Oil & Gas Geology ›› 2022, Vol. 43 ›› Issue (6): 1431-1444.doi: 10.11743/ogg20220612
• Petroleum Geology • Previous Articles Next Articles
Yan Zhang1(), Dong Hui2(), Jian Zhang1, Deliang Zhang1, Rui Jiang1
Received:
2022-05-04
Revised:
2022-09-08
Online:
2022-11-21
Published:
2022-11-21
Contact:
Dong Hui
E-mail:zhangy23@petrochina.com.cn;xnyqt001@163.com
CLC Number:
Yan Zhang, Dong Hui, Jian Zhang, Deliang Zhang, Rui Jiang. Characteristics and main controlling factors of water vapor adsorption in marine shale: A case study of the Lower Silurian Longmaxi shales in southern Sichuan Basin[J]. Oil & Gas Geology, 2022, 43(6): 1431-1444.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Statistical table of geochemical parameters, pore structure parameters, mineral compositions and maximum water vapor adsorption capacity of shale samples taken from the southern Sichuan Basin"
样品编号 | TOC/% | Ro/% | N2吸附测试 | X射线衍射测试 | 水蒸气吸附实验 | |||
---|---|---|---|---|---|---|---|---|
比表面积/ (m2·g-1) | 孔体积/ (cm3·g-1) | 粘土矿物含量/% | 石英含量/% | 碳酸盐矿物含量/% | 最大吸附量/ (mg·g-1) | |||
S1 | 0.71 | 2.15 | 4.53 | 0.0101 | 51.31 | 33.52 | — | 19.05 |
S2 | 0.52 | / | 3.36 | 0.0062 | 55.24 | 28.01 | — | 21.08 |
S3 | 1.79 | / | 6.34 | 0.0192 | 14.32 | 47.46 | 38.13 | 6.27 |
S4 | 2.18 | 1.93 | 10.76 | 0.0173 | 19.55 | 50.91 | 24.65 | 8.09 |
S5 | 1.53 | / | 7.06 | 0.0135 | 12.29 | 34.56 | 53.31 | 4.28 |
S6 | 3.82 | 2.81 | 22.94 | 0.0286 | 30.71 | 49.73 | 6.29 | 9.84 |
S7 | 4.15 | 3.07 | 20.90 | 0.0278 | 26.22 | 55.31 | 9.76 | 13.86 |
S8 | 5.93 | 2.77 | 25.10 | 0.0301 | 11.15 | 73.28 | 12.22 | 10.72 |
Table 2
Fitting parameters of water vapor adsorption curves for typical shale samples taken from the southern Sichuan Basin"
样品 | GAB模型 | FHH模型 | ||||||
---|---|---|---|---|---|---|---|---|
M0/(mg·g-1) | C | K | R2 | M0/(mg·g-1) | n | A | R2 | |
S1 | 18.64 | 4.78 | 0.34 | 0.997 | 4.60 | 2.03 | 2.24 | 0.998 |
S2 | 9.94 | 5.26 | 0.62 | 0.997 | 9.07 | 1.85 | 0.51 | 0.998 |
S3 | 1.73 | 13.77 | 0.76 | 0.997 | 1.60 | 1.93 | 1.21 | 0.988 |
S4 | 2.44 | 19.38 | 0.73 | 0.997 | 2.38 | 2.17 | 1.21 | 0.994 |
S5 | 1.43 | 24.62 | 0.71 | 0.999 | 1.75 | 2.42 | 0.77 | 0.983 |
S6 | 4.45 | 12.45 | 0.60 | 0.998 | 3.01 | 2.30 | 1.59 | 0.993 |
S7 | 6.49 | 14.29 | 0.59 | 0.996 | 2.51 | 2.47 | 7.22 | 0.997 |
S8 | 3.83 | 13.59 | 0.69 | 0.997 | 4.39 | 2.18 | 0.67 | 0.996 |
1 | 何骁, 李武广, 党录瑞, 等. 深层页岩气开发关键技术难点与攻关方向[J]. 天然气工业, 2021, 41(1):118-124. |
He Xiao, Li Wuguang, Dang Lurui, et al. Key technological challenges and research directions of deep shale gas development [J]. Natural Gas Industry, 2021, 41(1):118-124. | |
2 | 蔡勋育, 赵培荣, 高波, 等. 中国石化页岩气“十三五”发展成果与展望[J]. 石油与天然气地质, 2021,42(1):16-27. |
Cai Xunyu, Zhao Peirong, Gao Bo, et al. Sinopec’s shale gas development achievements during the “Thirteenth Five-Year Plan” period and outlook for the future[J]. Oil & Gas Geology, 2021,42(1):16-27. | |
