Oil & Gas Geology ›› 2020, Vol. 41 ›› Issue (6): 1310-1320.doi: 10.11743/ogg20200619
• Methods and Technologies • Previous Articles Next Articles
Mo Deng1(), Xinguo Duan2, Changbo Zhai1, Shengxiang Long3,4, Zhenheng Yang1, Lunju Zheng1, Zhangchang Li2, Taotao Cao5,*()
Received:
2018-09-17
Online:
2020-12-28
Published:
2020-12-09
Contact:
Taotao Cao
E-mail:dengmo.syky@sinopec.com;515165359@163.com
CLC Number:
Mo Deng, Xinguo Duan, Changbo Zhai, Shengxiang Long, Zhenheng Yang, Lunju Zheng, Zhangchang Li, Taotao Cao. Variation in liquid hydrocarbon content during thermal simulation and its influence on physical property of shale[J]. Oil & Gas Geology, 2020, 41(6): 1310-1320.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Geochemical characteristics of the original shale and corresponding thermally simulated samples of the Dalong Formation in the Sichuan Basin"
样品编号 | 模拟温度/℃ | TOC/% | S1/(mg·g-1) | S2/(mg·g-1) | HI/(mg·g-1) | Tmax/ ℃ | 氯仿沥青“A”含量/% |
DL-O | 原岩 | 9.83 | 1.03 | 37.70 | 371 | 440 | 1.11 |
DL-325 | 325 | 7.17 | 2.21 | 22.60 | 324 | 439 | 3.73 |
DL-340 | 340 | 7.30 | 4.84 | 18.81 | 258 | 438 | 3.34 |
DL-360 | 360 | 5.76 | 4.95 | 9.72 | 164 | 444 | 1.97 |
DL-400 | 400 | 6.26 | 2.56 | 246.00 | 35 | 571 | 0.59 |
DL-420 | 420 | 6.26 | 1.64 | 1.37 | 20 | 587 | 0.24 |
DL-450 | 450 | 7.71 | 0.53 | 0.56 | 7 | 605 | 0.04 |
DL-480 | 480 | 4.15 | 0.47 | 0.19 | 4 | 607 | 0.04 |
DL-500 | 500 | 4.10 | 0.14 | 0.12 | 3 | 607 | 0.02 |
DL-550 | 550 | 5.38 | 0.07 | 0.00 | 0 | — | 0.00 |
Table 2
Pore structure parameters of the Dalong Formation original shale and samples under thermal simulation, Sichuan Basin"
样品编号 | 模拟条件 | 氮气吸附结果 | ||||||
地层压力/MPa | 静岩压力/MPa | 比表面积/(m2·g-1) | 孔体积/(cm3·g-1) | 微孔体积/(cm3·g-1) | 中孔体积/(cm3·g-1) | 大孔体积/(cm3·g-1) | ||
DL-O | 0.92 | 0.006 | 0.000 2 | 0.003 0 | 0.003 3 | |||
DL-325 | 23 | 48 | 1.06 | 0.011 | 0.000 4 | 0.004 9 | 0.005 5 | |
DL-340 | 34 | 70 | 1.08 | 0.013 | 0.000 5 | 0.005 7 | 0.007 0 | |
DL-360 | 49 | 102 | 3.68 | 0.022 | 0.000 6 | 0.008 0 | 0.013 0 | |
DL-400 | 53 | 110 | 3.02 | 0.024 | 0.001 0 | 0.010 9 | 0.011 7 | |
DL-420 | 55 | 115 | 1.83 | 0.020 | 0.000 9 | 0.007 7 | 0.011 5 | |
DL-450 | 58 | 120 | 2.18 | 0.019 | 0.001 0 | 0.008 2 | 0.010 3 | |
DL-480 | 62 | 130 | 3.52 | 0.022 | 0.001 7 | 0.008 6 | 0.012 0 | |
DL-500 | 67 | 140 | 6.84 | 0.027 | 0.003 3 | 0.010 1 | 0.014 0 | |
DL-550 | 72 | 150 | 8.02 | 0.014 | 0.003 8 | 0.006 8 | 0.003 0 |
Table 3
Pore structure parameters of the simulated and extracted shale samples from the Dalong Formation, Sichuan Basin"
样品编号 | 比表面积/(m2·g-1) | 孔体积/(mL·g-1) | 微孔体积/(mL·g-1) | 中孔体积/(mL·g-1) | 大孔体积/(mL·g-1) |
DL-325-E | 3.11 | 0.033 | 0.001 3 | 0.01 3 | 0.019 |
DL-340-E | 3.72 | 0.032 | 0.001 4 | 0.01 4 | 0.017 |
DL-360-E | 4.17 | 0.027 | 0.001 5 | 0.00 9 | 0.016 |
