Oil & Gas Geology ›› 2025, Vol. 46 ›› Issue (4): 1107-1122.doi: 10.11743/ogg20250406
• Petroleum Geology • Previous Articles Next Articles
Kanyuan SHI1,2,3(
), Xiongqi PANG2,3(
), Junqing CHEN2,4, Zhangxing CHEN5, Lei WANG2,3, Tingyu PU2,3, Liyin BAO2,3, Shasha HUI6, Huiyi XIAO2,3, Xinxuan CUI2,3
Received:2025-05-08
Revised:2025-07-08
Online:2025-08-30
Published:2025-09-06
Contact:
Xiongqi PANG
E-mail:shikycup@163.com;pangxq@cup.edu.cn
CLC Number:
Kanyuan SHI, Xiongqi PANG, Junqing CHEN, Zhangxing CHEN, Lei WANG, Tingyu PU, Liyin BAO, Shasha HUI, Huiyi XIAO, Xinxuan CUI. Variation characteristics and molecular dynamics simulation of key parameters including reservoir wettability and interfacial tension in the whole petroleum system[J]. Oil & Gas Geology, 2025, 46(4): 1107-1122.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Dimensions of various boxes in the wettability model"
| 盒子类型 | 组分尺寸/(nm × nm × nm) | |||
|---|---|---|---|---|
| 方解石 | 蒙脱石 | 石英 | 长石 | |
| 油盒子 | 8.00 × 3.49 × 8.25 | 8.00 × 3.59 × 8.03 | 8.00 × 3.24 × 8.90 | 8.00 × 3.89 × 7.40 |
| 油-水盒子 | 25.10 × 3.49 × 15.73 | 25.80 × 3.59 × 14.89 | 25.53 × 3.24 × 16.67 | 25.73 × 3.89 × 13.78 |
| 矿物 | 25.10 × 3.49 × 0.92 | 25.80 × 3.59 × 1.87 | 25.53 × 3.24 × 3.82 | 25.73 × 3.89 × 1.29 |
| 最终模型 | 25.10 × 3.49 × 18.06 | 25.80 × 3.59 × 17.37 | 25.53 × 3.24 × 30.22 | 25.73 × 3.89 × 21.55 |
Table 2
Force field parameters of four minerals used in the wettability model"
| 原子类型 | ε/(kcal/mol) | δ/Å | q/e | 摩尔质量/(g/mol) |
|---|---|---|---|---|
| Ca(方解石) | 0.439 0 | 0.275 7 | 2.000 0 | 40.078 0 |
| C(方解石) | 0.241 1 | 0.303 3 | 1.123 3 | 12.010 7 |
| O(方解石) | 0.879 0 | 0.289 5 | -1.041 1 | 15.999 4 |
| H(蒙脱石,—OH) | 0 | 0 | 0.425 0 | 1.007 9 |
| O(蒙脱石,—OH) | 0.650 2 | 0.316 6 | -0.950 0 | 15.999 4 |
| Mg(蒙脱石) | 3.778 1 × 10-6 | 0.526 4 | 1.360 0 | 24.305 0 |
| Al(蒙脱石) | 5.563 9 × 10-6 | 0.427 1 | 1.575 0 | 26.981 5 |
| Si(蒙脱石) | 7.700 7 × 10-6 | 0.330 2 | 2.100 0 | 28.085 5 |
| Na(蒙脱石) | 0.544 3 | 0.004 2 | 1.000 0 | 22.989 8 |
| Si(石英) | 7.700 7 × 10-6 | 0.330 2 | 2.100 0 | 28.085 5 |
| O(石英,桥接氧) | 0.650 2 | 0.316 6 | -1.050 0 | 15.999 4 |
| K(长石) | 0.418 4 | 0.333 4 | 1.000 0 | 39.098 3 |
| Al(长石) | 5.563 9 × 10-6 | 0.427 1 | 1.575 0 | 26.981 5 |
| Si(长石) | 7.700 7 × 10-6 | 0.330 2 | 2.100 0 | 28.085 5 |
| O(长石) | 0.879 0 | 0.289 5 | -1.041 1 | 15.999 4 |
Table 3
Molecular dynamics simulation results of the wetting angle, interfacial tension, and pore-throat radii under varying temperatures and pressures"
| 温度/℃ | 压力/MPa | 界面张力/(mN/m) | 方解石 | 石英 | 长石 | 蒙脱石 | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 润湿角/(°) | 孔喉半径/μm | 润湿角/(°) | 孔喉半径/μm | 润湿角/(°) | 孔喉半径/μm | 润湿角/(°) | 孔喉半径/μm | |||||||||||
| 准噶尔盆地 | 鄂尔多斯盆地 | 松辽盆地 | 准噶尔盆地 | 鄂尔多斯盆地 | 松辽盆地 | 准噶尔盆地 | 鄂尔多斯盆地 | 松辽盆地 | 准噶尔盆地 | 鄂尔多斯盆地 | 松辽盆地 | |||||||
