Oil & Gas Geology ›› 2023, Vol. 44 ›› Issue (1): 150-163.doi: 10.11743/ogg20230112
• Petroleum Geology • Previous Articles Next Articles
Botong LIU1,2,3(), Peng CHENG1,2(), Haifeng GAI1,2, Qin ZHOU1,2, Tengfei LI1,2, Hui TIAN1,2
Received:
2022-06-01
Revised:
2022-11-18
Online:
2023-01-14
Published:
2023-01-13
Contact:
Peng CHENG
E-mail:liubotong19@mails.ucas.ac.cn;chengp@gig.ac.cn
CLC Number:
Botong LIU, Peng CHENG, Haifeng GAI, Qin ZHOU, Tengfei LI, Hui TIAN. Infrared spectra evolution of crude oil under pyrolysis and its controlling factors[J]. Oil & Gas Geology, 2023, 44(1): 150-163.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Geological and geochemical parameters of the crude oil samples applied for pyrolysis experiments"
样品 编号 | 样品信息 | 物理性质② | 原油 类型 | 烃源岩 有机相 | 特征生物标志物参数 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
井号 | 深度/m | 地层 | 密度/ (g?cm-3) | 运动黏度(50 ℃)/ (mm2?s-1) | T/C30H | O/C30H | C30-4MST/C29ST | γ/C30H | C29甾烷S/(S+R) | |||
WC191N | WC19-1N-1 | 2 019 ~ 2 045 | 中新统珠江组 | 0.867 0 | 0.10 | 中质油 | 半深湖相① | 0.00 | 0.10 | 0.67 | 0.05 | 0.36 |
QH18 | QH18-1-2 | 1 214 ~ 1 219 | 中新统珠江组 | 0.913 8 | 0.06 | 重质油 | 浅湖相② | 0.12 | 0.30 | 0.70 | 0.06 | 0.42 |
Table 2
The extents of thermal cracking, group compositions and infrared spectral data of the pyrolytic oils at different temperatures"
样品 编号 | 实验 温度/℃ | EqVRo/ % | 裂解率Rc/% | 族组分含量 | TNR-1 | 红外光谱数据 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
芳环结构 | 烷基结构 | |||||||||||||||||
饱和 烃/% | 芳烃/ % | 非烃/ % | 沥青 质/% | 芳烃/饱和烃 | AC-H | AC=C | AC-C | Aaro | Asat | Aaro/Asat | ||||||||
WC191N1 | 300 | 0.74 | 20.93 | 50.19 | 13.82 | 11.45 | 24.54 | 0.28 | 0.74 | 0.08 | 0.03 | 0.03 | 0.15 | 1.54 | 0.77 | 0.50 | 2.31 | 0.06 |
330 | 0.87 | 23.19 | 51.97 | 13.60 | 9.39 | 25.04 | 0.26 | 0.95 | 0.08 | 0.02 | 0.02 | 0.13 | 1.52 | 0.73 | 0.48 | 2.24 | 0.06 | |
360 | 1.06 | 31.62 | 53.53 | 13.48 | 7.68 | 25.31 | 0.25 | 0.97 | 0.01 | 0.02 | 0.01 | 0.04 | 1.40 | 0.58 | 0.41 | 1.98 | 0.02 | |
380 | 1.23 | 42.84 | 55.91 | 13.52 | 3.98 | 26.59 | 0.24 | 1.22 | 0.05 | 0.03 | 0.02 | 0.10 | 1.34 | 0.64 | 0.48 | 1.98 | 0.05 | |
400 | 1.42 | 60.11 | 40.21 | 15.26 | 3.23 | 41.30 | 0.38 | 1.47 | 0.15 | 0.07 | 0.07 | 0.28 | 1.44 | 0.97 | 0.67 | 2.41 | 0.12 | |
420 | 1.65 | 85.74 | 10.07 | 28.17 | 2.78 | 58.98 | 2.80 | 2.29 | 1.00 | 0.23 | 0.19 | 1.43 | 1.37 | 1.94 | 1.41 | 3.31 | 0.43 | |
QH1811 | 300 | 0.74 | 22.99 | 50.83 | 20.07 | 13.95 | 15.16 | 0.39 | 0.64 | 0.14 | 0.05 | 0.04 | 0.24 | 1.32 | 1.01 | 0.77 | 2.33 | 0.10 |
330 | 0.87 | 28.34 | 52.51 | 17.50 | 13.20 | 16.78 | 0.33 | 0.70 | 0.11 | 0.04 | 0.03 | 0.17 | 1.46 | 1.13 | 0.77 | 2.59 | 0.07 | |
360 | 1.06 | 34.47 | 54.63 | 17.22 | 10.60 | 17.55 | 0.32 | 0.76 | 0.07 | 0.01 | 0.02 | 0.10 | 1.57 | 1.19 | 0.76 | 2.76 | 0.04 | |
380 | 1.23 | 37.95 | 55.24 | 15.65 | 7.50 | 21.61 | 0.28 | 0.80 | 0.07 | 0.02 | 0.02 | 0.11 | 1.56 | 1.20 | 0.77 | 2.76 | 0.04 | |
400 | 1.42 | 49.12 | 51.17 | 19.63 | 2.57 | 26.64 | 0.38 | 1.48 | 0.20 | 0.06 | 0.06 | 0.32 | 1.41 | 1.26 | 0.90 | 2.67 | 0.12 | |
420 | 1.65 | 80.96 | 18.88 | 25.65 | 2.02 | 53.45 | 1.36 | 1.84 | 0.53 | 0.24 | 0.22 | 0.98 | 1.39 | 1.82 | 1.31 | 3.21 | 0.31 |
