Oil & Gas Geology ›› 2022, Vol. 43 ›› Issue (6): 1370-1381.doi: 10.11743/ogg20220608
• Petroleum Geology • Previous Articles Next Articles
Caiwei Fan(), Aiqun Liu, Yunpeng Wu, Jingxian Hou
Received:
2022-06-26
Revised:
2022-09-15
Online:
2022-11-21
Published:
2022-11-21
CLC Number:
Caiwei Fan, Aiqun Liu, Yunpeng Wu, Jingxian Hou. Gas charging and overpressure evolution history of the Neogene Huangliu Formation reservoir in Ledong 10 area, Yinggehai Basin[J]. Oil & Gas Geology, 2022, 43(6): 1370-1381.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Summary of Raman quantitative parameters of pure/CO2-rich inclusions in the Huangliu Formation reservoir in Ledong 10 area, Yinggehai Basin"
序号 | 井名 | 深度/m | 赋存位置 | 费米双峰间距 /cm-1 | 密度/(g·cm-3) | 同期盐水包裹体 均一温度/oC | 捕获压力/MPa | 压力系数 |
---|---|---|---|---|---|---|---|---|
1 | LD10-A | 4 165.8 | 石英裂隙 | 104.5 | 0.72 | 175.6 | 62.2 | 1.48 |
2 | LD10-A | 4 165.8 | 石英裂隙 | 104.0 | 0.53 | 161.4 | 36.7 | 1.05 |
3 | LD10-A | 4 170.0 | 石英裂隙 | 104.5 | 0.72 | 177.3 | 62.8 | 1.50 |
4 | LD10-A | 4 170.0 | 石英裂隙 | 104.5 | 0.72 | 177.3 | 62.8 | 1.50 |
5 | LD10-A | 4 170.0 | 石英裂隙 | 104.5 | 0.72 | 177.3 | 62.8 | 1.50 |
6 | LD10-A | 4 249.0 | 石英裂隙 | 104.9 | 0.90 | 175.6 | 100.6 | 2.45 |
7 | LD10-A | 4 249.0 | 石英裂隙 | 104.9 | 0.90 | 175.6 | 100.6 | 2.45 |
8 | LD10-A | 4 249.0 | 石英裂隙 | 104.0 | 0.53 | 155.3 | 34.5 | 1.05 |
9 | LD10-A | 4 134.5 | 石英裂隙 | 104.5 | 0.72 | 177.3 | 62.8 | 1.50 |
10 | LD10-A | 4 134.5 | 石英裂隙 | 103.9 | 0.47 | 155.3 | 29.8 | 0.90 |
11 | LD10-B | 4 039.0 | 石英裂隙 | 104.4 | 0.67 | 170.8 | 53.9 | 1.46 |
12 | LD10-B | 4 039.0 | 石英裂隙 | 104.0 | 0.53 | 158.7 | 35.7 | 1.05 |
13 | LD10-B | 4 064.8 | 石英裂隙 | 104.0 | 0.53 | 158.7 | 35.7 | 1.05 |
14 | LD10-B | 4 064.8 | 石英裂隙 | 104.0 | 0.53 | 158.7 | 36.1 | 1.06 |
Table 2
Statistics of Raman quantitative parameters of CH4- rich inclusions in the Huangliu Formation reservoir in Ledong 10 area, Yinggehai Basin"
序号 | 井名 | 深度/m | 赋存位置 | CH4拉曼峰 位移/cm-1 | 密度/(g·cm-3) | 同期盐水包裹体 均一温度/oC | 捕获压力/MPa | 压力系数 |
---|---|---|---|---|---|---|---|---|
1 | LD10-A | 4 170.0 | 石英裂隙 | 2 913.02 | 0.174 | 165.0 | 45.56 | 1.25 |
2 | LD10-A | 4 170.0 | 石英裂隙 | 2 912.95 | 0.177 | 165.0 | 46.71 | 1.28 |
3 | LD10-A | 4 170.0 | 石英裂隙 | 2 913.10 | 0.171 | 168.3 | 44.85 | 1.22 |
4 | LD10-A | 4 170.0 | 石英裂隙 | 2 912.99 | 0.175 | 168.3 | 46.59 | 1.27 |
5 | LD10-A | 4 170.0 | 石英裂隙 | 2 912.99 | 0.175 | 168.3 | 46.59 | 1.27 |
6 | LD10-A | 4 170.0 | 石英裂隙 | 2 912.99 | 0.175 | 168.3 | 46.59 | 1.27 |
7 | LD10-A | 4 249.0 | 石英裂隙 | 2 912.99 | 0.175 | 168.3 | 46.59 | 1.27 |
