Oil & Gas Geology ›› 2022, Vol. 43 ›› Issue (5): 1039-1048.doi: 10.11743/ogg20220503
• Petroleum Geology • Previous Articles Next Articles
Zaixing Jiang1(), Yunzeng Wang2, Li Wang1, Xiangxin Kong1, Yepeng Yang1, Jianguo Zhang1, Xinyu Xue1
Received:
2022-03-19
Revised:
2022-07-22
Online:
2022-10-01
Published:
2022-09-02
CLC Number:
Zaixing Jiang, Yunzeng Wang, Li Wang, Xiangxin Kong, Yepeng Yang, Jianguo Zhang, Xinyu Xue. Review on provenance, transport-sedimentation dynamics and multi-source hydrocarbon sweet spots of continental fine-grained sedimentary rocks[J]. Oil & Gas Geology, 2022, 43(5): 1039-1048.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Criteria for classification of fine?grained sedimentary rocks"
划分原则 | 主要岩石类型 | 参考文献 |
---|---|---|
岩石组分 | 粉砂岩(粉砂含量>80 %)、粘土质粉砂岩(粉砂含量>粘土含量>10 %,其他含量<10 %)、粉砂质粘土岩(粘土含量>粉砂含量>10 %,其他含量<10 %)、粘土岩(粘土含量>80 %) | Wentworth[ |
纹层组合 (定性划分) | 黑页岩(页理、有机质纹层)、钙片页岩(页理、有机质纹层、方解石纹层)、钙质纹层页岩(富有机质的粘土纹层、隐晶方解石纹层)、均匀块状泥岩(块状含陆源碎屑)、递变纹层泥岩(底部粉砂,向上递变为泥岩)、变形泥质岩(含包卷层理等变形构造)、混杂泥质岩(含大小不等的角砾和泥质团块) | 邓宏文等[ |
有机质类型 | 腐泥型油页岩(有机质显微组分主要为藻类体、浮游动物等)、混合型油页岩、腐殖-残殖型油页岩(有机质主要为高等植物凝胶化组分和稳定组分) | 郭巍等[ |
纹层组合 (定量划分) | 油页岩(10 %<有机质纹层含量<25 %,粘土纹层含量>50 %)、泥页岩(有机质纹层含量<10 %,粘土纹层含量>75%)、黑页岩(有机质纹层含量>25 %)、钙质页岩(有机质纹层含量<10 %,50 %<粘土纹层含量<75%)、钙质纹层页岩(10%<有机质纹层含量<25 %,隐晶方解石纹层含量>50 %)、纹层状泥灰岩(有机质纹层含量<10 %,50 %<隐晶方解石纹层含量<75 %)和纹层状灰岩(有机质纹层含量<10 %,隐晶方解石纹层含量>75 %) | 王冠民[ |
沉积过程 | 喷爆岩(深源岩浆上涌入湖产生爆炸破碎,形成的矿物碎屑被含热液湖水胶结)、喷溢岩(岩浆低压下沿通道宁静式溢流入湖冷凝)、喷流岩(热液喷流“白烟型”和“黑烟型”纹层岩)、喷混岩(岩浆喷爆和热液喷流物质与湖水均匀混合形成的纹层岩)和嗜热嗜毒生物岩(与热液活动相关的放射虫岩) | 柳益群等[ |
TOC、 矿物含量、 沉积构造 | 高有机质页状灰岩(TOC>4 %,碳酸盐含量>50 %)、高有机质页状粘土岩(TOC>4 %,粘土矿物含量>50 %);中有机质页状灰岩(2 %<TOC<4 %,碳酸盐含量>50 %);中有机质页状灰质粘土岩(2 %<TOC<4 %,粘土矿物含量>50 %);低有机质灰泥灰岩(TOC<2 %,碳酸盐含量>50 %);低有机质块状粘土岩(TOC<2 %,粘土矿物含量>50 %) | 姜在兴等[ |
纹层结构、 沉积结构 | 块状泥岩(含粉砂,纹层模糊不清)、粒序层理泥岩(泥和砂毫米级间互沉积,发育递变层理)、波状纹层页岩(含粉砂,波状层理)、平直纹层页岩(平直纹层,有机质-石英-粘土纹层)、似块状页岩(含粉砂,有机质-粘土扁平透镜体) | 刘群等[ |
混合方式 | 均匀混合型(块状层理,物质均一混合无主导)、泥砂-灰纹层叠置混合型、泥-灰纹层叠置混合型、泥砂粒序-灰纹层叠置混合型、灰-泥-云纹层叠置混合型、不均匀团块状混合型(不同矿物成分混合不均一,以团块状或其他不规则形态产出) | 陈世悦等[ |
Table 2
Transport?deposition mechanism and sweet spot characteristics of fine?grained sedimentary rocks"
物质来源 | 岩性组合 | 搬运-沉积机制 | 甜点特征 |
---|---|---|---|
陆源 | 泥页岩、粉-细砂岩和泥质粉-细砂岩 | ①河流搬运到湖泊中沉积的远源细粒沉积; ②洪水、风暴、滑塌等产生的重力流搬运到湖泊中的悬浮物质快速沉降; ③风产生的波浪和湖流侵蚀湖岸或三角洲产生细粒沉积物,并搬运到湖泊各处 | ① 源、储临近或有运移通道连接储层和烃源岩; ② 粉-细砂输入提高了储集性能和页岩层的脆性 (如鄂尔多斯盆地长7段、束鹿凹陷沙三下亚段) |
