石油与天然气地质 ›› 2023, Vol. 44 ›› Issue (6): 1393-1404.doi: 10.11743/ogg20230605
胡宗全1,2,3(), 王濡岳1,2,3,4,5(), 路菁1,2,3, 冯动军1,2,3, 刘粤蛟4, 申宝剑1,2,3, 刘忠宝1,2,3, 王冠平1,2,3, 何建华5
收稿日期:
2023-07-10
修回日期:
2023-10-08
出版日期:
2023-12-01
发布日期:
2023-12-20
通讯作者:
王濡岳
E-mail:huzongquan.syky@sinopec.com;wry1990@vip.qq.com
第一作者简介:
胡宗全(1971—),男,博士、教授级高级工程师,沉积与油气储层、致密砂岩与页岩油气地质勘探。E-mail: 基金项目:
Zongquan HU1,2,3(), Ruyue WANG1,2,3,4,5(), Jing LU1,2,3, Dongjun FENG1,2,3, Yuejiao LIU4, Baojian SHEN1,2,3, Zhongbao LIU1,2,3, Guanping WANG1,2,3, Jianhua HE5
Received:
2023-07-10
Revised:
2023-10-08
Online:
2023-12-01
Published:
2023-12-20
Contact:
Ruyue WANG
E-mail:huzongquan.syky@sinopec.com;wry1990@vip.qq.com
摘要:
不同于海相页岩,中国陆相页岩层系源-储配置与耦合关系复杂,页岩与夹层储集特征差异显著,明确其演化规律对陆相页岩油气的勘探具有重要指导意义。利用矿物组分、有机地球化学和物性资料,结合岩心、薄片、扫描电镜观察分析,对处于不同热演化程度的鄂尔多斯盆地三叠系延长组、四川盆地侏罗系自流井组和松辽盆地白垩系营城组陆相页岩开展系统研究。通过分析页岩层系内页岩与夹层的储集空间类型与物性特征,探讨成岩-生烃协同作用下页岩与夹层孔隙形成演化过程,建立了陆相页岩和夹层孔隙的差异演化模式。结果表明:①中国陆相页岩岩相类型多样,以混合质、黏土质和粉砂质页岩为主,并常与碳酸盐岩、砂岩及凝灰岩等夹层频繁互层,岩相组合类型复杂。页岩储集空间以无机孔为主,有机孔次之,局部发育微裂缝。夹层储集空间以残余粒间(溶)孔、粒内(溶)孔和微裂缝等无机孔缝为主。②陆相页岩及夹层孔隙演化受成岩-生烃作用共同控制,页岩黏土矿物含量高、抗压实能力弱、生烃之前无机孔隙快速减少。进入生油窗后,页岩有机孔、黏土粒间/晶间孔、溶蚀孔和微裂缝发育程度逐渐增加。晚成岩阶段之前,以生油高峰为界,页岩孔隙度具有先降后升的变化规律。夹层则在压实和胶结等作用下逐渐致密,储集性逐渐变差。③延长组处于生油期,有机孔发育程度低,页岩储集条件差,砂岩夹层页岩油富集条件更优;自流井组处于成熟-高熟阶段,油、气共存,页岩有机、无机孔隙均较为发育,页岩储集条件更优,夹层主要为次要储层或隔层;营城组已进入高熟-过熟阶段,最利于页岩气和有机孔的形成,页岩储集条件最优。
中图分类号:
图2
陆相页岩主要储集空间扫描电镜微观特征照片a. 有机质内部有机孔发育程度普遍较低,延长组,JH60井,埋深1 260.35 m,;b. 黏土矿物粒间孔、缝发育,延长组,LH3-2井,埋深926.62 m;c. 炭质页岩层理缝与层间微裂缝发育,JH75井,埋深1 276.40 m;d. 有机质内部有机孔发育程度差异大,总体发育程度低,固体沥青内有机孔发育,自流井组大安寨段,FY1井,埋深2 600.50 m;e. 黏土矿物粒间孔等无机孔隙发育程度高,自流井组东岳庙段,YL4井,埋深4 004.70 m;f. 黏土质页岩微裂缝发育,熔融合金(图中高亮部分)注入显示裂缝连通性较好,自流井组大安寨段,XL101井,埋深2 154.80 m;g. 有机孔隙较为发育,营城组一段,LY1井,埋深3 212.30 m;h. 粒间孔等无机孔隙发育程度高,营城组一段,LY1井,埋深3 176.60 m;i. 熔融合金注入显示微裂缝发育程度较高,营城组一段,LY1井,埋深3 239.40 m(图中绿色数值为孔隙直径。)"
图3
陆相页岩夹层主要储集空间类型显微照片a. 粉-细砂岩残余粒间孔与粒间溶孔,延长组,LH5井,单偏光,埋深753.4 m;b. 细砂岩长石溶蚀孔,延长组,BY2井,SEM,埋深1 472.1 m;c. 细砂岩绿泥石晶间孔,延长组,FY1H井,SEM,埋深608.4 m;d. 泥质细砂岩孔隙发育程度低,自流井组东岳庙段,YL4井,单偏光,埋深4 020.7 m;e. 介壳灰岩孔隙发育程度低,微裂缝少量发育,自流井组东岳庙段,XL101井,单偏光,埋深2 271.2 m;f. 介壳内方解石溶孔,自流井组大安寨段,YL4井,SEM,埋深3 785.4 m;g. 粉砂岩夹层生屑残余粒间孔,营城组,LY1井,单偏光,埋深3 304.1 m;h. 粉砂岩夹层内微裂缝,营城组,S2井,单偏光,埋深3 290.7 m;i. 粉砂岩夹层碳酸盐矿物粒内溶孔,营城组,LY1井,SEM,埋深3 301.1 m"
