石油与天然气地质 ›› 2025, Vol. 46 ›› Issue (1): 31-46.doi: 10.11743/ogg20250103
何文渊1(), 黄文松2(
), 崔泽宏2, 刘玲莉2, 段利江2, 赵一波3
收稿日期:
2024-11-01
修回日期:
2025-01-03
出版日期:
2025-02-28
发布日期:
2025-03-03
通讯作者:
黄文松
E-mail:hewenyuan@cnpcint.com;hwshws6@petrochina.com.cn
第一作者简介:
何文渊(1974—),男,博士、教授级高级工程师,石油地质学。E-mail: hewenyuan@cnpcint.com。
基金项目:
Wenyuan HE1(), Wensong HUANG2(
), Zehong CUI2, Lingli LIU2, Lijiang DUAN2, Yibo ZHAO3
Received:
2024-11-01
Revised:
2025-01-03
Online:
2025-02-28
Published:
2025-03-03
Contact:
Wensong HUANG
E-mail:hewenyuan@cnpcint.com;hwshws6@petrochina.com.cn
摘要:
澳大利亚苏拉特区块的煤层薄而多(平均厚度0.6 m),并与砂-泥岩频繁互层,导致煤层气赋存位置与富集规律难以预测。随着煤层气开发逐渐向深层拓展,开发部署时既要考虑煤层气富集情况,还要考虑地面工程的布局。为了实现苏拉特区块煤层气的规模效益开发,明确了研究区主力煤层气储层的基本特征,并通过分析研究区低煤阶煤层气气藏富集的主控因素,建立了基于煤层可动用厚度、含气量和渗透率3个核心参数的有利区综合评价体系,预测了煤层气有利区带。在此基础上,充分借鉴中国煤层气成功开发经验,形成了一系列针对研究区低煤阶煤层气的高效开发策略:①在煤层含气量预测方面,创新了一套基于煤相净/毛比概率趋势属性的煤相建模流程,建立了一套综合干燥无灰基含气量随埋深的变化趋势、测井数据和岩心测试数据的原煤基含气量预测流程;②在钻/完井方面,提出“直井+丛式定向井”的混合布井方案,并引入经济评价参数,优化了不同深度条件下的井间距和平台间距;③在排采方面,通过综合考虑生产动态数据和现场检泵结果,提出了一套直井螺杆泵失效分析的流程,并优化了斜井的内衬油管设计,并成功应用联合研发的新型遇水膨胀封隔器解决了生产中的出砂问题,提高排采效率;④在地面工程方面,提出基于地面-地下一体化理念的地面设施布局流程,并通过考虑单井开发的经济净现值产量(PV-EUR)优化掉低效井。通过这些技术策略,提高了项目的内部收益率,打开了苏拉特区块煤层气规模开发的局面。
中图分类号:
表5
遇水膨胀封隔器材料优选试验数据"
封隔器材料 | Osmotic | Hydrogel |
---|---|---|
标准情况(8.5 in井眼,封隔器居中,2 % KCl溶液浓度) | 接触时间2.3 d | 接触时间1.5 d |
最坏的情况(8.75 in井眼,封隔器未居中,2 % KCl溶液浓度) | 接触时间11.6 d | 未接触 |
收缩率测试(模拟井下甲烷环境,100 %相对湿度) | 1.3 % | 5.6 % |
收缩率测试(模拟井下甲烷环境,90 % ~ 100 %相对湿度) | 未测量 | 19.7 % |
收缩率测试(模拟井下甲烷环境,78 % ~ 90 %相对湿度) | 11.7 % ~ 13.8 % | 26.4 % ~ 36.6 % |
寿命 | 110 ℃时间膨胀体寿命 可达30年 | 观测到封隔器中凝胶的泄露, 可能会影响长期性能 |
1 | 张道勇, 朱杰, 赵先良, 等. 全国煤层气资源动态评价与可利用性分析[J]. 煤炭学报, 2018, 43(6): 1598-1604. |
ZHANG Daoyong, ZHU Jie, ZHAO Xianliang, et al. Dynamic assessment of coalbed methane resources and availability in China[J]. Journal of China Coal Society, 2018, 43(6): 1598-1604. | |
2 | 徐凤银, 侯伟, 熊先钺, 等. 中国煤层气产业现状与发展战略[J]. 石油勘探与开发, 2023, 50(4): 669-682. |
XU Fengyin, HOU Wei, XIONG Xianyue, et al. The status and development strategy of coalbed methane industry in China[J]. Petroleum Exploration and Development, 2023, 50(4): 669-682. | |
3 | 郭旭升, 赵培荣, 申宝剑, 等. 中国深层煤层气地质特征与勘探实践[J]. 石油与天然气地质, 2024, 45(6): 1511-1523. |
GUO Xusheng, ZHAO Peirong, SHEN Baojian, et al. Geological features and exploration practices of deep coalbed methane in China. Oil & Gas Geology[J], 2024, 45(6): 1511-1523. | |
4 | 何发岐, 雷涛, 齐荣, 等. 鄂尔多斯盆地大牛地气田深部煤层气勘探突破及其关键技术[J]. 石油与天然气地质, 2024, 45(6): 1567-1576. |
HE Faqi, LEI Tao, QI Rong, et al. Breakthroughs and key technology in deep coalbed methane exploration in the Daniudi gas field in the Ordos Basin. Oil & Gas Geology[J], 2024, 45(6): 1567-1576. | |