火山源 | 泥页岩、凝灰质泥页岩、凝灰岩、凝灰质粉-细砂岩和碳酸盐岩 | ①风力搬运细粒火山灰、火山尘至湖泊中悬浮沉积; ②陆表火山喷发沉积后风化破碎,由降水或河流搬运进入湖泊; ③水下火山喷发爆炸破碎,火山灰异轻流呈悬浮状态沉降在湖泊大范围中,细粒火山灰异重流沉积在据喷口较远位置; ④热液喷流进入湖泊中,与湖水中的物质反应生成细粒硫化物、碳酸盐沉淀;喷口周围生物聚集,生物化学反应与生物遗体也可形成细粒沉积 | ① 火山物质输入利于形成高有机质烃源岩; ② 晶屑、玻屑脱玻化易于形成优质储层; ③ 火山热源利于有机质成熟 (如滦平盆地西瓜园组、松南长岭断陷沙河子组和吉木萨尔凹陷芦草沟组) |
内源 | 泥页岩、碳酸盐岩 | 温度、离子浓度、pH值等流体条件变化时,矿物溶解或沉淀,这些流体条件的变化可能由气候变化、陆源输入、火山-热液活动、生物活动等引起 | ① 碳酸盐纹层晶间孔和层间缝是良好的油气储集空间; ② 通常形成自生自储型油气甜点 (如东营凹陷沙四上亚段、潜江凹陷潜江组) |
1 | 姜在兴, 王雯雯, 王俊辉, 等. 风动力场对沉积体系的作用[J]. 沉积学报, 2017, 35(5): 863-876. |
Jiang Zaixing, Wang Wenwen, Wang Junhui, et al. The influence of wind field on depositional systems[J]. Acta Sedimentologica Sinica, 2017, 35(5): 863-876. | |
2 | 金之钧, 白振瑞, 高波, 等. 中国迎来页岩油气革命了吗?[J]. 石油与天然气地质, 2019, 40(3): 1-8. |
Jin Zhijun, Bai Zhenrui, Gao Bo, et al. Has China ushered in the shale oil and gas revolution?[J]. Oil & Gas Geology, 2019, 40(3): 1-8. | |
3 | 贾承造, 郑民, 张永峰. 中国非常规油气资源与勘探开发前景[J]. 石油勘探与开发, 2012, 39(2): 129-136. |
Jia Chengzao, Zheng Min, Zhang Yongfeng. Unconventional hydrocarbon resources in China and the prospect of exploration and development[J]. Petroleum Exploration and Development, 2012, 39(2): 129-136. | |
4 | 邹才能, 杨智, 崔景伟, 等. 页岩油形成机制、地质特征及发展对策[J]. 石油勘探与开发, 2013, 40(1): 14-26. |
Zou Caineng, Yang Zhi, Cui Jingwei, et al. Formation mechanism, geological characteristics and development strategy of nonmarine shale oil in China[J]. Petroleum Exploration and Development, 2013, 40(1): 14-26. | |
5 | 姜在兴, 梁超, 吴靖, 等. 含油气细粒沉积岩研究的几个问题[J]. 石油学报, 2013, 34(6): 1031-1039. |
Jiang Zaixing, Liang Chao, Wu Jing, et al. Several issues in sedimentological studies on hydrocarbon‑bearing fine‑grained sedimentary rocks[J]. Acta Petrolei Sinica, 2013, 34(6): 1031-1039. | |
6 | Aplin A C, Macquaker J H S. Mudstone diversity: Origin and implications for source, seal, and reservoir properties in petroleum systems[J]. AAPG Bulletin, 2011, 95(12): 2031-2059. |
7 | Macquaker J H S, Taylor K G, Gawthorpe R L. High‑resolution facies analyses of mudstones: Implications for paleoenvironmental and sequence stratigraphic interpretations of offshore ancient mud⁃dominated successions[J]. Journal of Sedimentary Research, 2007, 77(4): 324-339. |
8 | 焦鑫, 柳益群, 周鼎武, 等. 湖相烃源岩中的火山-热液深源物质与油气生成耦合关系研究进展[J]. 古地理学报, 2021, 23(4): 789-809. |
Jiao Xin, Liu Yiqun, Zhou Dingwu, et al. Progress on coupling relationship between volcanic and hydrothermal‑originated sediments and hydrocarbon generation in lacustrine source rocks[J]. Journal of Palaeogeography, 2021, 23(4): 789-809. | |