表2
典型陆相页岩层系地球化学参数与储层物性变化规律统计"
地区 | 层系 | 典型井 | 埋深/m | 页岩地化特征 | 页岩孔隙度/% | 夹层孔隙度/% | |||
---|---|---|---|---|---|---|---|---|---|
TOC/% | Ro/% | 分布范围 | 平均值 | 分布范围 | 平均值 | ||||
鄂尔多斯盆地 | 三叠系延长组 | 总体 | 600 ~ 3 000 | 0.5 ~ 38.0 | 0.5 ~ 1.2 | 1.4 ~ 7.1 | 3.3 | 1.4 ~ 11.7 | 5.0 |
R203井 | 650 | 0.5 ~ 7.5 | 0.8 | 1.5 ~ 4.2 | 3.4 | 1.5 ~ 11.7 | 5.7 | ||
B2井 | 1 450 | 0.6 ~ 22.9 | 0.9 | 1.4 ~ 6.2 | 2.8 | 1.4 ~ 6.2 | 5.0 | ||
CY1井 | 2 050 | 0.6 ~ 32.3 | 1.1 | 1.6 ~ 7.1 | 3.6 | 0.6 ~ 8.0 | 4.6 | ||
四川盆地 | 侏罗系自流井组 | 总体 | 1 500 ~ 4 000 | 0.4 ~ 4.0 | 0.9 ~ 1.8 | 1.0 ~ 8.4 | 4.3 | 0.2 ~ 4.4 | 1.9 |
XL101井 | 2 200 | 1.4 ~ 2.9 | 1.4 | 1.3 ~ 8.2 | 4.2 | 1.4 ~ 4.4 | 2.5 | ||
FY10井 | 2 800 | 0.4 ~ 4.0 | 1.6 | 1.6 ~ 7.7 | 5.2 | 0.8 ~ 4.7 | 2.0 | ||
YL4井 | 3 800 | 0.4 ~ 3.6 | 1.8 | 1.1 ~ 8.3 | 5.1 | 0.8 ~ 4.1 | 1.9 | ||
松辽盆地梨树断陷 | 白垩系营城组 一段 | 总体 | 2 500 ~ 5 000 | 0.3 ~ 4.9 | 1.3 ~ 2.3 | 0.8 ~ 8.3 | 4.5 | 1.9 ~ 6.6 | 3.4 |
LY1井 | 3 300 | 0.7 ~ 4.9 | 1.6 | 0.8 ~ 8.3 | 4.8 | 2.3 ~ 6.6 | 3.5 | ||
LS2井 | 3 900 | 0.3 ~ 3.8 | 1.8 | 2.3 ~ 7.7 | 4.6 | 1.9 ~ 6.4 | 3.4 | ||
LS2-1井 | 4 400 | 0.3 ~ 1.8 | 2.0 | 1.7 ~ 6.3 | 4.0 | 2.4 ~ 5.6 | 3.2 |
1 | 郭旭升, 胡东风, 李宇平, 等. 海相和湖相页岩气富集机理分析与思考: 以四川盆地龙马溪组和自流井组大安寨段为例[J]. 地学前缘, 2016, 23(2): 18-28. |
GUO Xusheng, HU Dongfeng, LI Yuping, et al. Analyses and thoughts on accumulation mechanisms of marine and lacustrine shale gas: A case study in shales of Longmaxi Formation and Da’anzhai Section of Ziliujing Formation in Sichuan Basin[J]. Earth Science Frontiers, 2016, 23(2): 18-28. | |
2 | 邹才能, 朱如凯, 董大忠, 等. 页岩油气科技进步、发展战略及政策建议[J]. 石油学报, 2022, 43(12): 1675-1686. |
ZOU Caineng, ZHU Rukai, DONG Dazhong, et al. Scientific and technological progress, development strategy and policy suggestion regarding shale oil and gas[J]. Acta Petrolei Sinica, 2022, 43(12): 1675-1686. | |
3 | 胡宗全, 王濡岳, 刘忠宝, 等. 四川盆地下侏罗统陆相页岩气源储特征及耦合评价[J]. 地学前缘, 2021, 28(1): 261-272. |
