Oil & Gas Geology ›› 2022, Vol. 43 ›› Issue (6): 1309-1320.doi: 10.11743/ogg20220603
• Petroleum Geology • Previous Articles Next Articles
Zengxue Li1,2(), Ying Liu1,2(), Xiaojing Li1,2, Gongcheng Zhang1,2, Rui Sun1,2, Dongdong Wang1,2, Lusheng Yin1,2, Jiamin Liu1,2
Received:
2022-03-21
Revised:
2022-09-22
Online:
2022-11-21
Published:
2022-11-21
Contact:
Ying Liu
E-mail:lizengxue@126.com;liuying-69@163.com
CLC Number:
Zengxue Li, Ying Liu, Xiaojing Li, Gongcheng Zhang, Rui Sun, Dongdong Wang, Lusheng Yin, Jiamin Liu. The control of Paleogene peat swamp destruction and reconstruction on the formation of coal-type source material in the Qiongdongnan Basin[J]. Oil & Gas Geology, 2022, 43(6): 1309-1320.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | 张功成,陈莹,李增学,等. 中国海域煤型油气成因理论[J]. 石油与天然气地质,2022,43(3):553-565. |
Zhang Gongcheng, Chen Ying, Li Zengxue,et al. Theory on genesis of coaliferous petroleum in the China Sea[J]. Oil & Gas Geology,2022,43(3):553-565. | |
2 | 杨起,韩德馨. 中国煤田地质学(上册)[M]. 北京:煤炭工业出版社,1979,1-261. |
Yang Qi, Han Dexin. Coal geology China (Volume 1) [M]. Beijing: China Coal Industry Publishing House, 1979, 1-261. | |
3 | Dai Shifeng, Bechtel Achim, Eble Cortland F., et al. Recognition of peat depositional environments in coal: A review[J]. International Journal of Coal Geology,2020, 103383:1-67. |
4 | Irina Delusina C A, Scott W S, Kenneth L V. Environmental evolution of peat in the Sacramento-San Joaquin Delta (California) during the Middle and Late Holocene as deduced from pollen, diatoms and magnetism[J].Quaternary International,2022:50-61. |
5 | Torsten U, Abdul R A, Andrea K K, et al. Diversity patterns in microfloras recovered from Miocene brown coals of the lower Rhine Basin reveal distinct coupling of the structure of the peat‐forming vegetation and continental climate variability[J].Geological Journal, 2021, 56(2):768-785. |
6 | Yan Zhang, Gao Chuanyu, Zhang Shaoqing, et al. Significance of different n-alkane biomarker distributions in four same-age peat sequences around the edges of a small maar lake in China[J].The Science of the Total Environment, 2022:154137. |
7 | Prokopovich N P. Subsidence of peat in California and Florida[J]. Bulletin of Engineering Geology and the Environment,1985,22:395–420. |
8 | Van Asselen S, Stouthamer E, Van Asch T W J. Effects of peat compaction on delta evolution: A review on processes, responses, measuring and modeling[J]. Earth Science Review, 2009, 92:35-51. |
9 | Van Asselen S, Stouthamer E, Smith N D. Factors controlling peat compaction in alluvial floodplains: A case study in the coal-temperate Cumberland marshes, Canada[J]. Journal of Sedimentary Research, 2010, 80:155–166. |
10 | Flores R M. Coal and coalbed gas: Fueling the future[M]. Elsevier, San Diego, 2014. |
