolution history of Sinian Dengying Formation in Sichuan Basin based on the constraints of in-situ laser ablation U-Pb date and clumped isotopic thermometer(Δ47)[J]. Petroleum Geology and Experiment, 2021, 43(5): 896-905, 914. | |
152 | SHEN Anjiang, ZHAO Wenzhi, HU Anping, et al. The dating and temperature measurement technologies for carbonate minerals and their application in hydrocarbon accumulation research in the paleo-uplift in central Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2021, 48(3): 555-568. |
153 | QI Ning, CHEN Guobin, PAN Lin, et al. Numerical simulation and analysis of fracture etching morphology during acid fracturing of dolomite reservoirs[J]. Chemical Engineering Science, 2021, 229: 116028. |
154 | YANG Leilei, ZHU Guangyou, LI Xinwei, et al. Influence of crystal nucleus and lattice defects on dolomite growth: Geological implications for carbonate reservoirs[J]. Chemical Geology, 2022, 587: 120631. |
155 | ABARCA E, IDIART A, GRANDIA F, et al. 3D reactive transport modeling of porosity evolution in a carbonate reservoir through dolomitization[J]. Chemical Geology, 2019, 513: 184-199. |
156 | PEREIRA NUNES J P, BLUNT M J, BIJELJIC B. Pore-scale simulation of carbonate dissolution in micro-CT images[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(2): 558-576. |
157 | QIN Fangqi, BECKINGHAM L E. The impact of mineral reactive surface area variation on simulated mineral reactions and reaction rates[J]. Applied Geochemistry, 2021, 124: 104852. |
158 | STARCHENKO V, LADD A J C. The development of wormholes in laboratory-scale fractures: Perspectives from three-dimensional simulations[J]. Water Resources Research, 2018, 54(10): 7946-7959. |
159 | LI Wenhao, WANG Weiming, LU Shuangfang, et al. Quantitative characterization on shale-hosted oil reservoir: A case study of argillaceous dolomite reservoir in the Jianghan Basin[J]. Fuel, 2017, 206: 690-700. |
160 | TAVOOSI IRAJ P, MEHRABI H, RAHIMPOUR-BONAB H, et al. Quantitative analysis of geological attributes for reservoir heterogeneity assessment in carbonate sequences; a case from Permian-Triassic reservoirs of the Persian Gulf[J]. Journal of Petroleum Science and Engineering, 2021, 200: 108356. |
161 | PIRES L O, WINTER A, TREVISAN O V. Dolomite cores evaluated by NMR[J]. Journal of Petroleum Science and Engineering, 2019, 176: 1187-1197. |
162 | 张天付, 倪新锋, 黄理力, 等. 白云岩储层溶蚀过程中孔隙演化的核磁共振和频谱激发极化试验[J]. 中国石油大学学报(自然科学版), 2022, 46(6): 70-79. |
ZHANG Tianfu, NI Xinfeng, HUANG Lili, et al. Experimental research based on NMR and SIP for pore evolution during dissolution of dolomite reservoirs[J]. Journal of China University of Petroleum(Edition of Natural Science), 2022, 46(6): 70-79. | |
163 | CHEN Xudong, XU Qilu, HAO Fang, et al. Dolomite reservoir formation and diagenesis evolution of the Upper Ediacaran Qigebrak Formation in the Tabei area, Tarim Basin[J]. Science China Earth Sciences, 2023, 66(10): 2311-2331. |
164 | HAINES T J, NEILSON J E, HEALY D, et al. The impact of carbonate texture on the quantification of total porosity by image analysis[J]. Computers & Geosciences, 2015, 85(Part A): 112-125. |
165 | SHAH S B A, ABDULLAH W H. Structural interpretation and hydrocarbon potential of Balkassar oil field, eastern Potwar, Pakistan, using seismic 2D data and petrophysical analysis[J]. Journal of the Geological Society of India, 2017, 90(3): 323-328. |
166 | ANDRIAMIHAJA S, PADMANABHAN E, BEN-AWUAH J, et al. Static dissolution-induced 3D pore network modification and its impact on critical pore attributes of carbonate rocks[J]. Petroleum Exploration and Development, 2019, 46(2): 374-383. |
167 | MENKE H P, ANDREW M G, BLUNT M J, et al. Reservoir condition imaging of reactive transport in heterogeneous carbonates using fast synchrotron tomography—Effect of initial pore structure and flow conditions[J]. Chemical Geology, 2016, 428: 15-26. |
168 | 田兴旺, 杨岱林, 钟佳倚, 等. 基于CT成像技术的白云岩储层微观表征——以川中磨溪—龙女寺台内地区震旦系灯影组四段为例[J]. 沉积学报, 2021, 39(5): 1264-1274. |
TIAN Xingwang, YANG Dailin, ZHONG Jiayi, et al. Microscopic characterization of dolomite reservoirs by CT imaging: A case study of the Dengsi Formation in Moxi-Longnvsi area, central Sichuan[J]. Acta Sedimentologica Sinica, 2021, 39(5): 1264-1274. | |
169 | 乔占峰, 吕玉珍, 陈薇, 等. 白云岩埋藏溶蚀孔洞的形成机理与演化——来自高温高压溶蚀模拟的证据[J]. 海相油气地质, 2021, 26(4): 326-334. |