| 25 | 0.1 | 30.45 | 111 | 4.497 | 5.008 | 4.904 | 60 | 5.845 | 6.432 | 6.314 | 35 | 3.244 | 3.696 | 3.604 | 80 | 2.422 | 5.010 | 4.320 |
| 25 | 5.0 | 30.74 | 113 | 4.226 | 4.581 | 4.972 | 62 | 5.530 | 5.942 | 6.391 | 37 | 3.009 | 3.318 | 3.664 | 81 | 1.657 | 2.728 | 4.756 |
| 25 | 10.0 | 30.96 | 115 | 3.966 | 4.183 | 5.041 | 66 | 5.227 | 5.481 | 6.470 | 38 | 2.786 | 2.972 | 3.726 | 82 | 1.156 | 1.561 | 5.255 |
| 25 | 20.0 | 31.30 | 117 | 3.494 | 3.488 | 5.183 | 69 | 4.670 | 4.662 | 6.632 | 41 | 2.389 | 2.384 | 3.854 | 84 | 0.606 | 0.601 | 6.447 |
| 25 | 40.0 | 32.43 | 120 | 2.711 | 2.424 | 5.479 | 70 | 3.727 | 3.374 | 6.968 | 45 | 1.757 | 1.534 | 4.122 | 85 | 0.215 | 0.149 | 9.903 |
| 25 | 60.0 | 34.05 | 122 | 2.104 | 1.685 | 5.793 | 72 | 2.974 | 2.442 | 7.321 | 46 | 1.292 | 0.987 | 4.409 | 87 | 0.099 | 0.060 | 15.654 |
| 35 | 0.1 | 28.51 | 109 | 3.944 | 4.689 | 4.245 | 55 | 5.202 | 6.067 | 5.553 | 34 | 2.767 | 3.413 | 3.025 | 79 | 1.121 | 3.180 | 1.702 |
| 35 | 5.0 | 28.79 | 110 | 3.707 | 4.289 | 4.303 | 60 | 4.922 | 5.605 | 5.621 | 35 | 2.567 | 3.064 | 3.076 | 79 | 0.809 | 1.811 | 1.847 |
| 35 | 10.0 | 30.31 | 111 | 3.479 | 3.917 | 4.364 | 65 | 4.652 | 5.169 | 5.691 | 38 | 2.377 | 2.744 | 3.128 | 82 | 0.594 | 1.080 | 2.009 |
| 35 | 20.0 | 30.97 | 112 | 3.065 | 3.266 | 4.487 | 68 | 4.156 | 4.398 | 5.833 | 40 | 2.038 | 2.201 | 3.235 | 83 | 0.341 | 0.446 | 2.388 |
| 35 | 40.0 | 31.49 | 115 | 2.378 | 2.270 | 4.743 | 70 | 3.317 | 3.182 | 6.129 | 43 | 1.499 | 1.417 | 3.461 | 84 | 0.140 | 0.122 | 3.433 |
| 35 | 60.0 | 31.88 | 119 | 1.846 | 1.578 | 5.014 | 71 | 2.647 | 2.303 | 6.439 | 44 | 1.102 | 0.912 | 3.702 | 86 | 0.072 | 0.052 | 5.055 |
| 45 | 0.1 | 27.05 | 108 | 3.460 | 4.391 | 3.675 | 55 | 4.629 | 5.722 | 4.884 | 33 | 2.361 | 3.152 | 2.540 | 78 | 0.579 | 2.087 | 0.775 |
| 45 | 5.0 | 27.13 | 110 | 3.251 | 4.016 | 3.725 | 59 | 4.380 | 5.286 | 4.944 | 34 | 2.190 | 2.829 | 2.582 | 79 | 0.438 | 1.239 | 0.830 |
| 45 | 10.0 | 27.59 | 113 | 3.052 | 3.667 | 3.777 | 64 | 4.140 | 4.876 | 5.005 | 35 | 2.028 | 2.534 | 2.626 | 81 | 0.336 | 0.767 | 0.891 |
| 45 | 20.0 | 27.59 | 115 | 2.688 | 3.058 | 3.884 | 67 | 3.699 | 4.148 | 5.130 | 40 | 1.739 | 2.033 | 2.716 | 82 | 0.209 | 0.338 | 1.032 |
| 45 | 40.0 | 29.72 | 117 | 2.086 | 2.126 | 4.106 | 68 | 2.952 | 3.002 | 5.390 | 40 | 1.279 | 1.308 | 2.905 | 83 | 0.097 | 0.102 | 1.402 |
| 45 | 60.0 | 30.47 | 118 | 1.619 | 1.478 | 4.340 | 69 | 2.356 | 2.172 | 5.664 | 43 | 0.940 | 0.842 | 3.108 | 83 | 0.055 | 0.047 | 1.944 |
| 55 | 0.1 | 25.42 | 105 | 3.035 | 4.111 | 3.181 | 54 | 4.120 | 5.397 | 4.296 | 31 | 2.014 | 2.910 | 2.132 | 76 | 0.328 | 1.413 | 0.398 |
| 55 | 5.0 | 25.78 | 107 | 2.852 | 3.761 | 3.224 | 55 | 3.898 | 4.986 | 4.348 | 34 | 1.868 | 2.612 | 2.168 | 80 | 0.258 | 0.872 | 0.422 |