3 | 姜振学, 李鑫, 王幸蒙, 等. 中国南方典型页岩孔隙特征差异及其控制因素[J]. 石油与天然气地质, 2021,42(1):41-53. |
Jiang Zhenxue, Li Xin, Wang Xingmeng, et al. Characteristic differences and controlling factors of pores in typical South China shale[J]. Oil & Gas Geology, 2021,42(1):41-53. | |
4 | 郭旭升, 腾格尔, 魏祥峰, 等. 四川盆地深层海相页岩气赋存机理与勘探潜力[J]. 石油学报, 2022,43(4):453-468. |
Guo Xusheng, Tenger Borgigin, Wei Xiangfeng, et al. Occurrence mechanism and exploration potential of deep marine shale gas in Sichuan Basin[J]. Acta Petrolei Sinica, 2022,43(4):453-468. | |
5 | 方朝合, 黄志龙, 王巧智, 等. 页岩气藏超低含水饱和度形成模拟及其意义[J]. 地球化学, 2015,44(3):267-274. |
Fang Chaohe, Huang Zhilong, Wang Qiaozhi, et al. Simulation of ultra-low water saturation in shale gas reservoirs and its significance [J]. Geochimica, 2015,44(3):267-274. | |
6 | 刘洪林, 王红岩. 中国南方海相页岩超低含水饱和度特征及超压核心区选择指标[J]. 天然气工业, 2013,33(7):140-144. |
Liu Honglin, Wang Hongyan. Ultra-low water saturation characteristics and the identification of over-pressured play fairways of marine shales in south China[J]. Natural Gas Industry, 2013,33(7):140-144. | |
7 | 方朝合, 黄志龙, 王巧智, 等. 富含气页岩储层超低含水饱和度成因及意义[J]. 天然气地球科学, 2014,25(3):471-476. |
Fang Chaohe, Huang Zhilong, Wang Qiaozhi, et al. Cause and significance of the ultra-low water saturation in gas-enriched shale reservoir [J]. Natural Gas Geoscience, 2014,25(3):471-476. | |
8 | 蒋裕强, 董大忠, 漆麟, 等. 页岩气储层的基本特征及其评价[J]. 天然气工业, 2010,30(10):7-12. |
Jiang Yuqiang, Dong Dazhong, Qi Lin, et al. Basic features and evaluation of shale gas reservoirs[J]. Natural Gas Industry, 2010,30(10):7-12. | |
9 | Korb J P, Nicot B, Louis-Joseph A, et al. Dynamics and wettability of oil and water in oil shales[J]. The Journal of Physical Chemistry C, 2014,118(40):23212-23218. |
10 | Firouzi M, Rupp E C, Liu C W, et al. Molecular simulation and experimental characterization of the nanoporous structures of coal and gas shale[J]. International Journal of Coal Geology, 2014,121:123-128. |
11 | Larsen J W, Aida M T. Kerogen chemistry 1. sorption of water by type Ⅱ kerogens at room temperature[J]. Energy & Fuels, 2004,18(5):1603-1604. |
12 | Prinz D, Littke R. Development of the micro- and ultramicroporous structure of coals with rank as deduced from the accessibility to water[J]. Fuel, 2005, 84(12-13):1645-1652. |
13 | 王平全, 李晓红. 用热失重法确定水合粘土水分含量及存在形式[J]. 天然气工业, 2006,1(26):80-83. |
Wang Pingquan, Li Xiaohong. Thermal-weightlessness method to determine water content and existing form of hydratable clay[J]. Natural Gas Industry, 2006,26(1):80-83. | |
14 | 郭建春, 陶亮, 陈迟, 等. 川南地区龙马溪组页岩混合润湿性评价新方法[J]. 石油学报, 2020,41(2):216-225. |
Guo Jianchun, Tao Liang, Chen Chi, et al. A new method for evaluating the mixed wettability of shale in Longmaxi Formation in the southern Sichuan[J]. Acta Petrolei Sinica, 2020,41(2):216-225. | |