5 | 秦勇, 吴建光, 李国璋, 等. 煤系气开采模式探索及先导工程示范[J]. 煤炭学报, 2020, 45(7): 2513-2522. |
QIN Yong, WU Jianguang, LI Guozhang, et al. Patterns and pilot project demonstration of coal measures gas production[J]. Journal of China Coal Society, 2020, 45(7): 2513-2522. | |
6 | 徐凤银, 闫霞, 林振盘, 等. 我国煤层气高效开发关键技术研究进展与发展方向[J]. 煤田地质与勘探, 2022, 50(3): 1-14. |
XU Fengyin, YAN Xia, LIN Zhenpan, et al. Research progress and development direction of key technologies for efficient coalbed methane development in China[J]. Coal Geology & Exploration, 2022, 50(3): 1-14. | |
7 | DRAPER J J, BOREHAM C J. Geological controls on exploitable coal seam gas distribution in Queensland[J]. The APPEA Journal, 2006, 46(1): 343-366. |
8 | TOWLER B, FIROUZI M, UNDERSCHULTZ J, et al. An overview of the coal seam gas developments in Queensland[J]. Journal of Natural Gas Science and Engineering, 2016, 31: 249-271. |
9 | 秦勇, 申建, 沈玉林, 等. 苏拉特盆地煤系气高产地质原因及启示[J]. 石油学报, 2019, 40(10): 1147-1157. |
QIN Yong, SHEN Jian, SHEN Yulin, et al. Geological causes and inspirations for high production of coal measure gas in Surat Basin[J]. Acta Petrolei Sinica, 2019, 40(10): 1147-1157. | |
10 | MARCOS-MARTINEZ R, MEASHAM T G, FLEMING-MUÑOZ D A. Economic impacts of early unconventional gas mining: Lessons from the coal seam gas industry in New South Wales, Australia[J]. Energy Policy, 2019, 125: 338-346. |
11 | SALMACHI A, RAJABI M, WAINMAN C, et al. History, geology, in situ stress pattern, gas content and permeability of coal seam gas basins in Australia: A review[J]. Energies, 2021, 14(9): 2651. |
12 | 姜杉钰. 澳大利亚昆士兰州煤炭-煤层气重叠矿业权管理经验借鉴[J]. 自然资源情报, 2022(11): 36-41. |
JIANG Shanyu. Experience on management of overlapping tenures for coal and coal seam gas in Queensland, Australia[J]. Natural Resources Information, 2022(11): 36-41. | |
13 | BRESSAN G, DESHAIES M. Coal seam gas extraction and related landscape changes in the agricultural production area of Western Downs (Queensland, Australia)[J]. Journal of Rural Studies, 2023, 97: 495-506. |
14 | ZHOU Fengde, SHIELDS D, TITHERIDGE D, et al. Understanding the geometry and distribution of fluvial channel sandstones and coal in the Walloon Coal Measures, Surat Basin, Australia[J]. Marine and Petroleum Geology, 2017, 86: 573-586. |
15 | MARTIN M A, WAKEFIELD M, MACPHAIL M K, et al. Sedimentology and stratigraphy of an intra-cratonic basin coal seam gas play: Walloon Subgroup of the Surat Basin, eastern Australia[J]. Petroleum Geosciences, 2013, 19(1): 21-38. |