| 55 | 10.0 | 27.01 | 108 | 2.677 | 3.434 | 3.270 | 61 | 3.685 | 4.599 | 4.402 | 35 | 1.730 | 2.340 | 2.205 | 80 | 0.206 | 0.559 | 0.448 |
| 55 | 20.0 | 27.61 | 110 | 2.358 | 2.863 | 3.362 | 62 | 3.292 | 3.912 | 4.512 | 38 | 1.483 | 1.877 | 2.280 | 81 | 0.137 | 0.262 | 0.507 |
| 55 | 40.0 | 29.48 | 117 | 1.830 | 1.990 | 3.554 | 63 | 2.627 | 2.831 | 4.741 | 40 | 1.091 | 1.208 | 2.439 | 82 | 0.071 | 0.086 | 0.658 |
| 55 | 60.0 | 29.81 | 118 | 1.420 | 1.384 | 3.757 | 63 | 2.097 | 2.049 | 4.981 | 42 | 0.802 | 0.777 | 2.609 | 82 | 0.044 | 0.042 | 0.867 |
| 65 | 0.1 | 24.54 | 104 | 2.662 | 3.850 | 2.753 | 49 | 3.667 | 5.090 | 3.778 | 30 | 1.718 | 2.687 | 1.790 | 75 | 0.202 | 0.985 | 0.227 |
| 65 | 5.0 | 25.54 | 106 | 2.502 | 3.522 | 2.791 | 54 | 3.469 | 4.703 | 3.824 | 31 | 1.594 | 2.412 | 1.820 | 77 | 0.164 | 0.629 | 0.238 |
| 65 | 10.0 | 25.61 | 107 | 2.348 | 3.216 | 2.830 | 59 | 3.279 | 4.338 | 3.872 | 32 | 1.476 | 2.160 | 1.851 | 78 | 0.135 | 0.417 | 0.251 |
| 65 | 20.0 | 25.83 | 109 | 2.068 | 2.681 | 2.910 | 60 | 2.930 | 3.690 | 3.969 | 33 | 1.265 | 1.733 | 1.914 | 79 | 0.095 | 0.207 | 0.279 |
| 65 | 40.0 | 26.13 | 115 | 1.605 | 1.864 | 3.076 | 61 | 2.338 | 2.670 | 4.170 | 34 | 0.931 | 1.115 | 2.048 | 80 | 0.054 | 0.074 | 0.347 |
| 65 | 60.0 | 27.11 | 117 | 1.246 | 1.296 | 3.252 | 62 | 1.866 | 1.933 | 4.381 | 36 | 0.684 | 0.718 | 2.190 | 82 | 0.036 | 0.038 | 0.438 |
| 100 | 60.0 | 26.19 | 111 | 0.787 | 1.029 | 1.962 | 57 | 1.241 | 1.575 | 2.796 | 33 | 0.392 | 0.543 | 1.187 | 73 | 0.022 | 0.028 | 0.083 |
| 130 | 60.0 | 22.57 | 107 | 0.531 | 0.845 | 1.273 | 50 | 0.875 | 1.322 | 1.902 | 28 | 0.244 | 0.428 | 0.703 | 72 | 0.017 | 0.023 | 0.037 |
| 160 | 60.0 | 21.69 | 102 | 0.359 | 0.694 | 1.029 | 43 | 0.617 | 1.109 | 1.575 | 23 | 0.151 | 0.337 | 0.543 | 70 | 0.014 | 0.020 | 0.028 |
| 190 | 60.0 | 19.26 | 98 | 0.242 | 0.570 | 0.986 | 36 | 0.435 | 0.930 | 1.516 | 17 | 0.094 | 0.265 | 0.516 | 69 | 0.013 | 0.017 | 0.027 |
| 220 | 70.0 | 18.05 | 95 | 0.144 | 0.390 | 0.733 | 31 | 0.274 | 0.664 | 1.164 | 14 | 0.050 | 0.167 | 0.360 | 67 | 0.012 | 0.014 | 0.020 |
| 250 | 80.0 | 16.52 | 92 | 0.086 | 0.267 | 0.544 | 26 | 0.172 | 0.474 | 0.894 | 10 | 0.027 | 0.106 | 0.251 | 65 | 0.011 | 0.013 | 0.017 |
| 280 | 90.0 | 14.25 | 90 | 0.051 | 0.183 | 0.404 | 20 | 0.109 | 0.338 | 0.686 | 6 | 0.014 | 0.067 | 0.175 | 63 | 0.011 | 0.012 | 0.015 |
| [1] | 庞雄奇, 贾承造, 宋岩, 等. 全油气系统定量评价: 方法原理与实际应用[J]. 石油学报, 2022, 43(6): 727-759. |
| PANG Xiongqi, JIA Chengzao, SONG Yan, et al. Quantitative evaluation of whole petroleum system: Principle and application[J]. Acta Petrolei Sinica, 2022, 43(6): 727-759. | |
| [2] | PANG Xiongqi. Quantitative evaluation of the whole petroleum system[M]. Singapore: Springer, 2023. |
| [3] | JIA Chengzao, PANG Xiongqi, SONG Yan. Whole petroleum system and ordered distribution pattern of conventional and unconventional oil and gas reservoirs[J]. Petroleum Science, 2023, 20(1): 1-19. |