DL-400-E | 7.76 | 0.040 | 0.003 3 | 0.01 5 | 0.022 |
DL-420-E | 9.92 | 0.039 | 0.004 0 | 0.01 8 | 0.017 |
DL-450-E | 8.26 | 0.018 | 0.003 5 | 0.01 0 | 0.004 |
DL-480-E | 9.01 | 0.019 | 0.003 8 | 0.008 7 | 0.006 8 |
DL-500-E | 9.58 | 0.039 | 0.004 1 | 0.014 | 0.021 |
DL-550-E | 15.37 | 0.034 | 0.006 7 | 0.012 | 0.015 |
1 | Curtis M E , Cardott B J , Sondergeld C H , et al. Development of organic porosity in the Woodford Shale with increasing thermal maturity[J]. International Journal of Coal Geology, 2012, 103 (23): 26- 31. |
2 | 李楚雄, 肖七林, 陈奇, 等. 页岩纳米级孔隙在有机质熟化过程中的演化特征及影响因素[J]. 石油实验地质, 2019, 41 (6): 901- 909. |
LI Chuxiong , Xiao Qilin , Chen Qi , et al. Evolution characteristics and controls of shale nanopores during thermal maturation of organic matter[J]. Petroleum Geology & Experiment, 2019, 41 (6): 901- 909. | |
3 | Mathia E J , Bowen L , Thomas K M , et al. Evolution of porosity and pore types in organic-rich, calcareous, Lower Toarcian Posidonia Shale[J]. Marine and Petroleum Geology, 2016, 75 (8): 117- 139. |
4 | 张毅, 胡守志, 廖泽文, 等. 基于压机热模拟实验的页岩孔隙演化特征[J]. 地球科学, 2019, 44 (3): 983- 992. |
Zhang Yi , Hu Shouzhi , Liao Zewen , et al. Shale pore evolution characteristics based on semi-closed pyrolysis experiment[J]. Earth Science, 2019, 44 (3): 983- 992. | |
5 | 刘国恒, 黄志龙, 姜振学, 等. 湖相页岩液态烃对页岩吸附气实验的影响——以鄂尔多斯盆地延长组页岩为例[J]. 石油实验地质, 2015, 37 (5): 648- 653. |
Liu Guoheng , Huang Zhilong , Jiang Zhenxue , et al. Effect of liquid hydrocarbons on gas adsorption in a v lacustrine shale:a case study of the Yanchang formation, Ordos Basin[J]. Petroleum Geology and Experiment, 2015, 37 (5): 648- 653. | |
6 | 罗进雄, 何幼斌. 中上扬子地区二叠系烃源岩特征[J]. 天然气地球科学, 2014, 25 (9): 1416- 1425. |
Luo Jinxiong , He Youbin . Characterisitics of the Permian source rocks in the Middle and Upper Yangtze region[J]. Natural Gas Geoscience, 2014, 25 (9): 1416- 1425. | |
7 | Ross D J K , Bustin R M . The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs[J]. Marine and Petroleum Geology, 2009, 26 (6): 916- 927. |
8 | 雷裕红, 王晖, 罗晓容, 等. 鄂尔多斯盆地张家滩页岩液态烃特征及对页岩气量估算的影响[J]. 石油学报, 2016, 37 (8): 952- 961. |
Lei Yuhong , Wang Hui , Luo Xiaorong , et al. The characteristics of liquid hydrocarbon in Zhangjiatan shale, Ordos Basin and its effects on the estimation of shale gas content[J]. Acta Petrolei Sinica, 2016, 37 (8): 952- 961. | |
9 | 潘磊, 陈桂华, 徐强, 等. 下扬子地区二叠系富有机质泥页岩孔隙结构特征[J]. 煤炭学报, 2013, 38 (5): 787- 793. |
Pan Lei , Chen Guihua , Xu Qiang , et al. Pore structure characteristics of Permian organic-rich shale in Lower Yangtze area[J]. Journal of China Coal Society, 2013, 38 (5): 787- 793. | |
10 |
Jarvie D M , Hill R J , Ruble T E , et al. Unconventional shale-gas systems:The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin, 2007, 91 (4): 475- 499.