9 | 黎茂稳, 金之钧, 董明哲, 等. 陆相页岩形成演化与页岩油富集机理研究进展[J]. 石油实验地质, 2020, 42(4): 489-505. |
Li Maowen, Jin Zhijun, Dong Mingzhe, et al. Advances in the basic study of lacustrine shale evolution and shale oil accumulation[J]. Petroleum Geology & Experiment, 2020, 42(4): 489-505. | |
10 | 刘群, 袁选俊, 林森虎, 等. 鄂尔多斯盆地延长组湖相粘土岩分类和沉积环境探讨[J]. 沉积学报, 2014, 32(6): 1016-1025. |
Liu Qun, Yuan Xuanjun, Lin Senhu, et al. The classification of lacustrine mudrock and research on its' depositional environment[J]. Acta Sedimentologica Sinica, 2014, 32(6): 1016-1025. | |
11 | 孔祥鑫. 湖相含碳酸盐细粒沉积岩特征、成因与油气聚集[D]. 北京: 中国地质大学(北京), 2020. |
Kong Xiangxin. Sedimentary characteristics, origin and hydrocarbon accumulation of lacustrine carbonate‑bearing fine⁃grained sedimentary rocks[D]. Beijing: China University of Geosciences (Beijing), 2020. | |
12 | 李哲萱, 柳益群, 焦鑫, 等. 火山-热液作用相关细粒沉积岩研究现状及前沿探索[J]. 古地理学报, 2019, 21(5): 727-742. |
Li Zhexuan, Liu Yiqun, Jiao Xin, et al. Progress and present research on volcanic‑hydrothermal related fine‑grained sedimentary rocks[J]. Journal of Palaeogeography, 2019, 21(5): 727-742. | |
13 | 姜在兴, 孔祥鑫, 杨叶芃, 等. 陆相碳酸盐质细粒沉积岩及油气甜点多源成因[J]. 石油勘探与开发, 2021, 48(1): 26-37. |
Jiang Zaixing, Kong Xiangxin, Yang Yepeng, et al. Multi‑source genesis of continental carbonate‑rich fine‑grained sedimentary rocks and hydrocarbon sweet spots[J]. Petroleum Exploration and Development, 2021, 48(1): 26-37. | |
14 | 聂银兰, 谢庆宾, 朱筱敏, 等. 基于岩相表征的细粒沉积物沉积机制和研究展望[J]. 断块油气田, 2021, 28(3): 305-310. |
Nie Yinlan, Xie Qingbin, Zhu Xiaomin, et al. The sedimentary mechanism and research prospect of fine grain sediments based on lithofacies characterization[J]. Fault‑Block Oil & Gas Field, 2021, 28(3): 305-310. | |
15 | Wentworth C K. A scale of grade and class terms for clastic sediments[J]. Geology, 1922, 30(5): 377-392. |
16 | 邓宏文, 钱凯. 深湖相泥岩的成因类型和组合演化[J]. 沉积学报, 1990, 8(3): 1-21. |
Deng Hongwen, Qian Kai. The genetic types and association evolution of deep lacustrine facies mudstones[J]. Acta Sedimentologica Sinica, 1990, 8(3): 1-21. | |
17 | 郭巍, 李成博, 宋玉勤, 等. 民和盆地炭山岭油页岩特征及成矿控制因素分析[J]. 吉林大学学报(地球科学版), 2006, 36(6): 923-927, 932. |
Guo Wei, Li Chengbo, Song Yuqin, et al. Analysis on the characteristics of the oil shale in the Tanshanling area, Minhe Basin and their mineralization controlling factors[J]. Journal of Jilin University (Earth Science Edition), 2006, 36(6): 923-927, 932. | |