15 | Dehghanpour H, Zubair H A, Chhabra A, et al. Liquid intake of organic shales[J]. Energy & Fuels, 2012, 26(9):5750-5758. |
16 | Ruppert L F, Sakurovs R, Blach T P, et al. A USANS/SANS study of the accessibility of pores in the Barnett Shale to methane and water[J]. Energy & Fuels, 2013,27(2):772-779. |
17 | Li J Q, Wang S Y, Lu S F, et al. Microdistribution and mobility of water in gas shale: A theoretical and experimental study[J]. Marine and Petroleum Geology, 2019,102:496-507. |
18 | 李靖, 李相方, 王香增, 等. 页岩无机质孔隙含水饱和度分布量化模型[J]. 石油学报, 2016,37(7):903-913. |
Li Jing, Li Xiangfang, Wang Xiangzeng, et al. A quantitative model to determine water-saturation distribution characteristics inside shale inorganic pores[J]. Acta Petrolei Sinica, 2016,37(7):903-913. | |
19 | Tang X, Ripepi N, Valentine K A, et al. Water vapor sorption on Marcellus shale: Measurement, modeling and thermodynamic analysis[J]. Fuel, 2017,209:606-614. |
20 | 党伟, 张金川, 王凤琴, 等. 富有机质页岩-水蒸气吸附热力学与动力学特性——以鄂尔多斯盆地二叠系山西组页岩为例[J]. 石油与天然气地质, 2021, 42(1): 173-185. |
Dang Wei, Zhang Jinchuan, Wang Fengqin, et al. Thermodynamics and kinetics of water vapor adsorption onto shale: A case study of the Permian Shanxi Formation, Ordos Basin[J]. Oil & Gas Geology, 2021, 42(1): 173-185. | |
21 | Dang W, Jiang S, Zhang J C, et al. A systematic experimental and modeling study of water adsorption/desorption behavior in organic-rich shale with different particle sizes[J]. Chemical Engineering Journal, 2021,426:130596. |
22 | 俞凌杰, 刘可禹, 范明, 等. 页岩孔隙中气-水赋存特征研究——以川东南地区下志留统龙马溪组为例[J]. 石油实验地质, 2021,43(6):1089-1096. |
Yu Lingjie, Liu Keshu, Fan Ming, et al. Co-occurring characteristics of pore gas and water in shales: A case study of the Lower Silurian Longmaxi Formation in the southeastern Sichuan Basin[J].Petroleum Geology & Experiment, 2021,43(6):1089-1096. | |
23 | 陈吉, 徐耀辉, 肖七林, 等. 湘西南龙潭组页岩水吸附特征及其影响因素[J]. 长江大学学报(自然科学版), 2021,18(4):13-23. |
Chen Ji, Xu Yaohui, Xiao Qilin, et al. Characteristics and influencing factors of water sorption of Longtan Formation shales in Southwestern Hunan[J]. Journal of Yangtze University(Natural Science Edition), 2021,18(4):13-23. | |
24 | 杨熙雅, 刘成林, 刘文平, 等. 四川盆地富顺-永川地区龙马溪组页岩有机孔特征及其影响因素[J].石油与天然气地质, 2021,42(6):1321-1333. |
Yang Xiya, Liu Chenglin, Liu Wenping, et al. Characteristics of and factors influencing organic pores in the Lower Silurian Longmaxi Formation, Fushun-Yongchuan area, Sichuan Basin[J]. Oil & Gas Geology, 2021,42(6):1321-1333. | |
25 | 郭旭升, 李宇平, 腾格尔, 等. 四川盆地五峰组-龙马溪组深水陆棚相页岩生储机理探讨[J]. 石油勘探与开发, 2020, 47(1): 193-201. |
Guo Xusheng, Li Yuping, Tenger Borjigen, et al. Hydrocarbon generation and storage mechanisms of deep-water shelf shales of Ordovician Wufeng Formation-Silurian Longmaxi Formation in Sichuan Basin, China[J]. Petroleum Exploration and Development, 2020, 47(1): 193-201. | |