16 | HAMILTON S K, ESTERLE J S, SLIWA R. Stratigraphic and depositional framework of the Walloon Subgroup, eastern Surat Basin, Queensland[J]. Australia Journal of Earth Science, 2014, 61(8): 1061-1080. |
17 | ZHANG Ming, REN Bin, CUI Zehong, et al. Detailed characterization of a multilayered coalbed methane field using high-resolution sequence stratigraphy: Examples from the Surat Basin in Australia[C]//SPE Low Perm Symposium. Richardson: Society of Petroleum Engineers, 2016: SPE-180253-MS. |
18 | 俞益新, 唐玄, 吴晓丹, 等. 澳大利亚苏拉特盆地煤层气地质特征及富集模式[J]. 煤炭科学技术, 2018, 46(3): 160-167. |
YU Yixin, TANG Xuan, WU Xiaodan, et al. Geological characteristics and accumulation mode of coalbed methane in Surat Basin of Australia[J]. Coal Science and Technology, 2018, 46(3): 160-167. | |
19 | RYAN D, HALL A, ERRIAH L, et al. The Walloon coal seam gas play, Surat Basin, Queensland[J]. The APPEA Journal, 2012, 52(1): 273-290. |
20 | HAMILTON S K, GOLDING S D, BAUBLYS K A, et al. Conceptual exploration targeting for microbially enhanced coal bed methane (MECoM) in the Walloon Subgroup, eastern Surat Basin, Australia[J]. International Journal of Coal Geology, 2015, 138: 68-82. |
21 | HENTSCHEL A, ESTERLE J S, GOLDING S D, et al. Petrologic and stable isotopic study of the Walloon Coal Measures, Surat Basin, Queensland: Peat accumulation under changing climate and base level[J]. International Journal of Coal Geology, 2016, 160/161: 11-27. |
22 | SUGIARTO I, JIANG J, SHARMA V, et al. Production data analysis of CBM wells in Surat Basin[C]//SPE Unconventional Resources Conference and Exhibition-Asia Pacific. Richardson: Society of Petroleum Engineers, 2013: SPE-167076-MS. |
23 | 唐颖, 谷峰, 吴晓丹, 等. 澳大利亚苏拉特盆地Walloon煤组成藏条件及富集模式[J]. 天然气工业, 2017, 37(11): 18-28. |
TANG Ying, GU Feng, WU Xiaodan, et al. Coalbed methane accumulation conditions and enrichment models of Walloon coal measure in the Surat Basin, Australia[J]. Natural Gas Industry, 2017, 37(11): 18-28. | |
24 | 崔泽宏, 苏朋辉, 刘玲莉, 等. 澳大利亚苏拉特盆地Surat区块低煤阶煤层定量表征与区带划分优选[J]. 中国石油勘探, 2022, 27(2): 108-118. |
CUI Zehong, SU Penghui, LIU Lingli, et al. Quantitative characterization, exploration zone classification and favorable area selection of low-rank coal seam gas in Surat block in Surat Basin, Australia[J]. China Petroleum Exploration, 2022, 27(2): 108-118. | |
25 | DUAN Lijiang, XIA Zhaohui, QU Liangchao, et al. A new approach of history matching coalbed methane pilot wells[J]. Arabian Journal of Geosciences, 2019, 12(16): 526. |
26 | DUAN Lijiang, ZHOU Fengde, XIA Zhaohui, et al. New integrated history matching approach for vertical coal seam gas wells in the KN Field, Surat Basin, Australia[J]. Energy & Fuels, 2020, 34(12): 15829-15842. |