18 | 王冠民. 济阳坳陷古近系页岩的纹层组合及成因分类[J]. 吉林大学学报(地球科学版), 2012, 42(3): 666-671, 680. |
Wang Guanmin. Laminae combination and genetic classification of Eogene shale in Jiyang Depression[J]. Journal of Jilin University (Earth Science Edition), 2012, 42(3): 666-671, 680. | |
19 | 柳益群, 周鼎武, 焦鑫, 等. 一类新型沉积岩:地幔热液喷积岩——以中国新疆三塘湖地区为例[J]. 沉积学报, 2013, 31(5): 773-781. |
Liu Yiqun, Zhou Dingwu, Jiao Xin, et al. A new type of sedimentary rocks: Mantle‑originated hydroclastites and hydrothermal exhalites, Santanghu area, Xinjiang, NW China[J]. Acta Sedimentologica Sinica, 2013, 31(5): 773-781. | |
20 | 陈世悦, 张顺, 刘惠民, 等. 湖相深水细粒物质的混合沉积作用探讨[J]. 古地理学报, 2017, 19(2): 271-284. |
Chen Shiyue, Zhang Shun, Liu Huimin, et al. Discussion on mixing of fine‑grained sediments in lacustrine deep water[J]. Journal of Palaeogeography (Chinese Edition), 2017, 19(2): 271-284. | |
21 | Wang W, Jiang Z, Xie X, et al. Sedimentary characteristics and interactions among volcanic, terrigenous and marine processes in the late Permian Kuishan member, eastern block of the north China craton[J]. Sedimentary Geology, 2020, 407: 105741. |
22 | 蒋宜勤, 柳益群, 杨召, 等. 准噶尔盆地吉木萨尔凹陷凝灰岩型致密油特征与成因[J]. 石油勘探与开发, 2015, 42(6): 741-749. |
Jiang Yiqin, Liu Yiqun, Yang Zhao, et al. Characteristics and origin of tuff‑type tight oil in Jimusar Depression, Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(6): 741-749. | |
23 | Kelts K, Talbot M. Lacustrine carbonates as geochemical archives of environmental change and biotic/abiotic interactions[M]. Berlin, Heidelberg: Springer, 1990: 288-315. |
24 | Nutz A, Schuster M, Ghienne J, et al. Wind‑driven bottom currents and related sedimentary bodies in Lake Saint‑Jean (Québec, Canada)[J]. Geological Society of America Bulletin, 2015, 127(9): 1194-1208. |
25 | Potter P E, Maynard J B, Depetris P J. Mud and mudstones[M]. Berlin, Heidelberg: Springer. |
26 | Schieber J, Southard J, Thaisen K. Accretion of mudstone beds from migrating floccule ripples[J]. Science, 2007, 318(5857): 1760-1763. |
27 | 吴靖, 姜在兴, 梁超. 东营凹陷沙河街组四段上亚段细粒沉积岩岩相特征及与沉积环境的关系[J]. 石油学报, 2017, 38(10): 1110-1122. |
Wu Jing, Jiang Zaixing, Liang Chao. Lithofacies characteristics of fine‑grained sedimentary rocks in the upper submember of member 4 of Shahejie Formation, Dongying Sag and their relationship with sedimentary environment[J]. Acta Petrolei Sinica, 2017, 38(10): 1110-1122. | |
28 | 杨华, 李士祥, 刘显阳. 鄂尔多斯盆地致密油、页岩油特征及资源潜力[J]. 石油学报, 2013, 34(1): 1-11. |