| [4] | 庞雄奇, 陈冬霞, 张俊, 等. 相―势―源复合控油气成藏机制物理模拟实验研究[J]. 古地理学报, 2013, 15(5): 575-592. |
| PANG Xiongqi, CHEN Dongxia, ZHANG Jun, et al. Physical simulation experimental study on mechanism for hydrocarbon accumulation controlled by facies-potential-source coupling[J]. Journal of Palaeogeography (Chinese Edition), 2013, 15(5): 575-592. | |
| [5] | PANG Xiongqi, LIU Keyu, MA Zhongzhen, et al. Dynamic field division of hydrocarbon migration, accumulation and hydrocarbon enrichment rules in sedimentary basins[J]. Acta Geologica Sinica (English Edition), 2012, 86(6): 1559-1592. |
| [6] | SAAFAN M, MOHYALDINN M, ELRAIES K. Obtaining capillary pressure curves from resistivity measurements in low-permeability sandstone[J]. Geoenergy Science and Engineering, 2023, 221: 111297. |
| [7] | ESMAEILI B, HOSSEINZADEH S, KADKHODAIE A, et al. Simulating reservoir capillary pressure curves using image processing and classification machine learning algorithms applied to petrographic thin sections[J]. Journal of African Earth Sciences, 2024, 209: 105098. |
| [8] | 王民, 余昌琦, 费俊胜, 等. 页岩油在干酪根中吸附行为的分子动力学模拟与启示[J]. 石油与天然气地质, 2023, 44(6): 1442-1452. |
| WANG Min, YU Changqi, FEI Junsheng, et al. Molecular dynamics simulation of shale oil adsorption in kerogen and its implications[J]. Oil & Gas Geology, 2023, 44(6): 1442-1452. | |
| [9] | 严刚, 徐耀辉, 刘保磊, 等. 烷基二苯并噻吩类化合物的运移示踪:基于驱替实验和分子模拟的研究[J]. 石油与天然气地质, 2023, 44(2): 510-520. |
| YAN Gang, XU Yaohui, LIU Baolei, et al. Tracer analysis of alkyl dibenzothiophenes migration based on displacement experiment and molecular simulation[J]. Oil & Gas Geology, 2023, 44(2): 510-520. | |
| [10] | 李倩文. 渤海湾盆地东营凹陷古近系沙河街组页岩储层润湿性及其主控因素[J]. 石油与天然气地质, 2024, 45(4): 1142-1154. |
| LI Qianwen. Wettability and its major determinants of shale reservoirs in the Shahejie Formation, Dongying Sag, Bohai Bay Basin[J]. Oil & Gas Geology, 2024, 45(4): 1142-1154. | |
| [11] | 王晓明, 陈军斌, 任大忠. 陆相页岩油储层孔隙结构表征和渗流规律研究进展及展望[J]. 油气藏评价与开发, 2023, 13(1): 23-30. |
| WANG Xiaoming, CHEN Junbin, REN Dazhong. Research progress and prospect of pore structure representation and seepage law of continental shale oil reservoir[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(1): 23-30. | |
| [12] | 王鑫, 曾溅辉, 贾昆昆, 等. 成岩作用控制下低渗透砂岩润湿性演化过程及机制——以渤海湾盆地东营凹陷为例[J]. 石油与天然气地质, 2023, 44(5): 1308-1320. |
| WANG Xin, ZENG Jianhui, JIA Kunkun, et al. Evolutionary process of the wettability of low-permeability sandstone reservoirs under the control of diagenesis and its mechanism: A case study of the Dongying Sag, Bohai Bay Basin[J]. Oil & Gas Geology, 2023, 44(5): 1308-1320. | |
| [13] | LIU Benjieming, LEI Xuantong, AHMADI M, et al. Surface modeling of wettability transition on α-quartz: Insights from experiments and molecular dynamics simulations[J]. Journal of Molecular Liquids, 2024, 406: 125147. |