11 | Doyle T W, Krauss K W, Conner W H, et al. Predicting the retreat and migration of tidal forests along the northern Gulf of Mexico under sea-level rise[J]. Forest Ecology and Management, 2010, 259:770-777. |
12 | Fagherazzi S, Anisfeld S C, Blum L K, et al. Sea level rise and the dynamics of the Marsh-Upland boundary[J]. Frontiers of Environmental Science & Engineering. . |
13 | Wang Dongdong, Zhang Gongcheng, Li Zengxue, et al. The development characteristics and distribution predictions of the Paleogene coal-measure source rock in the Qiongdongnan Basin, Northern South China Sea[J]. Acta Geologica Sinica (English Edition), 2021, 95(1): 105-120. |
14 | 张功成,李增学,王东东,等. 中国南海海域煤地质特征[J].煤炭学报,2020, 45(11):3864-3878. |
Zhang Gongcheng, Li Zengxue, Wang Dongdong,et al. Characteristics of coal geology in South China Sea[J]. Journal of China Coal Society, 2020, 45(11):3864-3878. | |
15 | Meade R H. Sources, sinks, and storage of river sediment in the Atlantic drainage of the United States[J]. The Journal of Geology, 1982, 90(3): 235-252. |
16 | Sømme T O, Hellandhansen W, Martinsen O J, et al. Relationships between morphological and sedimentological parametersin source-to-sink systems: A basis for predicting semi-quantitative characteristics in subsurface systems[J]. Basin Research, 2009, 21(4): 361-387. |
17 | Sømme T O, Jackson C A L, Vaksdal M. Source-to-sink analysis of ancient sedimentary systems using a subsurface case study from the Mor-Trondelag area of southern Norway: Part 1-depositional setting and fan evolution[J]. Basin Research, 2013, 25(5): 489-511. |
18 | Anthony E J, Julian M. Source-to-sink sediment transfers, environmental engineering and hazard mitigation in the steep Var River catchment, French Rivera, southeastern France[J]. Geomorphology, 1999, 31(1): 337-354. |
19 | Leeder M R. Sedimentary basins: Tectonic recorders of sediment discharge from drainage Catchments[J]. Earth Surface Processes and Landforms, 1997, 22(3): 229-237. |
20 | 林畅松, 夏庆龙, 施和生, 等. 地貌演化、源—汇过程与盆地分析[J]. 地学前缘, 2015, 22(1): 9-20. |
Lin Changsong, Xia Qinglong, Shi Hesheng, et al. Geomorphological evolution, source to sink system and basin analysis[J]. Earth Science Frontiers, 2015, 22(1): 9-20. | |
21 | 庞雄, 彭大钧, 陈长民, 等. 三级“源-渠-汇”耦合研究珠江深水扇系统[J]. 地质学报, 2007, 81(6): 857-864. |
Pang Xiong, Peng Dajun, Chen Changmin, et al. Three hierarchies “source-conduit-sink” coupling analysis of the Pearl River deep-water fan system[J]. Acta Geologica Sinica, 2007, 81(6): 857-864. | |
22 | 朱红涛,徐长贵,朱筱敏,等. 陆相盆地源—汇系统要素耦合研究进展[J]. 地球科学, 2017, 42(11): 1851-1870. |
Zhu Hongtao, Xu Changgui, Zhu Xiaomin, et al. Advances of the source-to-sink unites and coupling model research in continental basin[J]. Earth Science, 2017, 42(11): 1851-1870. | |
23 | 龚承林,齐昆,徐杰,等. 深水源—汇系统对多尺度气候变化的过程响应与反馈机制[J]. 沉积学报,2021,39(1):231-252. |
Gong Chenglin, Qi Kun, Xu Jie, et al. Process—product linkages and feedback mechanisms of deepwater source-to-sink responses to multi scale climate changes[J]. Acta Sedimentologica Sinica, 2021, 39(1):231-252. | |
