Oil & Gas Geology ›› 2021, Vol. 42 ›› Issue (5): 1181-1188.doi: 10.11743/ogg20210515
• Methods and Technologies • Previous Articles Next Articles
Received:
2020-12-24
Online:
2021-10-28
Published:
2021-10-26
CLC Number:
Fangzheng Jiao. FSV estimation and its application to development of shale oil via volume fracturing in the Ordos Basin[J]. Oil & Gas Geology, 2021, 42(5): 1181-1188.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Characteristic parameter comparison of the shale oil from Ordos Basin and that from other basins home and abroad"
特征参数 | 鄂尔多斯盆地延长组 | 准噶尔盆地芦草沟组 | 三塘湖盆地条湖组 | 松辽盆地白垩系 | 北美二叠盆地 |
沉积环境 | 湖相 | 湖相 | 湖相 | 湖相 | 浅海相 |
埋深/m | 1 600~2 200 | 2 700~3 900 | 2 000~2 800 | 1 700~2 200 | 2 134~2 895 |
油层厚度/m | 5~15 | 10~13 | 5~20 | 10~30 | 400~600 |
孔隙度/% | 6.0~11.0 | 8.0~14.6 | 8.0~18.0 | 5.0~18.0 | 8.0~12.0 |
渗透率/(10-3μm2) | 0.110~0.140 | 0.010~0.012 | 0.100~0.500 | 0.020~0.500 | 0.010~1.000 |
含油饱和度/% | 67.7~72.4 | 78.0~80.0 | 55.0~76.5 | 48.0~55.0 | 75.0~88.0 |
气油比/(m3·t-1) | 75~122 | 18~22 | — | — | 50~140 |
原油粘度/(mPa·s) | 1.21~1.96 | 11.70~21.50 | 58.00~83.00 | 4.00~8.00 | 0.15~0.53 |
压力系数 | 0.77~0.84 | 1.20~1.60 | 0.90 | 1.10~1.32 | 1.05~1.50 |
水平应力差/MPa | 4~6 | 5~9 | 1~5 | 3~6 | 1~3 |
脆性指数/% | 35~45 | 50~51 | 31~54 | — | 45~60 |
Table 2
Fracturing parameters and development effect prediction of horizontal wells on Hua H 6 pad, Qingcheng oilfield"
井号 | 水平段长度/m | 压裂段数/簇数 | 加砂强度/(t·m-1) | 进液强度/(m3·m-1) | FSV/(104 m3) | EFSV/% | 累产油/(104 t) | 产量强度/(t·m-1) |
华H6-1 | 1 529 | 22/107 | 3.2 | 24.0 | 451 | 41.0 | 1.6 | 21.8 |
华H6-2 | 1 564 | 25/127 | 3.3 | 22.7 | 411 | 41.7 | 1.2 | 8.1 |
华H6-3 | 1 468 | 23/120 | 4.4 | 27.9 | 515 | 46.8 | 1.6 | 29.1 |
华H6-4 | 1 260 | 19/102 | 4.2 | 27.0 | 260 | 34.4 | 0.9 | 11.6 |
华H6-5 | 1 323 | 19/94 | 3.7 | 24.2 | 505 | 55.3 | 1.7 | 22.1 |
华H6-6 | 2 029 | 27/165 | 5.6 | 33.4 | 628 | 49.1 | 1.4 | 8.2 |
华H6-7 | 1 588 | 23/92 | 5.7 | 24.1 | 653 | 65.3 | 1.6 | 15.3 |
华H6-8 | 2 110 | 26/157 | 6.6 | 39.2 | 649 | 42.7 | 1.5 | 7.5 |
华H6-9 | 1 959 | 28/191 | 4.8 | 28.5 | 678 | 50.2 | 2.3 | 8.5 |
华H6-11 | 1 252 | 16/89 | 3.5 | 19.6 | 361 | 40.0 | 1.2 | 17.7 |
华H6-12 | 1 191 | 19/98 | 3.7 | 23.7 | 470 | 65.8 | 1.4 | 14.8 |
总平台平均值 | 1 570 | 23/122 | 4.4 | 26.7 | 5 580 | 48.4 | 16.5 | 15.0 |
1 | 焦方正, 邹才能, 杨智. 陆相源内石油聚集地质理论认识及勘探开发实践[J]. 石油勘探与开发, 2020, 47 (6): 1- 12. |
Jiao Fangzheng , Zhou Caineng , Yang Zhi . Geological theory and exploration & development practice of hydrocarbon accumulation inside continental source kitchen[J]. Petroleum Exploration and Development, 2020, 47 (6): 1- 12. | |
2 | 焦方正. 页岩气"体积开发"理论认识、核心技术与实践[J]. 天然气工业, 2019, 39 (5): 1- 14. |
Jiao Fangzheng . Theoretical insights, core technologies and practices concerning "volume development" of shale gas in China[J]. Natural Gas Industry, 2019, 39 (5): 1- 14. | |