doi: 10.1306/12190606068 |
11 | 张琴, 梁峰, 庞正炼, 等. 可溶有机质对海陆过渡相页岩孔隙结构的定量影响[J]. 石油实验地质, 2018, 40 (5): 730- 738. |
Zhang Qin , Liang Feng , Pan Zhenglian , et al. Quantitative influence of soluble organic matter on pore structure in transitional shale[J]. Petroleum Geology and Experiment, 2018, 40 (5): 730- 738. | |
12 | Cao T T , Song Z G , Wang S B , et al. Characterizing the pore structure in the Silurian and Permian shales of the Sichuan Basin, China[J]. Marine and Petroleum Geology, 2015, 61 (3): 140- 150. |
13 | 崔景伟, 朱如凯, 崔京钢. 页岩孔隙演化及其与残留烃量的耦合关系:来自地质过程约束模拟实验的证据[J]. 地质学报, 2013, 87 (5): 730- 736. |
Cui Jingwei , Zhu Rukai , Cui Jinggang . Relationship of porous evolution and residual hydrocarbon:evidence from modeling experiment with geological constrains[J]. Acta Geological Sinica, 2013, 87 (5): 730- 736. | |
14 | Lin W , Mastalerz M , Schimmelmann A , et al. Influence of Soxhlet-extractable bitumen and oil on porosity in thermally maturing organic-rich shales[J]. International Journal of Coal Geology, 2014, 132 (10): 38- 50. |
15 | Hu H Y , Zhang T W , Wiggins-Camacho J D , et al. Experimental investigation of changes in methane adsorption of bitumen-free Woodford Shale with thermal maturation induced by hydrous pyrolysis[J]. Marine and Petroleum Geology, 2015, 59 (1): 114- 128. |
16 | 李成成, 周世新, 李靖, 等. 鄂尔多斯盆地南部延长组泥页岩孔隙特征及其控制因素[J]. 沉积学报, 2017, 35 (2): 315- 329. |
Li Chengcheng , Zhou Shixin , Li Jing , et al. Pore characteristics and controlling factors of the Yanchang formation and shale in the South of Ordos Basin[J]. Acta Sedimentologica Sinica, 2017, 35 (2): 315- 329. | |
17 | Wang M , Xue H T , Tian S S , et al. Fractal characteristics of Upper Cretaceous lacustrine shale from the Songliao Basin, NE China[J]. Marine and Petroleum Geology, 2015, 67 (11): 144- 153. |
18 |
Mastalerz M , Schimmelmann A , Drobniak A , et al. Porosity of Devonian and Mississippian New Albany Shale across a maturation gradient:Insights from organic petrology, gas adsorption, and mercury intrusion[J]. AAPG Bulletin, 2013, 97 (10): 1621- 1643.
doi: 10.1306/04011312194 |
19 | Furmann A , Mastalerz M , Brassell S C , et al. Extractability of biomarkers from high-and low-vitrinite coals and its effect on the porosity of coal[J]. International Journal of Coal Geology, 2013, 107 (5): 141- 151. |
20 | 肖佃师, 赵仁文, 杨潇, 等. 海相页岩气储层孔隙表征、分类及贡献[J]. 石油与天然气地质, 2019, 40 (6): 1215- 1225. |
Xiao Dianshi , Zhao Renwen , Yang Xiao , et al. Characterization, classification and contribution of marine shale gas reservoirs[J]. Oil & Gas Geology, 2019, 40 (6): 1215- 1225. | |
21 | 孙健, 包汉勇. 页岩气储层综合表征技术研究进展:以涪陵页岩气田为例[J]. 石油实验地质, 2018, 40 (1): 1- 12. |
Sun Jian , Bao Hanyong . Comprehensive characterization of shale gas reservoirs:A case study from Fuling shale gas field[J]. Petroleum Geology & Experiment, 2018, 40 (1): 1- 12. | |
22 | 何陈诚, 何生, 郭旭升, 等. 焦石坝区块五峰组与龙马溪组一段页岩有机孔隙结构差异性[J]. 石油与天然气地质, 2018, 39 (3): 472- 484. |
He Chencheng , He Sheng , Guo Xusheng , et al. Structural differences in organic pores between shales of the Wufeng Formation and of the Longmaxi Formation's first Member, Jiaoshiba Block, Sichuan Basin[J]. Oil & Gas Geology, 2018, 39 (3): 472- 484. | |
23 | 卢双舫, 黄文彪, 陈方文, 等. 页岩油气资源分级评价标准探讨[J]. 石油勘探与开发, 2012, 39 (2): 249- 256. |
Lu Shuangfang , Huang Wenbiao , Chen Fangwen , et al. Classification and evaluation criteria of shale oil and gas resources:discussion and application[J]. Petroleum Exploration and Development, 2012, 39 (2): 249- 256. | |
24 | 王民, 石蕾, 王文广, 等. 中美页岩油、致密油发育的地球化学特征对比[J]. 岩性油气藏, 2014, 26 (3): 67- 73. |
Wang Min , Shi Lei , Wang Wenguang , et al. Comparative study on geochemical characteristics of shale oil between China and U.S.A[J]. Lithological Reservoirs, 2012, 39 (2): 249- 256. | |
25 | Inan S , Badairy H A , Inan T , et al. Formation and occurrence of organic matter-hosted porosity in shales[J]. International Journal of Coal Geology, 2018, 199 (11): 39- 51. |
26 | Bernard S , Wirth R , Schreiber A , et al. Formation of nanoporous pyro-bitumen residues during maturation of the Barnett shale (Forth Worth Basin)[J]. International Journal of Coal Geology, 2012, 103 (12): 3- 11. |
27 | 马中良, 郑伦举, 徐旭辉, 等. 富有机质页岩有机孔隙形成与演化的热模拟实验[J]. 石油学报, 2017, 38 (1): 23- 30. |
Ma Zhongliang , Zheng Lunjun , Xu Xuhui , et al. Thermal simulation experiment on the formation and evolution of organic pores in organic-rich shale[J]. Acta Petrolei Sinica, 2017, 38 (1): 23- 30. | |
28 |
Chen Z H , Shuai Y H , Wang N . A reassessment of gas resources in selected Upper Cretaceous biogenic gas accumulations in southeastern Alberta and southwestern Saskatchewan, Canada[J]. Bulletin of Canadian Petroleum Geology, 2015, 63 (1): 5- 19.