Table 3
Infrared spectral data of the aromatic compositions in pyrolytic oils at different temperatures"
样品编号 | 裂解率 Rc/% | 红外光谱数据 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
芳环结构 | 烷基结构 | Aaro/Asat | ||||||||
AC-H | AC=C | AC-C | Aaro | Asat | ||||||
WC191N | 20.93 | 0.15 | 0.04 | 0.05 | 0.24 | 1.52 | 0.99 | 0.65 | 2.51 | 0.10 |
23.19 | 0.14 | 0.04 | 0.05 | 0.23 | 1.50 | 1.01 | 0.67 | 2.52 | 0.09 | |
31.62 | 0.10 | 0.03 | 0.04 | 0.17 | 1.49 | 0.96 | 0.64 | 2.45 | 0.07 | |
42.84 | 0.30 | 0.07 | 0.08 | 0.44 | 1.49 | 1.14 | 0.77 | 2.63 | 0.17 | |
60.11 | 0.75 | 0.18 | 0.23 | 1.17 | 1.46 | 1.83 | 1.25 | 3.29 | 0.35 | |
85.74 | 1.20 | 0.27 | 0.35 | 1.82 | 1.43 | 2.28 | 1.59 | 3.72 | 0.49 | |
QH18 | 22.99 | 0.23 | 0.06 | 0.07 | 0.36 | 1.46 | 1.25 | 0.85 | 2.71 | 0.13 |
28.34 | 0.22 | 0.05 | 0.06 | 0.34 | 1.43 | 1.11 | 0.78 | 2.54 | 0.13 | |
34.47 | 0.12 | 0.04 | 0.05 | 0.21 | 1.46 | 1.33 | 0.91 | 2.79 | 0.07 | |
37.95 | 0.33 | 0.08 | 0.10 | 0.50 | 1.46 | 1.45 | 0.99 | 2.90 | 0.17 | |
49.12 | 0.56 | 0.13 | 0.18 | 0.87 | 1.44 | 1.75 | 1.21 | 3.19 | 0.27 | |
80.96 | 1.04 | 0.21 | 0.28 | 1.54 | 1.42 | 2.17 | 1.53 | 3.59 | 0.43 |
1 | DEMBICKI H, Jr. Practical petroleum geochemistry for exploration and production[M]. Amsterdam: Elsevier, 2017. |
2 | PETERS K E, WALTERS C C, Moldowan J M. The biomarker guide[M]. 2nd ed. Cambridge: Cambridge University Press, 2004. |
3 | RODGERS R P, MCKENNA A M. Petroleum analysis[J]. Analytical Chemistry, 2011, 83(12): 4665-4687. |
4 | ASKE N, KALLEVIK H, SJÖBLOM J. Determination of saturate, aromatic, resin, and asphaltenic (SARA) components in crude oils by means of infrared and near-infrared spectroscopy[J]. Energy & Fuels, 2001, 15(5): 1304-1312. |
5 | ABBAS O, REBUFA C, DUPUY N, et al. PLS regression on spectroscopic data for the prediction of crude oil quality: API gravity and aliphatic/aromatic ratio[J]. Fuel, 2012, 98: 5-14. |
6 | PERMANYER A, REBUFA C, KISTER J. Reservoir compartmentalization assessment by using FTIR spectroscopy[J]. Journal of Petroleum Science and Engineering, 2007, 58(3/4): 464-471. |
7 | GARMARUDI A B, KHANMOHAMMADI M, GHAFOORI Fard H, et al. Origin based classification of crude oils by infrared spectrometry and chemometrics[J]. Fuel, 2019, 236: 1093-1099. |
8 | CORREA Pabón R E, DE Souza Filho C R. Crude oil spectral signatures and empirical models to derive API gravity[J]. Fuel, 2019, 237: 1119-1131. |
9 | CHENG Peng, LIU Botong, TIAN Hui, et al. Fluorescence lifetime evolution of crude oils during thermal cracking: Implications from pyrolysis experiments in a closed system[J]. Organic Geochemistry, 2021, 159: 104273. |
10 | CHU Xiaoli, XU Yupeng, TIAN Songbai, et al. Rapid identification and assay of crude oils based on moving-window correlation coefficient and near infrared spectral library[J]. Chemometrics and Intelligent Laboratory Systems, 2011, 107(1): 44-49. |
11 | WILT B K, WELCH W T, RANKIN J G. Determination of asphaltenes in petroleum crude oils by Fourier transform infrared spectroscopy[J]. Energy & Fuels, 1998, 12(5): 1008-1012. |