| [14] | SHEN Jiawei, LI Chunli, VAN DER VEGT N F A, et al. Understanding the control of mineralization by polyelectrolyte additives: Simulation of preferential binding to calcite surfaces[J]. The Journal of Physical Chemistry C, 2013, 117(13): 6904-6913. |
| [15] | ZHANG Yingnan, GUO Wenyue. Molecular insight into the tight oil movability in nano-pore throat systems[J]. Fuel, 2021, 293: 120428. |
| [16] | JORGENSEN W L, MAXWELL D S, TIRADO-RIVES J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids[J]. Journal of the American Chemical Society, 1996, 118(45): 11225-11236. |
| [17] | CYGAN R T, LIANG Jianjie, KALINICHEV A G. Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field[J]. The Journal of Physical Chemistry B, 2004, 108(4): 1255-1266. |
| [18] | WANG Jianwei, BECKER U. Structure and carbonate orientation of vaterite (CaCO3)[J]. American Mineralogist, 2009, 94(2/3): 380-386. |
| [19] | BERENDSEN H J C, GRIGERA J R, STRAATSMA T P. The missing term in effective pair potentials[J]. Journal of Physical Chemistry, 1987, 91(24): 6269-6271. |
| [20] | BUSSI G, DONADIO D, PARRINELLO M. Canonical sampling through velocity rescaling[J]. The Journal of Chemical Physics, 2007, 126(1): 014101. |
| [21] | DONG Hang, ZHOU Yu, ZHENG Chao, et al. On the role of the amphiphobic surface properties in droplet wetting behaviors via molecular dynamics simulation[J]. Applied Surface Science, 2021, 544: 148916. |
| [22] | LI Jicun, WANG Feng. Water graphene contact surface investigated by pairwise potentials from force-matching PAW-PBE with dispersion correction[J]. The Journal of Chemical Physics, 2017, 146(5): 054702. |
| [23] | TAUBIN G. Estimation of planar curves, surfaces, and nonplanar space curves defined by implicit equations with applications to edge and range image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13(11): 1115-1138. |
| [24] | 施砍园, 陈君青, 庞雄奇, 等. 储层矿物润湿性的测量方法综述[J]. 特种油气藏, 2024, 31(2): 1-9. |
| SHI Kanyuan, CHEN Junqing, PANG Xiongqi, et al. A review of methods for measuring the wettability of reservoir minerals[J]. Special Oil & Gas Reservoirs, 2024, 31(2): 1-9. | |
| [25] | 王业飞, 张楚晗, 崔佳, 等. 表面活性剂对油湿性致密砂岩渗吸作用与界面协同效应[J]. 中国石油大学学报(自然科学版), 2024, 48(5): 129-137. |
| WANG Yefei, ZHANG Chuhan, CUI Jia, et al. Spontaneous imbibition and interface synergistic effect of surfactants on oil-wet tight sandstone[J]. Journal of China University of Petroleum (Edition of Natural Science), 2024, 48(5): 129-137. | |
| [26] | 计秉玉, 方吉超, 杨书, 等. 分子采油的概念、方法及展望[J]. 石油与天然气地质, 2023, 44(1): 195-202. |
| JI Bingyu, FANG Jichao, YANG Shu, et al. Concept, method and prospect of molecular oil recovery[J]. Oil & Gas Geology, 2023, 44(1): 195-202. | |