27 | LI Ming, XIA Zhaohui, LIU Lingli, et al. Coalbed methane pad wells completion and artificial lift optimizations: Case study from Australia Surat Basin DS Gas Field[C]//International Petroleum Technology Conference 2021. Richardson: Society of Petroleum Engineers, 2021: 3815-3828. |
28 | YANG Yong, BIE Aifang, BIE Hanyu, et al. Coal ply distributions and quantitative prediction in Tipton Gas Field[C]//Proceedings of the International Field Exploration and Development Conference 2020. Singapore: Springer, 2021: 1472-1484. |
29 | SCOTT A R. Hydrogeologic factors affecting gas content distribution in coal beds[J]. International Journal of Coal Geology, 2002, 50(1/4): 363-387. |
30 | HAMILTON S K, ESTERLE J S, GOLDING S D. Geological interpretation of gas content trends, Walloon Subgroup, eastern Surat Basin, Queensland, Australia[J]. International Journal of Coal Geology, 2012, 101: 21-35. |
31 | JOHNSON R L, SCOTT S, HERRINGTON M. Changes in completion strategy unlocks massive Jurassic coalbed methane resource base in the Surat Basin, Australia[C]//SPE Asia Pacific Oil & Gas Conference and Exhibition. Richardson: Society of Petroleum Engineers, 2006: SPE-101109-MS. |
32 | VAN AS D, BOTTOMLEY W, FURNISS J P. The characterisation of differential depletion in a thinly layered coal seam gas reservoir using packer inflation bleed off tests PIBOTs[C]//SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition. Richardson: Society of Petroleum Engineers, 2017: SPE-186909-MS. |
33 | JOHNSON R L, Jr, MAZUMDER S. Key factors differentiate the success rate of coalbed methane pilots outside of North America-some Australian experiences[C]//International Petroleum Technology Conference. Richardson: Society of Petroleum Engineers, 2014: IPTC-18108-MS. |
34 | VILJOEN R, SHARMA V, MAZUMDER S, et al. Interburden isolation & slotted liner placement as solids control measure to improve well performance by reducing operating costs and maximising gas production[C]//SPE Asia Pacific Oil and Gas Conference and Exhibition. Richardson: Society of Petroleum Engineers, 2018: SPE-192102-MS. |
35 | 李乐忠. 低煤阶、薄互层煤层气的成藏特征及开发技术——以澳大利亚苏拉特盆地为例[J]. 中国煤层气, 2016, 13(6): 15-19. |
LI Lezhong. Reservoir formation characteristics and development technology for low rank CBM with thin interbed——Taking Surat Basin in Australia as an example[J]. China Coalbed Methane, 2016, 13(6): 15-19. | |
36 | RAJORA A, SHARMA V, OBERHARDT M, et al. Deviated pad wells in Surat: Journey so far[C]//SPE/AAPG/SEG Asia Pacific Unconventional Resources Technology Conference. Richardson: Society of Petroleum Engineers, 2019: URTEC-198325-MS. |