QIAO Zhanfeng, Yuzhen LYU, CHEN Wei, et al. Origin and evolution of burial dissolved vugs in dolomite: Evidence from high-temperature and high-pressure dissolution kinetic simulation[J]. Marine Origin Petroleum Geology, 2021, 26(4): 326-334. | |
170 | PENG Jun, WANG Xuelong, HAN Haodong, et al. Simulation for the dissolution mechanism of Cambrian carbonate rocks in Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2018, 45(3): 431-441. |
[1] | Shang DENG, Huabiao QIU, Dawei LIU, Jun HAN, Zhixing RU, Weilong PENG, Qing BIAN, Cheng HUANG. Advances in research on the genetic mechanisms of intracratonic strike-slip fault system and their control on hydrocarbon accumulation: A case study of the northern Tarim Basin [J]. Oil & Gas Geology, 2024, 45(5): 1211-1225. |
[2] | Jingao ZHOU, Zhehang XU, Shiwei HUAN, Wenzheng LI, Junmao DUAN, Yongjin ZHU, Jianfeng ZHENG, Dongxu WU, Shaoying CHANG. Frontiers and trends in the research on carbonate sedimentology and reservoir geology [J]. Oil & Gas Geology, 2024, 45(4): 929-953. |
[3] | Chang CHEN, Nansheng QIU, Rongjin GAO, Xiaolong ZHOU, Yonghe SUN, Linlin YANG, Jian FU. Overpressure in moderately deep to deep strata in the Lengjia-Leijia area, western Liaohe Depression, Bohai Bay Basin: Origin and effects on hydrocarbon accumulation [J]. Oil & Gas Geology, 2024, 45(1): 130-141. |
[4] | Haizhou QU, Xinyu GUO, Wei XU, Wenhao LI, Song TANG, Yani DENG, Shipeng HE, Yunfeng ZHANG, Xingyu ZHANG. Classification and origin of micropores in carbonates and their effects on physical properties of rocks [J]. Oil & Gas Geology, 2023, 44(5): 1102-1117. |
[5] | Changgui XU, Chenglin GONG. Predictive stratigraphy: From sequence stratigraphy to source-to-sink system [J]. Oil & Gas Geology, 2023, 44(3): 521-538. |
[6] | Dingyou LYU, Haifeng YANG, Haibo YU, Pengbo LIU, Hui DENG, Shen ZHANG. Zonation and dynamic genetic mechanism of the Indosinian thrust nappe system in Bohai Sea [J]. Oil & Gas Geology, 2023, 44(3): 720-734. |
[7] | Yan ZHOU, Siyi FU, Tao ZHANG, Hongde CHEN, Zhongtang SU, Juntao ZHANG, Chenggong ZHANG, Ziming LIU, Xiaoyu HAN. Tectono-sedimentary evolution, paleo-geographic reconstruction and play fairway delineation of the Lower Paleozoic, Ordos Basin [J]. Oil & Gas Geology, 2023, 44(2): 264-275. |
[8] | Faqi HE, Wei ZHANG, Xiaoqi DING, Zhuangzhuang QI, Chuntang LI, Hanjing SUN. Controlling mechanism of Wushenqi paleo-uplift on paleo-karst gas reservoirs in Ordos Basin [J]. Oil & Gas Geology, 2023, 44(2): 276-291. |
[9] | Xiangyuan ZHAO, Yuchun YOU, Xiangyang HU, Jingrong LI, Yu LI. Classified-staged-grouped 3D modeling of multi-scale fractures constrained by genetic mechanisms and main controlling factors: A case study on biohermal carbonate reservoir of the Upper Permian Changxing Fm. in Yuanba area, Sichuan Basin [J]. Oil & Gas Geology, 2023, 44(1): 213-225. |
[10] | Jianzhong Li, Xiaojun Wang, Fan Yang, Yong Song, Ablimiti, Baoli Bian, Hailei Liu, Xueyong Wang, Deyu Gong. Hydrocarbon accumulation pattern and exploration prospect of the structural traps in lower play of the western Central Depression in the Junggar Basin [J]. Oil & Gas Geology, 2022, 43(5): 1059-1072. |
[11] | Qin Zhang, Chen Zhou, Hanyun Tian, Kai Wang, Zeping Song, Qishi Dong. Characteristic differences of glauconite formed in different geologic periods and related genetic analysis [J]. Oil & Gas Geology, 2022, 43(1): 186-195. |
[12] | Zhanfeng Qiao, Shaonan Zhang, Anjiang Shen, Min She, Lili Huang, Wenzheng Li, Guanming Shao, Chuanrui Dai. Controls on formation and development of large-sized high-quality dolomite reservoirs in the Tarim and Sichuan Basins [J]. Oil & Gas Geology, 2022, 43(1): 92-104. |
[13] | Shuangjian Li, Tianbo Yang, Yueqing Han, Ping Gao, Yujin Wo, Zhiliang He. Hydrothermal dolomitization and its role in improving Middle Permian reservoirs for hydrocarbon accumulation, Sichuan Basin [J]. Oil & Gas Geology, 2021, 42(6): 1265-1280. |
[14] | Junjun Shen, Guoliang Tao, Kongquan Chen, Junjun Li, Pengwan Wang, Zhiming Li, Qigui Jiang, Jianghui Meng. Development characteristics and formation mechanism of lacustrine dolomite reservoirs in the Paleogene inter-salt shale sequence, Qianjiang sag, Jianghan Basin [J]. Oil & Gas Geology, 2021, 42(6): 1401-1413. |
[15] | Ke Zhang, Yina Zhang. Application of big data analytics to hydrocarbon exploration for favorable basin selection in Central Asia [J]. Oil & Gas Geology, 2021, 42(6): 1464-1474. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||