24 | 邵龙义, 鲁静, 汪浩, 等. 中国含煤岩系层序地层学研究进展[J]. 沉积学报, 2009, 27(5): 904-914. |
Shao Longyi, Lu Jing, Wang Hao, et al. Developments of coal measures sequence stratigraphy in China [J]. Acta Sedimentologica Sinica, 2009, 27(5): 904-915. | |
25 | 邵龙义, 鲁静, 汪浩, 等. 近海型含煤岩系沉积学及层序地层学研究进展[J]. 古地理学报, 2008a, 10(6): 561-570. |
Shao Longyi, Lu Jing, Wang Hao, et al. Advances in sedimentology and sequence stratigraphy of paralic coal masures [J]. Journal of Palaeogeography, 2008a, 10(6): 561-570. | |
26 | 邵龙义, 肖正辉, 汪浩, 等. 沁水盆地石炭-二叠纪含煤岩系高分辨率层序地层及聚煤模式[J]. 地质科学, 2008b,(4): 157-171. |
Shao Longyi, Xiao Zhenghui, Wang Hao, et al. High resolution sequence stratigraphy and coal accumulation model of Carboniferous-Permian coal-bearing rock series in Qinshui Basin [J]. Chinese Journal of Geology, 2008b,(4): 157-171. | |
27 | 李增学, 吕大炜, 王东东, 等. 多元聚煤理论体系及聚煤模式[J]. 地球学报, 2015, 36(3): 271-282. |
Li Zengxue, Lv Dawei, Wang Dongdong, et al. The multiple coal-forming theoretical system and its model[J]. Acta Geoscientica Sinica, 2015, 36(3): 271-282. | |
28 | 邵龙义, 党星宇, 高祥宇, 等. 厚煤层成因机制——天文周期控制的多期次泥炭沼泽叠加模式[J]. 煤炭科学技术, 2022, 50(1): 186-195. |
Shao Longyi, Dang Xingyu, Gao Xiangyu, et al. Genetic mechanism of thick coal seams: astronomical-forcing superimposed multi-staged swamp model[J]. Coal Science and Technology, 2022, 50(1): 186-195. | |
29 | 胡益成, 苏华成. 河南晚石炭世含煤地层中的风暴异地煤[J]. 煤田地质与勘探, 1992, 20(3): 1-5. |
Hu Yicheng, Su Huacheng. The storm allochthony coal of late carboniferous coal-bearing formation in Henan Proyince[J]. Coalfield Geology and Exploration, 1992, 20(3): 1-5. | |
30 | 胡益成,廖玉枝. 华北盆地南部早二叠世早期聚煤作用的成因机制[J]. 地学前缘, 1999, 6(): 111-115. |
Hu Yicheng, Liao Yuzhi. Genetic mechanism of early Permian coal accumulation in the Southern North China basin[J]. Earth Science Frontiers, 1999, 6(): 111-115. | |
31 | 李绪宣. 琼东南盆地构造动力学演化及油气成藏研究[D].广州:中国科学院广州地球化学研究所,2004. |
Li Xuxuan. Study on structural dynamics and hydrocarbon accumulation in Qiongdongnan Basin[D]. Guangzhou: Guangzhou Institute of Geochemistry,Chinese Academy of Sciences,2004. | |
32 | 张功成,米立军,陶维祥,等. 深水区-南海北部大陆边缘油气勘探新领域[J]. 石油学报,2007, 28(2):15-21. |
Zhang Gongcheng, Mi Lijun, Tao Wweixiang, et al.Deepwater area-the new prospecting targets of northern continental margin of South China Sea[J]. Acta Petrolei Sinica, 2007, 28(2): 15-21. | |
33 | 蔡国富,邵磊,乔培军,等. 琼东南盆地古近纪海侵及沉积环境演化[J]. 石油学报,2013, 34(增2):91-101. |
Cai Guofu, Shao Lei, Qiao Peijun, et al. Marine transgression and evolution of depositional environment in the Paleogene strata of Qiongdongnan Basin,South China Sea [J]. Acta Petrolei Sinica, 2013, 34(S2): 91-101. | |
34 | 李增学,宋广增,王东东,等. 琼东南盆地渐新统煤系-扇-辫状河三角洲特征[J]. 地球科学,2018,43(10):3471-3484. |
Li Zengxue, Song Guangzeng, Wang Dongdong, et al. Characteristics of (fan) braided river delta in Oligocene coal measures of Qiongdongnan Basin [J]. Earth Science, 2018,43(10):3471-3484. | |