doi: 10.2113/gscpgbull.63.1.5 |
29 | 贺儒良, 贾望鲁, 彭平安. 排-留烃过程对富有机质页岩纳米孔隙发育影响的热模拟实验研究[J]. 地球化学, 2018, 47 (5): 575- 585. |
He Ruliang , Jia Wanglu , Peng Pingan . Infulence of hydrocarbon expulsion and retention of the evolution of nanometer-scale pores in organic matter rich shale:An example from pyrolysis experiment[J]. Geochimica, 2018, 47 (5): 575- 585. | |
30 | Yang C Y , Ni Z Y , Li M J , et al. Pyrobitumen in South China:Organic petrology, chemical composition and geological significance[J]. International Journal of Coal Geology, 2018, 188 (3): 51- 63. |
31 | Fishman N S , Hackley P C , Lowers H A , et al. The nature of porosity in organic-rich mudstones of the Upper Jurassic Kimmeridge Clay Formation, North Sea, offshore United Kingdom[J]. International Journal of Coal Geology, 2012, 103 (23): 32- 50. |
32 | 曹涛涛, 邓模, 罗厚勇, 等. 下扬子地区中上二叠统页岩有机孔发育特征[J]. 石油实验地质, 2018, 40 (3): 315- 322. |
Cao Taotao , Deng Mo , Luo Houyong , et al. Characteristics of organic pores in Middle and Upper Permian shale in the Lower Yangtze region[J]. Petroleum Geology & Experiment, 2018, 40 (3): 315- 322. | |
33 | 曹涛涛, 刘光祥, 曹清古, 等. 有机显微组成对泥页岩有机孔发育的影响——以川东地区海陆过渡相龙潭组泥页岩为例[J]. 石油与天然气地质, 2018, 39 (1): 40- 53. |
Cao Taotao , Liu Guangxiang , Cao Qinggu , et al. Influence of maceral composition on organic pore development in shale:A case study of transitional Longtan Formation shale in eastern Sichuan Basin[J]. Oil & Gas Geology, 2018, 39 (1): 40- 53. | |
34 | 曹涛涛, 邓模, 刘虎, 等. 可溶有机质对泥页岩储集物性的影响[J]. 岩性油气藏, 2018, 30 (3): 1- 9. |
Cao Taotao , Deng Mo , Liu Hu , et al. Influence of soluble organic matter on reservoir properties of shale[J]. Lithologic Reservoirs, 2018, 30 (3): 1- 9. | |
35 |
Ko L T , Loucks R G , Zhang T W , et al. Pore and pore network evolution of Upper Cretaceous Boquillas(Eagle Ford-equivalent) mudrocks:Results from gold tube pyrolysis experiments[J]. AAPG Bulletin, 2016, 100 (11): 1693- 1722.
doi: 10.1306/04151615092 |
36 | 李恒超, 刘大永, 彭平安, 等. 人工熟化过程中可溶有机质对页岩孔隙特征的影响[J]. 地球化学, 2017, 46 (5): 466- 475. |
Li Hengchao , Liu Dayong , Peng Pingan , et al. Effect of extractable organic matter on pore characteristics of shales treated by artificial heating[J]. Geochimica, 2017, 46 (5): 466- 475. | |
37 | Zargari S , Canter K L , Prasad M . Porosity evolution in oil-prone source rocks[J]. Fuel, 2015, 153 (8): 110- 117. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||