8 | LD10-A | 4 249.0 | 石英裂隙 | 2 912.99 | 0.175 | 168.3 | 46.59 | 1.27 |
9 | LD10-A | 4 249.0 | 石英裂隙 | 2 912.97 | 0.176 | 168.3 | 46.96 | 1.28 |
10 | LD10-A | 4 249.0 | 石英裂隙 | 2 912.99 | 0.175 | 168.3 | 46.63 | 1.27 |
11 | LD10-A | 4 249.0 | 石英裂隙 | 2 912.97 | 0.176 | 168.3 | 46.96 | 1.28 |
12 | LD10-A | 4 249.0 | 石英裂隙 | 2 912.96 | 0.177 | 168.3 | 47.13 | 1.28 |
Table 3
Statistics of Raman quantitative parameters of mixed gas inclusions in the Huangliu Formation reservoir in Ledong 10 area, Yinggehai Basin"
序号 | 井名 | 深度/m | 赋存位置 | 峰面积比 | CO2∶CH4(百分含量比) | 费米双峰间距/ cm-1 | CH4拉曼峰位移/cm-1 | 同期盐水包裹体均一温度/oC | 捕获 压力/MPa | 古压力系数 | |
---|---|---|---|---|---|---|---|---|---|---|---|
混合气包裹体 | 现今气藏 | ||||||||||
1 | LD10-A | 4 249.0 | 石英加大边 | 0.660 9 | 61.1∶38.9 | 66.1∶33.9 | 103.9 | 2 911.80 | 181.3 | 91.5 | 2.15 |
2 | LD10-A | 4 249.0 | 石英加大边 | 0.658 7 | 61.0∶39.0 | 64.3∶35.7 | 104.1 | 2 911.83 | 181.3 | 95.6 | 2.25 |
3 | LD10-A | 4 249.0 | 石英加大边 | 0.716 7 | 63.0∶37.0 | 65.6∶34.4 | 104.0 | 2 911.81 | 181.3 | 94.3 | 2.22 |
Table 4
Statistics of isotopic parameters of CO2-rich gas inclusions in the Huangliu Formation reservoir in Ledong 10 area, Yinggehai Basin"
井号 | 深度/m | A(12)- | A(12)+ | A(13)- | A(13)+ | A(13)/A(12) | F | δ13CCO2 | CO2成因 |
---|---|---|---|---|---|---|---|---|---|
LD10-A | 4 165.8 | 8 509.638 | 14 108.990 | 378.846 3 | 163.014 0 | 0.023 956 373 | 0.466 972 6 | -4.469 9 | 无机成因 |
LD10-A | 4 165.8 | 5 417.402 | 9 041.003 | 215.094 4 | 131.695 7 | 0.023 985 364 | 0.466 972 6 | -3.265 2 | 无机成因 |
LD10-A | 4 170.0 | 3 207.608 | 1 080.343 | 63.572 6 | 39.251 6 | 0.023 979 789 | 0.466 972 6 | -3.496 8 | 无机成因 |
LD10-B | 4 039.0 | 17 456.410 | 30 384.380 | 701.269 1 | 441.214 6 | 0.023 880 954 | 0.466 972 6 | -7.604 0 | 无机成因 |
1 | 赵靖舟. 幕式成藏的机理和规律探讨[J]. 天然气工业, 2006,26(3):9-11. |
Zhao Jingzhou. Mechanism and regularity of episodic reservoring [J]. Natural Gas Industry, 2006,26(3):9-11. | |
2 | 邹华耀, 杨旭升, 王敏芳,等. 油气幕式成藏及其驱动机制和识别标志[J]. 地质科学, 2003,38(3):403-412. |
Zou Huayao, Yang Xusheng, Wang Minfang,et al. Episodic petroleum accumulation, its driving mechanisms and distinguishing markers[J]. Chinese Journal of Geology, 2003,38(3):403-412. | |
3 | 陈红汉, 吴悠, 丰勇, 等. 塔河油田奥陶系油气成藏期次及年代学[J]. 石油与天然气地质, 2014,35(6):806-819. |
Chen Honghan, Wu You, Feng Yong,et al. Hydrocarbon accumulation times and chronology of Ordovician in Tahe Oilfield[J]. Oil and Gas Geology, 2014,35(6):806-819. | |
4 | 李文, 何生, 张柏桥, 等. 焦石坝背斜西缘龙马溪组页岩复合脉体中流体包裹体的古温度及古压力特征[J]. 石油学报, 2018,39(4):402-415. |