| [27] | HULSHOF H. The direct deduction of the capillary constant o as a surface tension[C]//KNAW, Proceedings, 2, 1899-1900. Amsterdam: Royal Netherlands Academy of Arts and Sciences, 1900: 389-406. |
| [28] | KIRKWOOD J G, BUFF F P. The statistical mechanical theory of surface tension[J]. The Journal of Chemical Physics, 1949, 17(3): 338-343. |
| [29] | JORGE M, CORDEIRO M N D S. Molecular dynamics study of the interface between water and 2-nitrophenyl octyl ether[J]. The Journal of Physical Chemistry B, 2008, 112(8): 2415-2429. |
| [30] | LEE K, IM S, LEE B. Prediction of renewable energy hosting capacity using multiple linear regression in KEPCO system[J]. Energy Reports, 2023, 9(): 343-347. |
| [31] | AJONA M, VASANTHI P, VIJAYAN D S. Application of multiple linear and polynomial regression in the sustainable biodegradation process of crude oil[J]. Sustainable Energy Technologies and Assessments, 2022, 54: 102797. |
| [32] | TREIBER L E, OWENS W W. A laboratory evaluation of the wettability of fifty oil-producing reservoirs[J]. SPE Journal, 1972, 12(6): 531-540. |
| [33] | CHILINGAR G V, YEN T F. Some notes on wettability and relative permeabilities of carbonate reservoir rocks, II[J]. Energy Sources, 1983, 7(1): 67-75. |
| [34] | 张永超. 致密砂岩中的润湿性及其对石油运移和聚集的影响研究[D]. 北京: 中国石油大学(北京), 2019. |
| ZHANG Yongchao. The wettability in tight sandstone formations and its effects on oil migration and accumulation[D]. Beijing: China University of Petroleum (Beijing), 2019. | |
| [35] | JENNINGS H Y Jr, NEWMAN G H. The effect of temperature and pressure on the interfacial tension of water against methane-normal decane mixtures[J]. SPE Journal, 1971, 11(2): 171-175. |
| [36] | SACHS W, MEYN V. Surface tension in the system Methane/Waters A glance at numeric and precision of the experimental method “pendant drop” and precise experimental results in comparison with literature[J]. Erdoel Erdgas Kohle, 1996, 111: 119-121. |
| [37] | 田宜灵, 肖衍繁, 朱红旭, 等. 高温高压下水与非极性流体间的界面张力[J]. 物理化学学报, 1997, 13(1): 89-95 |
| TIAN Yiling, XIAO Yanfan, ZHU Hongxu, et al. Interfacial tensions between water and non-polar fluids at high pressures and high temperatures[J]. Acta Physico-Chimica Sinica, 1997, 13(1): 89-95. | |
| [38] | REN Quanyuan, CHEN Guangjin, YAN Wei, et al. Interfacial tension of (CO2 + CH4) + water from 298 K to 373 K and pressures up to 30 MPa[J]. Journal of Chemical & Engineering Data, 2000, 45(4): 610-612. |
| [39] | BISCAY F, GHOUFI A, LACHET V, et al. Monte Carlo calculation of the methane-water interfacial tension at high pressures[J]. The Journal of Chemical Physics, 2009, 131(12): 124707. |
| [40] | KASHEFI K, PEREIRA L M C, CHAPOY A, et al. Measurement and modelling of interfacial tension in methane/water and methane/brine systems at reservoir conditions[J]. Fluid Phase Equilibria, 2016, 409: 301-311. |