26 | Thommes M, Kaneko K, Neimark A V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure Applied Chemistry, 2015,87(9-10):1051-1069. |
27 | Furmaniak S, Gauden P A, Terzyk A P, et al. Water adsorption on carbons-critical review of the most popular analytical approaches[J]. Advances in Colloid and Interface Science, 2008,137(2):82-143. |
28 | Anderson R B. Modifications of the Brunauer, Emmett and Teller equation1[J]. Journal of the American Chemical Society, 1948,68(4):686-691. |
29 | Brunauer B, Deming L S, Teller E. Adsorption of gases in multimolecular layers[J]. Journal of the American Chemical Society, 1938,60(2):309-319. |
30 | Pfeifer P, Avnir D. Chemistry in noninteger dimensions between two and three. I. Fractal theory of heterogeneous surfaces[J]. The Journal of Chemical Physics, 1983,79(7):3558-3565. |
31 | 李沛. 页岩润湿性及其对甲烷吸附的控制机理——以南华北盆地山西太原组页岩为例[D]. 北京:中国地质大学(北京), 2021. |
Li Pei. Wettability of shale and its effect on methane adsorption:A case study of Shanxi Taiyuan Formation in Southern North China Basin[D]. Beijing:China University of Geosciences (Beijing), 2021. | |
32 | Gasparik M, Bertier P, Gensterblum Y, et al. Geological controls on the methane storage capacity in organic-rich shales[J]. International Journal of Coal Geology, 2014,123:34-51. |
33 | Hu Y, Devegowda D, Striolo A. Microscopic dynamics of water and hydrocarbon in shale-kerogen pores of potentially mixed wettability[J]. SPE Journal, 2014,1(20):112-124. |
34 | Huang L, Ning Z, Wang Q, et al. Effect of organic type and moisture on CO2/CH4 competitive adsorption in kerogen with implications for CO2 sequestration and enhanced CH4 recovery[J]. Applied Energy, 2018,210:28-43. |
35 | Huang L, Ning Z, Wang Q, et al. Thermodynamic and structural characterization of bulk organic matter in Chinese Silurian Shale: Experimental and molecular modeling studies[J]. Energy & Fuels, 2017,31(5):4851-4865. |
36 | 赵杏媛, 张有瑜. 粘土矿物与粘土矿物分析[M]. 北京:海洋出版社, 1990:1401-1408. |
Zhao Xingyuan, Zhang Youyu. Analysis of clay minerals and clay minerals[M]. Beijing: Ocean Press, 1990:1401-1408. | |
37 | 李靖, 陈掌星, 李相方, 等. 页岩及黏土纳米孔隙中液态水分布量化研究[J]. 中国科学:技术科学, 2018,48(11):1219-1233. |
Li Jing, Chen Zhangxing, Li Xiangfang, et al. A quantitative research of water distribution characteristics inside shale and clay nanopores[J]. Scientia Sinica Technologica, 2018,48(11):1219-1233. | |
38 | Passey Q R, Bohacs K, Esch W L, et al. From oil-prone source rock to gas-producing shale reservoir-geologic and petrophysical characterization of unconventional shale-gas reservoirs[C]//SPE. International Oil & Gas Conference and Exhibition. Beijing: SPE, 2010:131350. |
39 | 张亚云, 陈勉, 邓亚, 等. 温压条件下蒙脱石水化的分子动力学模拟[J]. 硅酸盐学报, 2018,46(10):1489-1498. |