35 | 刘莹,刘海燕,杨海长,等. 琼东南盆地古近纪成煤沉积体系类型及特征 [J].石油与天然气地质,2019,40(1):142-151. |
Liu Ying, Liu Haiyan, Yang Haizhang, et al. Types and characteristics of Paleogene coal-forming sedimentary systems in Qiongdongnan Basin[J]. Oil & Gas Geology,2019,40(1):142-151. | |
36 | Li Zengxue, Zeng Qingbo, Xu Meng, et al. Peat formation and accumulation mechanism in northern marginal basin of South China Sea[J]. Acta Oceanologica Sinica, 2021, 40(2): 95-106. |
37 |
Wang Dongdong, Zhang Gongcheng, Li Zengxue, et al. Thedevelopment characteristics and distribution predictions of the Paleogene coal-measure source rock in the Qiongdongnan Basin, Northern South China Sea[J]. Acta Geologica Sinica (English Edition), 2021, 95(1): 105-120. DOI: 0.1111/1755-6724.14625 .
doi: 0.1111/1755-6724.14625 |
38 | Bates C C. Rational theory of delta formation[J]. American Association of Petroleum Geologists Bulletin, 1953, 37: 2119-2162. |
39 | Fisher W L, McGowen J H. Depositional system in the Wilcox Group (Eocene) of Teas and their relationship to occurrence of oil and gas[J]. American Association of Petroleum Geologists Bulletin, 1969, 53(1): 30-54. |
40 | 刘仕友, 陈泓燕, 李德勇, 等. 琼东南盆地陵水凹陷渐新统陵水组沉积特征及烃源岩发育模式[J]. 海相油气地质, 2019, 24(1): 63-70. |
Liu Shiyou, Chen Hongyan, Li Deyong, et al. Sedimentary characteristics and source rock development model of the Oligocene Lingshui Formation in Lingshui Sag, Qiongdongnan Basin[J]. Marine Origin Petroleum Geology, 2019, 24(1): 63-70. | |
41 | Zhao Honggang, Li Ying, Chang Xiangchun, et al. A comparative study of the coal-forming characteristics of marginal sea basins and epicontinental sea basins[J]. Acta Geologica Sinica (English Edition), 2021, 95(1): 121–130. |
42 | 杨文卿,谢周清,孙立广. 南海古海啸重建与海啸沉积研究进展[J]. 地学前缘, 2021, 28(2): 246-257. |
Yang Wenqing, Xie Zhouqing, Sun Liguang. Research progress in the reconstruction of paleotsunami in the South China Sea and the tsunami deposit characteristics[J]. Earth Science Frontiers, 2021, 28(2): 246-257. | |
43 | 陈欢庆, 朱筱敏, 张功成, 等. 井震结合深水区物源分析——以琼东南盆地深水区古近系陵水组为例[J]. 石油地球物理勘探, 2010, 45(4): 552-558. |
Chen Huanqing, Zhu Xiaomin, Zhang Gongcheng, et al. Material source analysis in deep water area based on well to-seismic integrated studies—a case study on Lingshui Formation of Paleogene in deep water area in southeast Hainan Basin of South China Sea[J]. Oil Geophysical Prospecting, 2010, 45(4): 552-558. | |
44 | 何云龙. 琼东南盆地陆坡区重力流沉积特征及其成因机制[D]. 武汉:中国地质大学, 2012. |
He Yunlong. The characteristics and mechanism of sediment gravity flow in slope area in Qiongdongnan Basin[D]. Wuhan: China University of Geosciences, 2012. | |
45 | Li Zengxue, Li Ying, Wang Dongdong, et al. Source-to-sink system for peat accumulation in marginal basins of the South China Sea with the Qiongdongnan Basin as an example[J]. Australian Journal of Earth Sciences, 2021, 68(3): 421-439. |