Yang Hua, Li Shixiang, Liu Xianyang. Characteristics and resource prospects of tight oil and shale oil in Ordos Basin[J]. Acta Petrolei Sinica, 2013, 34(1): 1-11. | |
29 | 杨华, 刘自亮, 朱筱敏, 等. 鄂尔多斯盆地西南缘上三叠统延长组物源与沉积体系特征[J]. 地学前缘, 2013, 20(2): 10-18. |
Yang Hua, Liu Ziliang, Zhu Xiaomin, et al. Provenance and depositional systems of the upper Triassic Yanchang Formation in the southwestern Ordos Basin, China[J]. Earth Science Frontiers, 2013, 20(2): 10-18. | |
30 | Lowe D R. Sediment Gravity Flows: Depositional models with special reference to the deposits of high‑density turbidity currents[J]. Journal of Sedimentary Research, 1982, 52(1): 279-297. |
31 | 吕奇奇, 罗顺社, 付金华, 等. 湖泊深水重力流沉积露头精细解剖——以鄂尔多斯盆地瑶曲剖面长7油层组为例[J]. 地质学报, 2017, 91(3): 617-628. |
Qiqi Lyu, Luo Shunshe, Fu Jinhua, et al. Outcrop‑based analysis of a deep‑water gravity flow sediments in lake:A case study from the Chang 7 of Yaoqu Section, Ordos Basin[J]. Acta Geologica Sinica, 2017, 91(3): 617-628. | |
32 | 李森, 朱如凯, 崔景伟, 等. 鄂尔多斯盆地长7段细粒沉积岩特征与古环境——以铜川地区瑶页1井为例[J]. 沉积学报, 2020, 38(3): 554-570. |
Li Sen, Zhu Rukai, Cui Jingwei, et al. Sedimentary characteristics of fine‑grained sedimentary rock and paleo⁃environment of Chang 7 member in the Ordos Basin: A case study from well Yaoye 1 in Tongchuan[J]. Acta Sedimentologica Sinica, 2020, 38(3): 554-570. | |
33 | Schieber J, Southard J B, Schimmelmann A. Lenticular shale fabrics resulting from intermittent erosion of water‑rich muds interpreting the rock record in the light of recent flume experiments[J]. Journal of Sedimentary Research, 2010, 80(1): 119-128. |
34 | 卢斌, 邱振, 周川闽, 等. 泥页岩沉积物理模拟研究进展与发展趋势[J]. 沉积学报, 2021, 39(4): 781-793. |
Lu Bin, Qiu Zhen, Zhou Chuanmin, et al. Progress and prospects in the physical simulation of mudstone deposition[J]. Acta Sedimentologica Sinica, 2021, 39(4): 781-793. | |
35 | Seghedi I. Permian rhyolitic volcanism, changing from subaqueous to subaerial in post‑Variscan intra‑continental Sirinia Basin[J]. Journal of Volcanology and Geothermal Research, 2011, 201(1): 312-324. |
36 | 焦鑫, 柳益群, 杨晚, 等. 水下火山喷发沉积特征研究进展[J]. 地球科学进展, 2017, 32(9): 926-936. |
Jiao Xin, Liu Yiqun, Yang Wan, et al. Progress on sedimentation of subaqueous volcanic eruption[J]. Advances in Earth Science, 2017, 32(9): 926-936. | |
37 | Wohletz K. Water/magma interaction: Some theory and experiments on peperite formation[J]. Journal of Volcanology and Geothermal Research, 2002, 114(1): 19-35. |