Li Wen, He Sheng, Zhang Baiqiao, et al. Characteristics of paleo-temperature and paleo-pressure of fluid inclusions in shale composite veins of Longmaxi Formation at the western margin of Jiaoshiba Anticline[J]. Acta Petrolei Sinica,2018,39(4):402-415. | |
5 | 邱楠生, 刘一锋, 刘雯, 等. 沉积盆地地层古压力定量重建方法与研究实例[J]. 中国科学:地球科学, 2020,50(6):793-806. |
Qiu N, Liu Y, Liu W, Jia J. Quantitative reconstruction of formation paleo-pressure in sedimentary basins and case studies[J]. Science China: Earth Sciences, 2020,50(6):793-806. | |
6 | Lu W, Chou I, Burruss R C, et al. A unified equation for calculating methane vapor pressures in the CH4-H2O system with measured Raman Shifts[J]. Geochimica et Cosmochimica Acta, 2007,71(16):3969-3978. |
7 | Seitz J C, Pasteris J D, Chou I M. Raman spectroscopic characterization of gas mixtures; Ⅰ, Quantitative composition and pressure determination of CH4, N2 and their mixtures[J]. American Journal of Science, 1993,293(4):297-321. |
8 | Huang Y, Tarantola A, Wang W, et al. Charge history of CO2 in Lishui Sag, East China Sea Basin: Evidence from quantitative Raman analysis of CO2-bearing fluid inclusions[J]. Marine and Petroleum Geology, 2018,98:50-65. |
9 | Wang X, Chou I M, Hu W, et al. Raman spectroscopic measurements of CO2 density: Experimental calibration with high-pressure optical cell (HPOC) and fused silica capillary capsule (FSCC) with application to fluid inclusion observations[J]. Geochimica et Cosmochimica Acta, 2011,75(14):4080-4093. |
10 | Dubessy J, Lhomme T, Boiron M C, et al. Determination of chlorinity in aqueous fluids using Raman spectroscopy of the stretching band of water at room temperature: Application to fluid inclusions[J]. Applied Spectroscopy, 2002,56(1):99-106. |
11 | Dubessy J, Poty B, Ramboz C. Advances in C-O-H-N-S fluid geochemistry based on micro-Raman spectrometric analysis of fluid inclusions[J]. European Journal of Mineralogy, 1989,1(4):517-534. |
12 | Burke E A J. Raman microspectrometry of fluid inclusions[J]. Lithos, 2001,55(1-4):139-158. |
13 | Garcia-Baonza V, Rull F, Dubessy J. Raman spectroscopy of gases, water and other geological fluids[J]. European Mineralogical Union Notes in Mineralogy, 2012,12(1):279-320. |
14 | 刘华,李君,冯月琳,等. 渤海湾盆地渤南洼陷沙河街组三段剩余压力梯度与油气分布关系[J]. 石油与天然气地质, 2020,41(5):1083-1091. |
Liu Hua, Li Jun, Feng Yuelin, et al. Relationship between excess pressure gradient and hydrocarbon distribution in the 3rd member of Shahejie Formation in Bonan Sag, Bohai Bay Basin[J]. Oil & Gas Geology,2020,41(5):1083-1091. | |
15 | 蒋有录,苏圣民,刘华,等.渤海湾盆地油气成藏期差异性及其主控因素[J].石油与天然气地质,2021,42(6):1255-1264. |