12 | MELÉNDEZ L V, LACHE A, ORREGO-RUIZ J A, et al. Prediction of the SARA analysis of Colombian crude oils using ATR-FTIR spectroscopy and chemometric methods[J]. Journal of Petroleum Science and Engineering, 2012, 90-91: 56-60. |
13 | DAI Jinxing, NI Yunyan, QIN Shengfei, et al. Geochemical characteristics of ultra-deep natural gas in the Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2018, 45(4): 619-628. |
14 | CHEN Zhuxin, LI Wei, WANG Lining, et al. Structural geology and favorable exploration prospect belts in northwestern Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2019, 46(2): 413-425. |
15 | ZHU Guangyou, ZHANG Zhiyao, ZHOU Xiaoxiao, et al. The complexity, secondary geochemical process, genetic mechanism and distribution prediction of deep marine oil and gas in the Tarim Basin, China[J]. Earth-Science Reviews, 2019, 198: 102930. |
16 | LI Yuanzhao. Mechanics and fracturing techniques of deep shale from the Sichuan Basin, SW China[J]. Energy Geoscience, 2021, 2(1): 1-9. |
17 | 张心罡, 庞宏, 庞雄奇, 等. 四川盆地上二叠统龙潭组烃源岩生、排烃特征及资源潜力[J]. 石油与天然气地质, 2022, 43(3): 621-632. |
ZHANG Xingang, PANG Hong, PANG Xiongqi, et al. Hydrocarbon generation and expulsion characteristics and resource potential of source rocks in the Longtan Formation of Upper Permian, Sichuan Basin[J]. Oil & Gas Geology, 2022, 43(3): 621-632. | |
18 | 王濡岳, 胡宗全, 龙胜祥, 等. 四川盆地上奥陶统五峰组-下志留统龙马溪组页岩储层特征与演化机制[J]. 石油与天然气地质, 2022, 43(2): 353-364. |
WANG Ruyue, HU Zongquan, LONG Shengxiang, et al. Reservoir characteristics and evolution mechanisms of the Upper Ordovician Wufeng-Lower Silurian Longmaxi shale, Sichuan Basin[J]. Oil & Gas Geology, 2022, 43(2): 353-364. | |
19 | 卢志远, 何治亮, 余川, 等. 复杂构造区页岩气富集特征——以四川盆地东南部丁山地区下古生界五峰组-龙马溪组为例[J]. 石油与天然气地质, 2021, 42(1): 86-97. |
LU Zhiyuan, HE Zhiliang, YU Chuan, et al. Characteristics of shale gas enrichment in tectonically complex regions—A case study of the Wufeng-Longmaxi Formations of Lower Paleozoic in southeastern Sichuan Basin[J]. Oil & Gas Geology, 2021, 42(1): 86-97. | |
20 | PRINZHOFER A A, HUC A Y. Genetic and post-genetic molecular and isotopic fractionations in natural gases[J]. Chemical Geology, 1995, 126(3/4): 281-290. |
21 | HAO Fang, GUO Tonglou, ZHU Yangming, et al. Evidence for multiple stages of oil cracking and thermochemical sulfate reduction in the Puguang Gas Field, Sichuan Basin, China[J]. AAPG Bulletin, 2008, 92(5): 611-637. |
22 | BOURDET J, BURRUSS R C, CHOU Iming, et al. Evidence for a palaeo-oil column and alteration of residual oil in a gas-condensate field: Integrated oil inclusion and experimental results[J]. Geochimica et Cosmochimica Acta, 2014, 142: 362-385. |
23 | BLAMEY N J F, RYDER A G. Hydrocarbon fluid inclusion fluorescence: A review[J]. Reviews in Fluorescence, 2007, 2007: 299-334. |
24 | TEINTURIER S, ELIE M, PIRONON J. Oil-cracking processes evidence from synthetic petroleum inclusions[J]. Journal of Geochemical Exploration, 2003, 78-79: 421-425. |
25 | 张水昌, 苏劲, 张斌, 等. 塔里木盆地深层海相轻质油/凝析油的成因机制与控制因素[J]. 石油学报, 2021, 42(12): 1566-1580. |