38 | Jiao X, Liu Y, Yang W, et al. A magmatic‑hydrothermal lacustrine exhalite from the Permian Lucaogou Formation, Santanghu Basin, NW China :The volcanogenic origin of fine-grained clastic sedimentary rocks[J]. Journal of Asian Earth Sciences, 2018, 156: 11-25. |
39 | Pedersen G K, Surlyk F. Dish structures in Eocene volcanic ash layers, Denmark[J]. Sedimentology, 1977, 24: 581-590. |
40 | Jiao X, Liu Y, Yang W, et al. Fine‑grained volcanic⁃hydrothermal sedimentary rocks in Permian Lucaogou Formation, Santanghu Basin, NW China: Implications on hydrocarbon source rocks and accumulation in lacustrine rift basins[J]. Marine and Petroleum Geology, 2020, 114: 104201. |
41 | Fisher R V, Schmincke H. Submarine volcaniclastic rocks[M]. Berlin, Heidelberg: Springer, 1984: 265-296. |
42 | White J D. Subaqueous eruption-fed density currents and their deposits[J]. Precambrian Research, 2000, 101(2): 87-109. |
43 | Muynck W D, Belie N D, Verstraete W. Microbial carbonate precipitation in construction materials: A review[J]. Ecological Engineering, 2010, 36(2): 118-136. |
44 | Dittrich M, Müller B, Mavrocordatos D, et al. Induced calcite precipitation by cyanobacterium synechococcus[J]. Acta Hydrochim Hydrobiol, 2003, 31: 162-169. |
45 | Dittrich M, Kurz P, Wehrli B. The role of autotrophic picocyanobacteria in calcite precipitation in an oligotrophic lake[J]. Geomicrobiology Journal, 2004, 21(1): 45-53. |
46 | Kong X, Jiang Z, Ju B, et al. Fine‑grained carbonate formation and organic matter enrichment in an Eocene saline rift lake (Qianjiang Depression): Constraints from depositional environment and material source[J]. Marine and Petroleum Geology, 2022, 138: 105534. |
47 | Kataoka KS, Nagahashi Y. From sink to volcanic source: Unravelling missing terrestrial eruption records by characterization and high‑resolution chronology of lacustrine volcanic density flow deposits, Lake Inawashiro‑ko, Fukushima, Japan[J]. Sedimentology, 2019, 66(7): 2784-2827. |
48 | 衣健, 王璞珺, 单玄龙, 等. 长白山天池火山千年大喷发火山碎屑流堆积相特征[J]. 岩石学报, 2020, 36(11): 3346-3362. |
Yi Jian, Wang Pujun, Shan Xuanlong, et al. Facies variations in the pyroclastic density currents (PDCs) produced by the millennium eruption of the Changbaishan Tianchi volcano, NE China[J]. Acta Petrologica Sinica, 2020, 36(11): 3346-3362. | |
49 | 朱如凯, 邹才能, 吴松涛, 等. 中国陆相致密油形成机理与富集规律[J]. 石油与天然气地质, 2019, 40(6): 1168-1184. |