| [41] | YANG Yafan, NARAYANAN NAIR A K, SUN Shuyu. Molecular dynamics simulation study of carbon dioxide, methane, and their mixture in the presence of brine[J]. The Journal of Physical Chemistry B, 2017, 121(41): 9688-9698. |
| [42] | FENG Dong, WU Keliu, WANG Xiangzeng, et al. Effects of temperature and pressure on spontaneous counter-current imbibition in unsaturated porous media[J]. Energy & Fuels, 2019, 33(9): 8544-8556. |
| [43] | 赵文, 吴克柳, 姜林, 等. 基于孔隙网络模拟的致密砂岩气充注与微观气水赋存特征[J]. 天然气工业, 2022, 42(5): 69-79. |
| ZHAO Wen, WU Keliu, JIANG Lin, et al. Charging and microscopic gas-water occurrence characteristics of tight sandstone gas based on pore network model[J]. Natural Gas Industry, 2022, 42(5): 69-79. | |
| [44] | 杨智. 准噶尔盆地腹部超压顶面附近油气成藏研究[D]. 武汉: 中国地质大学, 2009. |
| YANG Zhi. Hydrocarbon accumulation mechanisms near the top overpressured surface in central Junggar Basin, northwest China[D]. Wuhan: China University of Geosciences, 2009. | |
| [45] | 于强. 鄂尔多斯盆地南部中生界热演化史及其与多种能源关系研究[D]. 西安: 西北大学, 2009. |
| YU Qiang. The thermal evolution history of Ordos Basin Mesozoic and its relationship with various energy mineral deposit[D]. Xi'an: Northwest University, 2009. | |
| [46] | 李阳, 倪小明, 王延斌, 等. 鄂尔多斯盆地临兴地区上古生界压力特征及其成因机制[J]. 天然气地球科学, 2019, 30(7): 997-1005. |
| LI Yang, NI Xiaoming, WANG Yanbin, et al. Pressure characteristics and genetic mechanism of Upper Paleozoic in Linxing area of Ordos Basin[J]. Natural Gas Geoscience, 2019, 30(7): 997-1005. | |
| [47] | 张翘然, 肖红平, 饶松, 等. 松辽盆地现今地温场特征及控制因素[J]. 地质科技通报, 2023, 42(5): 191-204. |
| ZHANG Qiaoran, XIAO Hongping, RAO Song, et al. Characteristics and controlling factors of the present geothermal field in the Songliao Basin[J]. Bulletin of Geological Science and Technology, 2023, 42(5): 191-204. | |
| [48] | 黄越, 常健, 邱楠生, 等. 松辽盆地齐家—古龙凹陷青山口组压力场特征和超压成因[J]. 石油学报, 2024, 45(12): 1800-1817. |
| HUANG Yue, CHANG Jian, QIU Nansheng, et al. Pressure field characteristics and overpressure geneses of Qingshankou Formation in Qijia-Gulong Sag, Songliao Basin[J]. Acta Petrolei Sinica, 2024, 45(12): 1800-1817. | |
| [49] | YAO Weijiang, CHEN Zhonghong, DONG Xuemei, et al. Storage space, pore-throat structure of igneous rocks and the significance to petroleum accumulation: An example from Junggar Basin, western China[J]. Marine and Petroleum Geology, 2021, 133: 105270. |
| [50] | 庞礴, 董月霞, 陈迪, 等. 含油气盆地砂岩目的层油气富集主控因素与基本模式——以渤海湾盆地南堡凹陷新近系砂岩油气藏为例[J]. 石油学报, 2019, 40(5): 519-531. |
| PANG Bo, DONG Yuexia, CHEN Di, et al. Main controlling factors and basic model for hydrocarbon enrichment in the sandstone target layer of petroliferous basin: A case study of Neogene sandstone reservoirs in Nanpu Sag, Bohai Bay Basin[J]. Acta Petrolei Sinica, 2019, 40(5): 519-531. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||