37 | SAGHIR F, GONZALEZ PERDOMO M E, BEHRENBRUCH P. Performance analysis of artificial lift systems deployed in natural gas wells: A time-series analytics approach[J]. Geoenergy Science and Engineering, 2023, 230: 212238. |
38 | 惠熙祥, 巴玺立, 郭峰, 等. 澳大利亚煤层气田地面工程技术对我国煤层气田开发的启示[J]. 石油规划设计, 2013, 24(3): 11-14. |
HUI Xixiang, BA Xili, GUO Feng, et al. Enlightenment of engineering technology on surface facilities in Australia coal bed methane field on the exploitation of the coal bed methane field in China[J]. Petroleum Planning & Engineering, 2013, 24(3): 11-14. | |
39 | 李庆, 陈霞, 王搏. 澳大利亚箭牌公司苏拉特区块煤层气开发地面集输工艺技术[J]. 石油规划设计, 2017, 28(5): 12-15. |
LI Qing, CHEN Xia, WANG Bo. Coal bed gas gathering technology of Arrow’s Surat gas field development project in Australia[J]. Petroleum Planning & Engineering, 2017, 28(5): 12-15. | |
40 | 杨宏伟, 刘方, 韩银杉. 国外天然气场站优化运行研究及启示[J]. 石油工程建设, 2020, 46(6): 50-53. |
YANG Hongwei, LIU Fang, HAN Yinsha. Research and enlightenment of optimal operation of foreign natural gas stations[J]. Petroleum Engineering Construction, 2020, 46(6): 50-53. | |
41 | LE TURDU C, LAVER R, KOLEY M. Characterization of coalbed methane reservoirs: A unified geoscience and engineering approach[C]//International Petroleum Technology Conference. Richardson: Society of Petroleum Engineers, 2014: IPTC-17217-MS. |
42 | SHARMA V, DAVIES J, VELLA B, et al. Integrated modelling workflow for life cycle development of a large scale coal seam gas field[C]//SPE Asia Pacific Oil and Gas Conference and Exhibition. Richardson: Society of Petroleum Engineers, 2018: SPE-191986-MS. |
43 | 姜在炳, 杨建超, 李勇, 等. 基于三维地质建模技术的煤层气抽采效果评价——以晋城寺河煤矿为例[J]. 煤田地质与勘探, 2022, 50(2): 55-64. |
JIANG Zaibing, YANG Jianchao, LI Yong, et al. Evaluation of coalbed methane extraction effect based on 3D geological modeling technology: An example of Sihe Mine in Jincheng City[J]. Coal Geology & Exploration, 2022, 50(2): 55-64. | |
44 | 李忠城, 李丹丹. 山西沁水寿阳ST区块煤储层三维精细地质建模[J]. 吉林大学学报(地球科学版), 2023, 53(2): 635-650. |
LI Zhongcheng, LI Dandan. 3D fine geological modeling of coal reservoir in Shouyang ST block in Qinshui Basin, Shanxi Province[J]. Journal of Jilin University (Earth Science Edition), 2023, 53(2): 635-650. | |
45 | BEANEY S, JEFFRIES M, MAZUMDER S, et al. Coal thickness modelling across a regional CBM project: An amended workflow[C]//SPE/AAPG/SEG Asia Pacific Unconventional Resources Technology Conference. Richardson: Society of Petroleum Engineers, 2019: URTEC-198232-MS. |
46 | 杨焦生, 刘大锰, 李安启, 等. 井组数值模拟技术在沁水煤层气田开发中的应用[J]. 石油钻采工艺, 2010, 32(4): 103-106. |