Zhu Rukai, Zou Caineng, Wu Songtao, et al. Mechanism for generation and accumulation of continental tight oil in China[J]. Oil & Gas Geology, 2019, 40(6): 1168-1184. | |
50 | 贺永红, 任战利, 陈占军, 等. 富县探区长8段致密油藏特征及主控因素[J]. 西安科技大学学报, 2016, 36(3): 393-399. |
He Yonghong, Ren Zhanli, Chen Zhanjun, et al. Chang 8 Section tight oil reservoir characteristics and distributional controlling factors in Fuxian exploration area[J]. Journal of Xi'an University of Science and Technology, 2016, 36(3): 393-399. | |
51 | 赵贤正, 姜在兴, 张锐锋, 等. 陆相断陷盆地特殊岩性致密油藏地质特征与勘探实践——以束鹿凹陷沙河街组致密油藏为例[J]. 石油学报, 2015, 36(S1): 1-9, 30. |
Zhao Xianzheng, Jiang Zaixing, Zhang Ruifeng, et al. Geological characteristics and exploration practices of special‑lithology tight oil reservoirs in continental rift basins: A case study of tight oil in Shahejie Formation,Shulu Sag[J]. Acta Petrolei Sinica, 2015, 36(S1): 1-9, 30. | |
52 | Jiang Z, Chen D, Qiu L, et al. Source‑controlled carbonates in a small Eocene half-graben lake basin (Shulu Sag) in central Hebei province, north China[J]. Sedimentology, 2007, 54: 265-292. |
53 | Kong X, Jiang Z, Han C, et Al. Organic matter enrichment and hydrocarbon accumulation models of the marlstone in the Shulu Sag, Bohai Bay Basin, Northern China[J]. International Journal of Coal Geology, 2020, 217: 103350. |
54 | 袁晓冬, 姜在兴, 张元福, 等. 滦平盆地白垩系陆相页岩油储层特征[J]. 石油学报, 2020, 41(10): 1197-1208. |
Yuan Xiaodong, Jiang Zaixing, Zhang Yuanfu, et al. Characteristics of the Cretaceous continental shale oil reservoirs in Luanping Basin[J]. Acta Petrolei Sinica, 2020, 41(10): 1197-1208. | |
55 | Qin L, Zhang Z, Wu Y, et al. Organic geochemical and fluid inclusion evidence for filling stages of natural gas and bitumen in volcanic reservoir of Changling faulted Depression, southeastern Songliao Basin[J]. Journal of Earth Science, 2010, 21: 303-320. |
56 | 支东明, 唐勇, 杨智峰, 等. 准噶尔盆地吉木萨尔凹陷陆相页岩油地质特征与聚集机理[J]. 石油与天然气地质, 2019, 40(3): 1-11. |
Zhi Dongming, Tang Yong, Yang Zhifeng, et al. Geological characteristics and accumulation mechanism of continental shale oil in Jimusaer Sag, Junggar Basin[J]. Oil & Gas Geology, 2019, 40(3): 1-11. | |
57 | 刘全有, 朱东亚, 孟庆强, 等. 深部流体及有机-无机相互作用下油气形成的基本内涵[J]. 中国科学:地球科学, 2019, 49(3): 499-520. |
Liu Quanyou, Zhu Dongya, Meng Qingqiang, et al. The scientific connotation of oil and gas formations under deep fluids and organic‑inorganic interaction[J]. Scientia Sinica (Terrae), 2019, 49(3): 499-520. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||