Jiang Youlu, Su Shengmin, Liu Hua,et al. Differences in hydrocarbon accumulation stages and main controlling factors in the Bohai Bay Basin[J]. Oil & Gas Geology,2021,42(6):1255-1264. | |
16 | 陈家旭,王斌,郭小文,等.应用方解石激光原位U-Pb同位素定年确定多旋回叠合盆地油气成藏绝对时间[J].石油与天然气地质,2021,42(6):1365-1375. |
Chen Jiaxu, Wang Bin, Guo Xiaowen, et al. Application of laser in-situ U⁃Pb dating of calcite to determination of the absolute time of hydrocarbon accumulation in polycyclic superimposed basins: A case study on Tahe oilfield, Tarim Basin[J]. Oil & Gas Geology,2021,42(6):1365-1375. | |
17 | 谢玉洪, 黄保家. 南海莺歌海盆地东方13-1高温高压气田特征与成藏机理[J]. 中国科学:地球科学, 2014,44(8):1731-1739. |
Xie Y H, Huang B J. Characteristics and accumulation mechanisms of the Dongfang 13-1 high temperature and overpressured gas field in the Yinggehai Basin, the South China Sea[J]. Science China: Earth Sciences, 2014,44(8):1731-1739. | |
18 | 杨计海, 黄保家. 莺歌海凹陷东斜坡L气田天然气成因及运移模式[J]. 石油勘探与开发, 2019,46(3):450-460. |
Yang Jihai, Huang Baojia. Origin and migration model of natural gas in L gas field, eastern slope of Yinggehai Sag, China[J]. Petroleum Exploration and Development, 2019, 46(3): 450-460. | |
19 | 范彩伟. 莺歌海大型走滑盆地构造变形特征及其地质意义[J]. 石油勘探与开发, 2018,45(2):190-199. |
Fan Caiwei. Tectonic deformation features and petroleum geological significance in Yinggehai large strike-slip basin, South China Sea[J]. Petroleum Exploration and Development, 2018, 45(2): 190-199. | |
20 | 李伟, 刘平, 艾能平, 等. 莺歌海盆地乐东地区中深层储层发育特征及成因机理[J]. 岩性油气藏, 2020,32(1):19-26. |
Li Wei, Liu Ping, Ai Ningping, et al. Development characteristics and genetic mechanism of med-deep reservoirs in Ledong area,Yinggehai Basin[J]. Lithologic Reservoirs, 2020, 32(1): 19-26. | |
21 | 吴仕玖, 范彩伟, 招湛杰, 等. 莺歌海盆地乐东区碳酸盐胶结物成因及地质意义[J]. 地球科学, 2019,44(8):2686-2694. |
Wu Shijiu, Fan Caiwei, Zhao Zhanjie,et al. Origin of carbonate cement in reservoirs of Ledong area, Yinggehai Basin and its geological significance[J]. Earth Science, 2019,44(8):2686-2694. | |
22 | 张建新, 袁超, 党亚云, 等. 莺歌海盆地乐东区中深层大型储集体发育特征[J]. 特种油气藏, 2016,23(1):62-66. |
Zhang Jianxin, Yuan Chao, Dang Yayun, et al. Developmental features of middle-deep large reservoirs in Ledong Region of Yinggehai Basin[J]. Special Oil and Gas Reservoirs, 2016,23(1):62-66. | |
23 | 谢玉洪, 张迎朝, 李绪深, 等. 莺歌海盆地高温超压气藏控藏要素与成藏模式[J]. 石油学报, 2012,33(4):601-609. |
Xie Yuhong, Zhang Yingchao, Li Xushen, et al. Main controlling factors and formation models of natural gas reservoirs with high-temperature and overpressure in Yinggehai Basin[J]. Acta Petrolei Sinica, 2012,33(4):601-609. | |
24 | 何文祥, 王培荣, 潘贤庄, 等. 莺-琼盆地原油类型划分及成因探讨[J]. 天然气地球科学, 2004,2(15):134-136. |