YANG Jiaosheng, LIU Dameng, LI Anqi, et al. Application of well-group numerical simulation in development of Qinshui CBM field[J]. Oil Drilling & Production Technology, 2010, 32(4): 103-106. | |
47 | 孟召平, 张昆, 杨焦生, 等. 沁南东区块煤储层特征及煤层气开发井网间距优化[J]. 煤炭学报, 2018, 43(9): 2525-2533. |
MENG Zhaoping, ZHANG Kun, YANG Jiaosheng, et al. Analysis of coal reservoir characteristics in the Qinnan-East block and its spacing optimization of CBM development well networks[J]. Journal of China Coal Society, 2018, 43(9): 2525-2533. | |
48 | 周优, 张松航, 唐书恒, 等. 柿庄南区块3号煤层含气量三维建模[J]. 煤田地质与勘探, 2020, 48(1): 96-104. |
ZHOU You, ZHANG Songhang, TANG Shuheng, et al. Gas content modeling of No.3 coal seam in district 3 of southern Shizhuang block[J]. Coal Geology & Exploration, 2020, 48(1): 96-104. | |
49 | DUAN Lijiang, QU Liangchao, XIA Zhaohui, et al. Stochastic modeling of coalbed gas content: A case from Harcourt gas field of Bowen Basin, Australia[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2019, 41(16): 1921-1927. |
50 | DUAN Lijiang, QU Liangchao, XIA Zhaohui, et al. Stochastic modeling for estimating coalbed methane resources[J]. Energy & Fuels, 2020, 34(5): 5196-5204. |
51 | AMINIAN K, AMERI S. Predicting production performance of CBM reservoirs[J]. Journal of Natural Gas Science and Engineering, 2009, 1(1/2): 25-30. |
52 | LUO Jinhui, YANG Yongguo, CHEN Yuhua. Optimizing the drilled well patterns for CBM recovery via numerical simulations and data envelopment analysis[J]. International Journal of Mining Science and Technology, 2012, 22(4): 503-507. |
53 | 吴晓东, 史进, 安永生, 等. 煤层气田开发数值模拟研究[J]. 油气井测试, 2012, 21(2): 1-3. |
WU Xiaodong, SHI Jin, AN Yongsheng, et al. Numerical simulation of coalbed methane gas field development[J]. Well Testing, 2012, 21(2): 1-3. | |
54 | 段祥宇. 浅谈螺杆泵井故障的分析与对策[J]. 化学工程与装备, 2018(4): 177-178. |
DUAN Xiangyu. Analysis and strategies about progressive cavity pump failure[J]. Chemical Engineering & Equipment, 2018(4): 177-178. | |
55 | 蔡华. 无杆举升工艺在煤层气井的适应性研究[J]. 中国煤层气, 2021, 18(5): 29-32. |
CAI Hua. Adaptability research of rodless lifting technology in CBM wells[J]. China Coalbed Methane, 2021, 18(5): 29-32. | |
56 | 周帅, 崔金榜, 石慧宁, 等. 煤层气井专用电潜泵研究与应用[J]. 中国煤层气, 2010, 7(6): 35-38. |
ZHOU Shuai, CUI Jinbang, SHI Huining, et al. Research and application of special-purpose submerged electric centrifugal pump for CBM well[J]. China Coalbed Methane, 2010, 7(6): 35-38. | |
57 | 王旱祥, 兰文剑, 刘延鑫, 等. 煤层气井电潜泵排采系统优化设计[J]. 煤炭工程, 2014, 46(1): 27-30. |
WANG Hanxiang, LAN Wenjian, LIU Yanxin, et al. Optimized design on gas drainage system with electric submersible pump in coal bed methane well[J]. Coal Engineering, 2014, 46(1): 27-30. | |