[1] | Liqing ZHOU, Donghui JIANG, Pengcheng YANG, Rufeng ZHANG, Xin DONG, Yadi SANG. Philosophy and potential breakthroughs for hydrocarbon exploration in block LS13-2 on the northern slope of the Lingshui Sag, Qiongdongnan Basin [J]. Oil & Gas Geology, 2024, 45(3): 673-683. |
[2] | Chao FU, Yuhong XIE, Yuchu ZHAO, Hui WANG, Zhiwang YUAN, Wei XU, Guoning CHEN. Types and distribution patterns of complex turbidite sandstone reservoirs in the upper reaches of deep-water canyons—A case study of the Lingshui gas field in the Central Canyon of Qiongdongnan Basin [J]. Oil & Gas Geology, 2024, 45(2): 516-529. |
[3] | Dujie HOU, Keqiang WU, Li YOU, Ziming ZHANG, Yajun LI, Xiaofeng XIONG, Min XU, Xiazhe YAN, Weihe CHEN, Xiong CHENG. Organic matter enrichment mechanisms of terrigenous marine source rocks in the Qiongdongnan Basin [J]. Oil & Gas Geology, 2024, 45(1): 31-43. |
[4] | Li YOU, Yongbin QUAN, Lei TUO, Changyu TENG, Gaokun ZUO. Natural gas sources and migration pathways of the Baodao 21-1 gas field in the deep-water area of the Qiongdongnan Basin [J]. Oil & Gas Geology, 2023, 44(5): 1270-1278. |
[5] | Keqiang WU, Xinong XIE, Jianxiang PEI, Jianye REN, Li YOU, Tao JIANG, Yongbin QUAN. Deep architecture of hyperextended marginal basin and implications for hydrocarbon exploration:A case study of Qiongdongnan Basin [J]. Oil & Gas Geology, 2023, 44(3): 651-661. |
[6] | Mingcai HOU, Xiaohu HE, Qiuyue JIN, Haiyang CAO, Liwen HE, Youyuan QUE, Anqing CHEN. Factors controlling the formation and distribution of Mesozoic buried hill reservoirs in the Qiongdongnan Basin [J]. Oil & Gas Geology, 2023, 44(3): 637-650. |
[7] | Dongwei LI, Chenglin GONG, Lin HU, Xiaohu HE, Quanyuan LUO. Hierarchical division and fine architectural depiction of the interior of deep-water channel deposits [J]. Oil & Gas Geology, 2023, 44(3): 553-564. |
[8] | Liu Ying, Liu Haiyan, Yang Haizhang, Wang Dongdong, Song Guangzeng, Lyu Dawei, Chen Ying, Li Zengxue. Types and characteristics of Paleogene coal-forming sedimentary systems in Qiongdongnan Basin [J]. Oil & Gas Geology, 2019, 40(1): 142-151. |
[9] | Tong Hengmao, Fan Caiwei, Tong Chuanxin, Song Peng, Zhang Hao. Characteristics, types and genetic mechanism of Baodao transfer zone, Qiongdongnan Basin [J]. Oil & Gas Geology, 2015, 36(6): 897-905. |
[10] | Zhang Yaxiong, Zhu Xiaomin, Chen Huanqing, Zhang Gongcheng. Slope-break types and sequence stratigraphic styles of the Oligocene Lingshui Formation in Qiongdongnan Basin, South China Sea [J]. Oil & Gas Geology, 2014, 35(4): 473-479. |
[11] | Wei Kuisheng, Chu Meijuan, Cui Yingkai, Shen Hua, Liang Jianshe, Yang Guozhong, Liu Tieshu. Characteristics of time-space combination of lowstand system tracts and their exploration significance in eastern Qiongdongnan basin [J]. Oil & Gas Geology, 2004, 25(6): 650-655. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||