He Wenxiang, Wang Peirong, Pan Xianzhuang, et al. The discussion of the crude oil type and its origin in Yingqiong Basin[J]. 2004,2(15):134-136. | |
25 | 黄保家, 李绪深, 易平, 等. 莺歌海盆地乐东气田天然气地化特征和成藏史[J]. 石油与天然气地质, 2005,26(4):524-529. |
Huang Baojia, Li Xushen, Yi Ping, et al., Geochamical behaviors and reservoiring history of natural gas in Ledong gas fied in Yinggehai Basin[J]. Oil and Gas Geology. 2005,26(4):524-529. | |
26 | 赵宝峰. 莺歌海盆地流体垂向输导体系特征及其对天然气成藏的控制作用[D]. 武汉:中国地质大学(武汉),2014:99. |
Zhao Baofeng. Feature of vertical flowing-conduits system and their control on natural gas accumulation in Yinggehai Basin[D]. Wuhan:China University of Geosciences(Wuhan), 2014:99. | |
27 | 黄保家, 肖贤明, 董伟良. 莺歌海盆地烃源岩特征及天然气生成演化模式[J]. 天然气工业, 2002,26(1):26-30. |
Huang Baojia, Xiao Xianming, Dong Weiliang. Source rock characteristics and natural gas generation and evolution model in Yinggehai Basin. Natural Gas Industry[J], 2002,26(1):26-30. | |
28 | Zhang J, Qiao S, Lu W, et al. An equation for determining methane densities in fluid inclusions with Raman Shifts[J]. Journal of geochemical exploration, 2016,171:20-28. |
29 | Le V, Caumon M, Tarantola A, et al. Calibration data for simultaneous determination of P-V-X properties of binary and ternary CO2-CH4-N2 gas mixtures by Raman spectroscopy over 5-600 bar: Application to natural fluid inclusions[J]. Chemical Geology, 2020,552:119783. |
30 | Wang W, Caumon M, Tarantola A, et al. Raman spectroscopic densimeter for pure CO2 and CO2-H2O-NaCl fluid systems over a wide P-T range up to 360 ℃ and 50 MPa[J]. Chemical Geology, 2019,528:119281. |
31 | 姜平, 何胜林, 杨朝强, 等. 莺歌海盆地LD10区高含CO2天然气充注期次精细厘定与成藏模式[J]. 地球科学, 2022,47(5):1569-1585. |
Jiang Ping, He Shenglin, Yang Chao, et al. High CO2 natural gas charging events, timing and accumulation pattern in LD10 area of Yinggehai Basin[J]. Earth Science,2022,47(5):1569-1585. | |
32 | 税蕾蕾, 梁茹, 孟祥豪, 等. 莺歌海盆地乐东地区石英裂隙内流体包裹体特征及其对天然气成藏制约[J]. 沉积与特提斯地质, 2020,40(1):8. |
Shui Leilei, Liang Ru, Meng Xianghao, et al. Characteristics of fluid inclusions in quartz fractures in Ledong area of Yinggehai Basin and its constraints on gas accumulation[J]. Sedimentary Geology and Tethyan Geology, 2020,40(1):8. | |
33 | 郭潇潇, 徐新德, 熊小峰, 等. 莺歌海盆地中深层天然气成藏特征与有利勘探领域[J]. 天然气地球科学, 2017,28(12):9. |
Guo Xiaoxiao, Xu Xinde, Xiong Xiaofeng, et al. Gas accumulation characteristics and favorable exploration directions in mid-deep strata of the Yinggehai Basin[J]. Natural Gas Geoscience. 2017,28(12):9. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||