3 | Fu S , Yu J , Zhang K , et al. Investigation of multistage hydraulic fracture optimization design methods in horizontal shale oil wells in the Ordos Basin[J]. Geofluids, 2020, 65 (1): 1- 17. |
4 | 付锁堂, 姚泾利, 李士祥, 等. 鄂尔多斯盆地中生界延长组陆相页岩油富集特征与资源潜力[J]. 石油实验地质, 2020, 42 (5): 699- 710. |
Fu Suotang , Yao Jingli , Li Shixiang , et al. Enrichment characteristics and resource potential of continental shale oil in Mesozoic Yanchang Formation, Ordos Basin[J]. Petroleum Geology and Experiment, 2020, 42 (5): 699- 710. | |
5 | 付金华, 李士祥, 牛小兵, 等. 鄂尔多斯盆地三叠系长7段页岩油地质特征与勘探实践[J]. 石油勘探与开发, 2020, 47 (5): 870- 883. |
Fu Jinhua , Li Shixiang , Niu Xiaobing , et al. Geological characteristics and exploration of shale oil in Chang 7 member of Triassic Yanchang Formation, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47 (5): 870- 883. | |
6 | Zhang K, Zhuang X, Tang M, et al. Integratedoptimisation of fracturing design to fully unlock the Chang 7 tight oil production potential in Ordos Basin[C]//SPE. Asia Pacific Unconventional Resources Technology Conference. Brisbane, Australia: SPE, 2019. |
7 | Zhang K, Tang M, Du X, et al. Application ofintegrated geology and geomechanics to stimulation optimization workflow to maximize well potential in a tight oil reservoir, Ordos Basin, Northern Central China[C]. 53rd U.S. Rock Mechanics/Geomechanics Symposium, 23-26 June, New York City, New York 2019. ARMA 19-2187. |
8 |
付金华, 牛小兵, 淡卫东, 等. 鄂尔多斯盆地中生界延长组长7段页岩油地质特征及勘探开发进展[J]. 中国石油勘探, 2019, 24 (5): 601- 614.
doi: 10.3969/j.issn.1672-7703.2019.05.007 |
Fu Jinhua , Niu Xiaobing , Dan Weidong , et al. The geological characteristics and the progress on exploration and development of shale oil in Chang7 Member of Mesozoic Yanchang Formation, Ordos Basin[J]. China Petroleum Exploration, 2019, 24 (5): 601- 614.
doi: 10.3969/j.issn.1672-7703.2019.05.007 |
|
9 | Bai X, Zhang K, Tang M, et al. Development andapplication of cyclic stress fracturing for tight oil reservoir in Ordos Basin[C]. Abu Dhabi International Petroleum Exhibition & Conference 2019. SPE-197746-MS. |
10 | 慕立俊, 赵振峰, 李宪文, 等. 鄂尔多斯盆地页岩油水平井细切割体积压裂技术[J]. 石油与天然气地质, 2019, 40 (3): 626- 635. |
Mu Lijun , Zhao Zhenfeng , Li Xianwen , et al. Fracturing technology reservoir volume with subdivision cutting for shale oil horizontal wells in Ordos Basin[J]. Oil & Gas Geology, 2019, 40 (3): 626- 635. | |
11 | 吴顺林, 刘汉斌, 李宪文, 等. 鄂尔多斯盆地致密油水平井细分切割缝控压裂试验与应用[J]. 钻采工艺, 2020, 43 (3): 53- 55. |
Wu Shunlin , Liu Hanbin , Li Xianwen , et al. Fracturing test and application of subdivided cutting fracture in tight oil horizontal wells in Ordos Basin[J]. Drilling & Production Technology, 2020, 43 (3): 53- 55. | |
12 | 李忠兴, 屈雪峰, 刘万涛, 等. 鄂尔多斯盆地长7段致密油合理开发方式探讨[J]. 石油勘探与开发, 2015, 42 (2): 217- 221. |
Li Zhongxing , Qu Xuefeng , Liu Wantao , et al. Development modes of Triassic Yanchang Formation Chang 7 Member tight oil in Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42 (2): 217- 221. | |