Zhang Yayun, Chen Mian, Deng Ya, et al. Molecular dynamics simulation of temperature and pressure effects on hydration characteristics of montmorillonites[J], Journal of the Chinese Ceramic Society, 2018,46(10):1489-1498. | |
40 | Shen W, Li X, Lu X, et al. Experimental study and isotherm models of water vapor adsorption in shale rocks[J]. Journal of Natural Gas Science and Engineering, 2018,52:484-491. |
41 | Kerisit S, Parker S C. Free energy of adsorption of water and metal ions on the {1014} calcite surface[J]. Journal of the American Chemical Society, 2004,126(32):10152-10161. |
42 | Rahaman A, Grassian V H, Margulis C J. Dynamics of water adsorption onto a calcite surface as a function of relative humidity[J]. The Journal of Physical Chemistry C, 2008,112(6):2109-2115. |
43 | Schultz L N, Andersson M P, Dalby K N, et al. High surface area calcite[J]. Journal of Crystal Growth, 2013,371:34-38. |
44 | 郭芪恒, 金振奎, 耿一凯, 等. 四川盆地龙马溪组页岩中碳酸盐矿物特征及对储集性能的影响[J]. 天然气地球科学, 2019,30(5):616-625. |
Guo Shiheng, Jin Zhenkui, Geng Yikai, et al. The characteristics of carbonate minerals in the Longmaxi Formation gas shale and its impact on the reservoir performance in the Sichuan Basin[J]. Natural Gas Geoscience, 2019,30(5):616-625. | |
45 | 李凯强. 页岩中石英的成因及意义——以四川盆地五峰-龙马溪组为例[D]. 兰州:兰州大学, 2018. |
Li Kaiqiang. The origin and significance of quartz in Shales: A case study of Wufeng-Longmaxi Formations in the Sichuan Basin[D]. Lanzhou: Lanzhou University, 2018. | |
46 | 陆现彩, 侯庆锋, 尹琳, 等. 几种常见矿物的接触角测定及其讨论[J]. 岩石矿物学杂质, 2003,22(4): 397-400. |
Lu Xiancai, Hou Qingfeng, Yi Lin, et al. Measurement of contact angles of several common minerals and its discussion[J]. Acta Petrologica Et Mineralogica, 2003,22(4): 397-400. | |
47 | Barclay S A, Worden R H. Effects of reservoir wettability on quartz cementation in oil fields[J]. Quartz Cementation in Sandstones, 2000,29:103-117. |
48 | Lahn L, Bertier P, Seemann T, et al. Distribution of sorbed water in the pore network of mudstones assessed from physisorption measurements[J]. Microporous and Mesoporous Materials, 2020,295:109902. |
49 | Feng D, Li X, Wang X, et al. Water adsorption and its impact on the pore structure characteristics of shale clay[J]. Applied Clay Science, 2018,155:126-138. |
50 | Liu Y, Zhu Y, Chen S, et al. Evaluation of Spatial Alignment of kerogen in shale using high-resolution transmission electron microscopy, raman spectroscopy, and fourier transform infrared[J]. Energy & Fuels, 2018,32(10):10616-10627. |
51 | Chen Y, Furmann A, Mastalerz M, et al. Quantitative analysis of shales by KBr-FTIR and micro-FTIR[J]. Fuel, 2014,116:538-549. |
52 | Fletcher A J, Uygur Y, Thomas K M. Role of surface functional groups in the adsorption kinetics of water vapor on microporous activated carbons[J]. The Journal of Physical Chemistry C, 2007,111(23):8349-8359. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||