ZHANG Shuichang, SU Jin, ZHANG Bin, et al. Genetic mechanism and controlling factors of deep marine light oil and condensate oil in Tarim Basin[J]. Acta Petrolei Sinica, 2021, 42(12): 1566-1580. | |
26 | 彭平安, 贾承造. 深层烃源演化与原生轻质油/凝析油气资源潜力[J]. 石油学报, 2021, 42(12): 1543-1555. |
PENG Ping’an, JIA Chengzao. Evolution of deep source rock and resource potential of primary light oil and condensate[J]. Acta Petrolei Sinica, 2021, 42(12): 1543-1555. | |
27 | BURNHAM A K, SANBORN R H, GREGG H R. Thermal dealkylation of dodecylbenzene and dodecylcyclohexane[J]. Organic Geochemistry, 1998, 28(11): 755-758. |
28 | BEHAR F, LORANT F, BUDZINSKI H, et al. Thermal stability of alkylaromatics in natural systems: Kinetics of thermal decomposition of dodecylbenzene[J]. Energy & Fuels, 2002, 16(4): 831-841. |
29 | BEHAR F, LORANT F, MAZEAS L. Elaboration of a new compositional kinetic schema for oil cracking[J]. Organic Geochemistry, 2008, 39(6): 764-782. |
30 | HILL R J, TANG Yongchun, KAPLAN I R. Insights into oil cracking based on laboratory experiments[J]. Organic Geochemistry, 2003, 34(12): 1651-1672. |
31 | DARTIGUELONGUE C, BEHAR F, BUDZINSKI H, et al. Thermal stability of dibenzothiophene in closed system pyrolysis: Experimental study and kinetic modelling[J]. Organic Geochemistry, 2006, 37(1): 98-116. |
32 | UGUNA C N, CARR A D, SNAPE C E, et al. Retardation of oil cracking to gas and pressure induced combination reactions to account for viscous oil in deep petroleum basins: Evidence from oil and n-hexadecane pyrolysis at water pressures up to 900 bar[J]. Organic Geochemistry, 2016, 97: 61-73. |
33 | PING Hongwei, CHEN Honghan, THIÉRY R, et al. Effects of oil cracking on fluorescence color, homogenization temperature and trapping pressure reconstruction of oil inclusions from deeply buried reservoirs in the northern Dongying Depression, Bohai Bay Basin, China[J]. Marine and Petroleum Geology, 2017, 80: 538-562. |
34 | TISSOT B P, WELTE D H. Petroleum formation and occurrence[M]. Berlin: Springer, 1984. |
35 | KHORASANI G K. Novel development in fluorescence microscopy of complex organic mixtures: Application in petroleum geochemistry[J]. Organic Geochemistry, 1987, 11(3): 157-168. |
36 | WATANABE M, ADSCHIRI T, ARAI K. Overall rate constant of pyrolysis of n-alkanes at a low conversion level[J]. Industrial & Engineering Chemistry Research, 2001, 40(9): 2027-2036. |
37 | HUANG W L, OTTEN G A. Cracking kinetics of crude oil and alkanes determined by diamond anvil cell-fluorescence spectroscopy pyrolysis: Technique development and preliminary results[J]. Organic Geochemistry, 2001, 32(6): 817-830. |
38 | Darouich T AL, BEHAR F, LARGEAU C. Thermal cracking of the light aromatic fraction of Safaniya crude oil-experimental study and compositional modelling of molecular classes[J]. Organic Geochemistry, 2006, 37(9): 1130-1154. |
39 | CHENG P, XIAO X M, TIAN H, et al. Source controls on geochemical characteristics of crude oils from the Qionghai Uplift in the western Pearl River Mouth Basin, offshore South China Sea[J]. Marine and Petroleum Geology, 2013, 40: 85-98. |