13 | 张矿生, 王文雄, 徐晨, 等. 体积压裂水平井增产潜力及产能影响因素分析[J]. 科学技术与工程, 2013, 13 (35): 10475- 10480. |
Zhang Kuangsheng , Wang Wenxiong , Xu Cheng , et al. Analysis on stimulation potential and productivity influencing factors of network fractured horizontal well[J]. Science Technology and Engineering, 2013, 13 (35): 10475- 10480. | |
14 | 李宪文, 樊凤玲, 杨华, 等. 鄂尔多斯盆地低压致密油藏不同开发方式下的水平井体积压裂实践[J]. 钻采工艺, 2016, 39 (3): 34- 36. |
Li Xianwen , Fan Fengling , Yang Hua , et al. Volumetric fracturing technology of low-pressure tight oil reservoirs horizontal wells under different development conditions in Ordos Basin[J]. Drilling & Production Technology, 2016, 39 (3): 34- 36. | |
15 | 王文东, 赵广渊, 苏玉亮, 等. 致密油藏体积压裂技术应用[J]. 新疆石油地质, 2013, 34 (3): 345- 348. |
Wang Wendong , Zhao Guangyuan , Su Yuliang , et al. Application of network fracturing technology to tight oil reservoirs[J]. Xinjiang Petroleum Geology, 2013, 34 (3): 345- 348. | |
16 | 舒志恒, 方栋梁, 郑爱维, 等. 四川盆地焦石坝地区龙马溪组一段上部页岩气层地质特征及开发潜力[J]. 天然气地球科学, 2020, 31 (3): 393- 401. |
Su Zhiheng , Fang Dongliang , Zhen Aiwei , et al. Geological characteristics and development potential of upper shale gas reservoirs of the 1st member of Longmaxi Formation in Jiaoshiba area, Sichuan Basin[J]. Natural Gas Geoscience, 2020, 31 (3): 393- 401. | |
17 | 刘博, 徐刚, 纪拥军, 等. 页岩油水平井体积压裂及微地震监测技术实践[J]. 岩性油气藏, 2020, 32 (6): 172- 180. |
Liu Bo , Xu Gang , Ji Yongjun , et al. Practice of volume fracturing and microseismic monitoring technology in horizontal wells of shale oil[J]. Lithologic Reservoirs, 2020, 32 (6): 172- 180. | |
18 | 刘尧文, 廖如刚, 张远, 等. 涪陵页岩气田井地联合微地震监测气藏实例及认识[J]. 天然气工业, 2016, 36 (10): 56- 62. |
Liu Yaowen , Liao Rugang , Zhang Yuan , et al. Application of surface-downhole combined microseismic monitoring technology in the Fuling shale gas field and its enlightenment[J]. Natural Gas Industry, 2016, 36 (10): 56- 62. | |
19 | 黄小贞, 谷红陶. 井中微地震监测技术在平桥南页岩气区块应用效果分析[J]. 油气藏评价与开发, 2020, 10 (1): 43- 48. |
Huang Xiaozhen , Gu Hongtao . Microseismic monitoring technology of shale gas block in the southern part of Pingqiao[J]. Reservoir Evaluation and Development, 2020, 10 (1): 43- 48. | |
20 | 李德伟, 杨瑞召, 张都, 等. 水力压裂微地震事件分布趋势分析——以MY1井微地震监测为例[J]. 断块油气田, 2019, 26 (3): 346- 349. |
Li Dewei , Yang Ruizhao , Zhang Dou , et al. Distribution trend analysis of hydraulic fracturing events: taking MY1 Well microseismic monitoring as an example[J]. Fault-Block Oil and Gas Field, 2019, 26 (3): 346- 349. | |
21 | 赵金洲, 任岚, 沈骋, 等. 页岩气储层缝网压裂理论与技术研究新进展[J]. 天然气工业, 2018, 38 (3): 1- 14. |
Zhao Jinzhou , Ren Lan , Shen Cheng , et al. Latest research progresses in network fracturing theories and technologies for shale gas reservoirs[J]. Natural Gas Industry, 2018, 38 (3): 1- 14. | |
22 | 张矿生, 樊凤玲, 雷鑫. 致密砂岩与页岩压裂缝网形成能力对比评价[J]. 科学技术与工程, 2014, 14 (14): 185- 189. |