58 | 姚天鹏, 赵磊, 何世全, 等. 沁南夏店区块煤层气地面集输工艺优化及实践[J]. 中国煤层气, 2015, 12(2): 23-26. |
YAO Tianpeng, ZHAO Lei, HE Shiquan, et al. Research on the optimization and practice of CBM surface gathering and transportation process in Xiadian block of South Qinshui[J]. China Coalbed Methane, 2015, 12(2): 23-26. | |
59 | 吴春升, 孙浩然, 王子辉, 等. 煤层气地面集输系统压缩机能效提升方案研究[J]. 油气田地面工程, 2023, 42(1): 31-35. |
WU Chunsheng, SUN Haoran, WANG Zihui, et al. Research on the scheme for improving the compressor energy efficiency of coalbed methane surface gathering and transportation system[J]. Oil-Gas Field Surface Engineering, 2023, 42(1): 31-35. | |
60 | 陈洪明, 梅永贵, 薛占新, 等. 沁水盆地郑村区块煤层气集输系统的优化调整[J]. 天然气工业, 2014, 34(8): 108-112. |
CHEN Hongming, MEI Yonggui, XUE Zhanxin, et al. Optimization and adjustment of the CBM gas gathering and transportation system in the Zhengcun Block, Qinshui Basin[J]. Natural Gas Industry, 2014, 34(8): 108-112. | |
61 | 李华. 煤层气开发地面集气问题及解决方案探讨[J]. 中国煤层气, 2022, 19(1): 40-44. |
LI Hua. Discussion on surface gas gathering problems and solutions in coalbed methane development[J]. China Coalbed Methane, 2022, 19(1): 40-44. | |
62 | 高杰, 梁永图, 何国玺, 等. 煤层气地面集输管网的瞬态水力热力计算模型[J]. 天然气工业, 2017, 37(7): 108-114. |
GAO Jie, LIANG Yongtu, HE Guoxi, et al. A transient hydraulic and thermal calculation model for CBM surface gathering and transportation pipeline networks[J]. Natural Gas Industry, 2017, 37(7): 108-114. | |
63 | 胡倩, 肖静, 李刚, 等. 煤层气地面集输管道积液预判分析[J]. 天然气与石油, 2017, 35(5): 23-27. |
HU Qian, XIAO Jing, LI Gang, et al. Prediction of fluid accumulation in surface gas gathering pipeline of coalbed methane[J]. Natural Gas and Oil, 2017, 35(5): 23-27. |
[1] | 刘景东, 任成刚, 王小娟, 潘珂, 王少华, 庞小婷, 关旭. 川中地区中侏罗统沙溪庙组断层输导有效性定量评价[J]. 石油与天然气地质, 2024, 45(6): 1705-1719. |
[2] | 李勇, 郭涛, 刘欣妍, 彭苏萍. 中国低煤阶煤层气资源潜力及发展方向[J]. 石油与天然气地质, 2024, 45(6): 1537-1554. |
[3] | 吴伟涛, 冯炎松, 费世祥, 王一妃, 吴和源, 杨旭东. 鄂尔多斯盆地神木气田二叠系石千峰组5段致密气富集因素及有利区预测[J]. 石油与天然气地质, 2024, 45(3): 739-751. |
[4] | 张心罡, 庞宏, 庞雄奇, 陈君青, 吴松, 马奎友, 张思玉. 四川盆地上二叠统龙潭组烃源岩生、排烃特征及资源潜力[J]. 石油与天然气地质, 2022, 43(3): 621-632. |
[5] | 邵曌一, 吴朝东, 张大智, 杨步增. 松辽盆地徐家围子断陷沙河子组储层特征及控制因素[J]. 石油与天然气地质, 2019, 40(1): 101-108. |
[6] | 张帅, 夏国清, 伊海生, 蔡占虎, 李启来. 羌塘盆地南部隆鄂尼地区布曲组鞍形白云石成因[J]. 石油与天然气地质, 2016, 37(4): 483-489. |
[7] | 吕正祥, 杨相, 卿元华, 叶素娟. 川西坳陷中段沙溪庙组砂岩中水-岩-烃作用特征[J]. 石油与天然气地质, 2015, 36(4): 545-554. |
[8] | 石磊, 殷进垠, 田纳新, 姜向强, 陆红梅. 澳大利亚Vulcan次盆Puffin油田油气源与成藏[J]. 石油与天然气地质, 2012, 33(4): 624-632. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 41
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 39
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||