40 | HUANG Baojia, XIAO Xianming, ZHANG Mingqiang. Geochemistry, grouping and origins of crude oils in the Western Pearl River Mouth Basin, offshore South China Sea[J]. Organic Geochemistry, 2003, 34(7): 993-1008. |
41 | TIAN Hui, XIAO Xianming, WILKINS R W T, et al. New insights into the volume and pressure changes during the thermal cracking of oil to gas in reservoirs: Implications for the in-situ accumulation of gas cracked from oils[J]. AAPG Bulletin, 2008, 92(2): 181-200. |
42 | GUO Xiaobo, SHI Baohong, LI Yu, et al. Closed-system pyrolysis-based hydrocarbon generation simulation and gas potential evaluation of the Shanxi Formation shales from the Ordos Basin, China[J]. Energy Geoscience, 2022, 3(1): 8-16. |
43 | SWEENEY J J, BURNHAM A K. Evaluation of a simple model of vitrinite reflectance based on chemical kinetics[J]. AAPG Bulletin, 1990, 74(10): 1559-1570. |
44 | TANG Y, JENDEN P D, NIGRINI A, et al. Modeling early methane generation in coal[J]. Energy & Fuels, 1996, 10(3): 659-671. |
45 | CHENG Peng, TIAN Hui, XIAO Xianming, et al. Fluorescence lifetimes of crude oils and oil inclusions: A preliminary study in the Western Pearl River Mouth Basin, South China Sea[J]. Organic Geochemistry, 2019, 134: 16-31. |
46 | AHMED M, GEORGE S C. Changes in the molecular composition of crude oils during their preparation for GC and GC-MS analyses[J]. Organic Geochemistry, 2004, 35(2): 137-155. |
47 | CASSANI P, GALLANGO O, TALUKDAR S, et al. Methylphenanthrene maturity index of marine source rock extracts and crude oils from the Maracaibo Basin[J]. Organic Geochemistry, 1988, 13(1/3): 73-80. |
48 | ALEXANDER R, KAGI R I, ROWLAND S J, et al. The effects of thermal maturity on distributions of dimethylnaphthalenes and trimethylnaphthalenes in some Ancient sediments and petroleums[J]. Geochimica et Cosmochimica Acta, 1985, 49(2): 385-395. |
49 | 李美俊, 王铁冠. 原油中烷基萘的形成机理及其成熟度参数应用[J]. 石油实验地质, 2005, 27(6): 606-611, 623. |
LI Meijun, WANG Tieguan. The generating mechanism of methylated naphthalene series in crude oils and the application of their maturity parameters[J]. Petroleum Geology & Experiment, 2005, 27(6): 606-611, 623. | |
50 | RADKE M, WILLSCH H, LEYTHAEUSER D, et al. Aromatic components of coal: Relation of distribution pattern to rank[J]. Geochimica et Cosmochimica Acta, 1982, 46(10): 1831-1848. |
51 | RADKE M, RULLKÖTTER J, VRIEND S P. Distribution of naphthalenes in crude oils from the Java Sea: Source and maturation effects[J]. Geochimica et Cosmochimica Acta, 1994, 58(17): 3675-3689. |
52 | VANDENBROUCKE M, BEHAR F, RUDKIEWICZ J L. Kinetic modelling of petroleum formation and cracking: implications from the high pressure/high temperature Elgin Field (UK, North Sea)[J]. Organic Geochemistry, 1999, 30(9): 1105-1125. |
[1] | Jiakai HOU, Zhiyao ZHANG, Shengbao SHI, Guangyou ZHU. Advances in the application of comprehensive two-dimensional gas chromatography in petroleum geochemistry [J]. Oil & Gas Geology, 2024, 45(2): 565-580. |
[2] | Yuling SHI, Zulie LONG, Xiangtao ZHANG, Huahua WEN, Xiaonan MA. Exploring the dynamic hydrocarbon accumulation process of the Enping 17 sub-sag in the Enping Sag, Pearl River Mouth Basin [J]. Oil & Gas Geology, 2023, 44(5): 1279-1289. |