Zhang Kuangsheng , Fan Fenglin , Lei Xin , et al. Comparing evaluation of the ability of forming fracture network in tight sand reservoir and shale reservoir[J]. Science Technology and Engineering, 2014, 14 (14): 185- 189. | |
23 | 刘子雄, 王艳红, 高杰, 等. 基于压裂返排数据的有效破裂体积计算方法[J]. 石油地质与工程, 2019, 33 (2): 112- 115. |
Liu Zixiong , Wang Yanhong , Gao Jie , et al. New calculation method of effective fracture volume based on fracture flowback data[J]. Petroleum Geology & Engineering, 2019, 33 (2): 112- 115. | |
24 | 任岚, 赵金洲, 林然, 等. 页岩压裂水平井增产改造体积的动态演化模型[J]. 应用数学与力学, 2018, 39 (10): 1100- 1113. |
Ren Lan , Zhao Jinzhou , Lin Ran , et al. A dynamic evolution model for the stimulated reservoir volume of the staged fractured horizontal well in shale gas reservoir[J]. Applied Mathematics and Mechanics, 2018, 39 (10): 1100- 1113. | |
25 | Weng X , Kresse O , Cohen C , et al. Modeling of hydraulic fracture network propagation in a naturally fractured formation[J]. SPE Production & Operations, 2011, 26 (4): 368- 380. |
26 | Wu K , Olson J . Simultaneous multifracture treatments: fully coupled fluid flow and fracture mechanics for horizontal wells[J]. SPE Journal, 2015, 20 (2): 337- 346. |
27 | 路千里, 刘壮, 郭建春, 等. 水力压裂致套管剪切变形机理及套变量计算模型[J]. 石油勘探与开发, 2021, 48 (2): 394- 401. |
Lu Qianli , Liu Zhuang , Guo Jianchun , et al. Study on mechanism of hydraulic fracturing induced casing shear deformation and prediction model of casing deformation[J]. Petroleum Exploration and Development, 2021, 48 (2): 394- 401. | |
28 | 赵博, 胡铭寰, 武天海, 等. 一种适用于水力裂缝扩展的混合位移不连续单元法[J]. 大庆石油地质与开发, 2020, 39 (6): 104- 111. |
Zhao Bo , Hu Minghuan , Wu Tianhai , et al. A hybrid displacement discontinuity element method for hydraulic fracture propagation[J]. Petroleum Geology & Oilfield Development in Daqing, 2020, 39 (6): 104- 111. | |
29 | 李士祥, 牛小兵, 柳广弟, 等. 鄂尔多斯盆地延长组长7段页岩油形成富集机理[J]. 石油与天然气地质, 2020, 41 (4): 719- 729. |
Li Shixiang , Niu Xiaobing , Liu Guangdi , et al. Formation and accumulation mechanism of shale oil in the 7th member ofYanchang Formation, Ordos Basin[J]. Oil & Gas Geology, 2020, 41 (4): 719- 729. | |
30 | 许琳, 常秋生, 杨成克, 等. 吉木萨尔凹陷二叠系芦草沟组页岩油储层特征及含油性[J]. 石油与天然气地质, 2019, 40 (3): 535- 549. |
Xu Lin , Chang Qiusheng , Yang Chengke , et al. Characteristics and oil-bearing capability of shale oil reservoir inthe Permian Lucaogou Formation, Jimusaer sag[J]. Oil & Gas Geology, 2019, 40 (3): 535- 549. | |
31 | Zeng F , Cheng X , Guo J , et al. Hybridising human judgment, AHP, grey theory, and fuzzy expert systems for candidate well selection in fractured reservoirs[J]. Energies, 2017, 10 (4): 47- 450. |
32 | 陶亮, 郭建春, 李凌铎, 贺娜, 李鸣. 致密油藏体积压裂水平井产能评价新方法[J]. 特种油气藏, 2019, 26 (3): 89- 93. |
Tao Liang , Guo Jianchun , Li Lingze , He Na , Li Ming . New productivity evaluation of horizontal well with volume-fracturing in tight oil reservoir[J]. Special Oil & Gas Reservoirs, 2019, 26 (3): 89- 93. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||