[3] | Yueyi HUANG, Yuhong LIAO, Chengsheng CHEN, Shuyong SHI, Yunpeng WANG, Ping’an PENG. Numerical simulation and prediction of hydrocarbon phase evolution of wells Shunnan 1 and 4, Tarim Basin [J]. Oil & Gas Geology, 2023, 44(1): 138-149. |
[4] | Tianjun Li, Zhilong Huang, Xiaobo Guo, Jing Zhao, Yiming Jiang, Sizhe Tan. Geochemical characteristics of crude oil from coal measure source rocks and fine oil-source correlation in the Pinghu Formation in Pingbei slope belt, Xihu Sag, East China Sea Shelf Basin [J]. Oil & Gas Geology, 2022, 43(2): 432-444. |
[5] | Erting Li, Jun Jin, Jian Wang, Wanyun Ma, Shijia Chen, Cuimin Liu, Haijing Wang. Geochemical characteristics and genesis of mid-to-shallow natural gas on the periphery of Shawan Sag, Junggar Basin [J]. Oil & Gas Geology, 2022, 43(1): 175-185. |
[6] | Li Yuhong, Gao Gang, Wang Xingyun, Qu Tong, Han Wei, Gong Zhenqi, Zhang Wen, Dang Wenlong. Characteristics of newly discovered crude oil in the Weihe Basin and its petroleum geological significance [J]. Oil & Gas Geology, 2019, 40(2): 346-353. |
[7] | Zhou Jian, Shan Xuanlong, Hao Guoli, Zhao Rongsheng, Chen Peng. Geochemical characteristics of Cretaceous source rocks and oil-source correlation in the Songjiang Basin [J]. Oil & Gas Geology, 2018, 39(3): 578-586. |
[8] | Chang Xiangchun, Zhao Wanchun, Xu Youde, Wang Tao, Cui Jing. Biodegradation and water washing effects on oil during water flooding [J]. Oil & Gas Geology, 2017, 38(3): 617-625. |
[9] | Liu Wenhui, Luo Houyong, Tenger, Wang Wanchun, Wang Jie, Lu Longfei, Tao Cheng, Wang Ping, Zhao Heng. Simulation experiments on crude oil cracking and carbon isotopic evolution in carbonate reservoirs [J]. Oil & Gas Geology, 2016, 37(5): 627-633. |
[10] | Chang Xiangchun, Wang Tieguan, Tao Xiaowan, Cheng Bin. Aromatic biomarkers and oil source of the Ordovician crude oil in the Halahatang Sag, Tarim Basin [J]. Oil & Gas Geology, 2015, 36(2): 175-182. |
[11] | He Kun, Zhang Shuichang, Wang Xiaomei, Mi Jingkui, Mao Rong. Hydrocarbon generation kinetics of type-Ⅰ organic matters in the Cretaceous lacustrine sequences, Songliao Basin [J]. Oil & Gas Geology, 2014, 35(1): 42-49. |
[12] | Yang Weiwei, Liu Guangdi, Wang Yanshan, Gao Gang, Feng Yuan. Geochemical behaviors and genetic types of crude oil in tidal zone and shallow water area of Liaohe oilfield [J]. Oil & Gas Geology, 2011, 32(5): 642-650. |
[13] | BAO Jian-Ping, ZHU Cui-Shan-,WANG Li-Qun. G eochem ical characteristic comparison of crude oil samples from the western Qaidam Basin [J]. Oil & Gas Geology, 2010, 31(3): 353-359. |
[14] | XU Zhen, ZHANG Chun-Ming. Heterogeneity of crude oil from W en’an oilfield in Jizhong area and its implications [J]. Oil & Gas Geology, 2010, 31(3): 321-326,334. |
[15] | Zhao Weijun, Yu Haoye, Li Yonghang, Ren Junmin, Dong Xuemei. Characteristics of the Carboniferous volcanic reservoirs in Che-91 wellblock in the Juggar Basin [J]. Oil & Gas Geology, 2010, 31(1): 98-106. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||