HU Zongquan, WANG Ruyue, LIU Zhongbao, et al. Source-reservoir characteristics and coupling evaluations for the Lower Jurassic lacustrine shale gas reservoir in the Sichuan Basin[J]. Earth Science Frontiers, 2021, 28(1): 261-272. | |
4 | 胡宗全, 刘光祥. 中国陆相页岩气富集规律与评价技术[M]. 北京: 地质出版社, 2021. |
HU Zongquan, LIU Guangxiang. Enrichment regularity and evaluation technology of lacustrine shale gas in China[M]. Beijing: Geological Publishing House, 2021. | |
5 | 胡宗全, 杜伟, 刘忠宝, 等. 页岩气源储耦合机理及其应用[M]. 北京: 地质出版社, 2018. |
HU Zongquan, DU Wei, LIU Zhongbao, et al. Coupling mechanism of shale gas source and reservoir and its application[M]. Beijing: Geological Publishing House, 2018. | |
6 | 姚红生, 云露, 昝灵, 等. 苏北盆地溱潼凹陷阜二段断块型页岩油定向井开发模式及实践[J]. 油气藏评价与开发, 2023, 13(2): 141-151. |
YAO Hongsheng, YUN Lu, ZAN Ling, et al. Development mode and practice of fault-block oriented shale oil well in the second member of Funing Formation, Qintong Sag, Subei Basin[J]. Reservoir Evaluation and Development, 2023, 13(2): 141-151. | |
7 | 舒志国, 周林, 李雄, 等. 四川盆地东部复兴地区侏罗系自流井组东岳庙段陆相页岩凝析气藏地质特征及勘探开发前景[J]. 石油与天然气地质, 2021, 42(1): 212-223. |
SHU Zhiguo, ZHOU Lin, LI Xiong, et al. Geological characteristics of gas condensate reservoirs and their exploration and development prospect in the Jurassic continental shale of the Dongyuemiao Member of Ziliujing Formation, Fuxing area, eastern Sichuan Basin[J]. Oil & Gas Geology, 2021, 42(1): 212-223. | |
8 | 王濡岳, 胡宗全, 赖富强, 等. 川东北地区下侏罗统自流井组大安寨段陆相页岩脆性特征及其控制因素[J]. 石油与天然气地质, 2023, 44(2): 366-378. |
WANG Ruyue, HU Zongquan, LAI Fuqiang, et al. Brittleness features and controlling factors of continental shale from Da’anzhai Member of the Lower Jurassic Ziliujing Formation, northeastern Sichuan Basin[J]. Oil & Gas Geology, 2023, 44(2): 366-378. | |
9 | WANG Ruyue, WANG Guanping, ZHAO Gang, et al. Geological characteristics and resources potential of shale oil in Chang 7 Member of Upper Triassic Yanchang Formation in Fuxian area, southern Ordos Basin, western China[J]. Unconventional Resources, 2023, 3: 237-247. |
10 | 何文渊, 冯子辉, 张金友, 等. 松辽盆地北部古龙凹陷古页8HC井地质剖面特征[J]. 油气藏评价与开发, 2022, 12(1): 1-9. |
HE Wenyuan, FENG Zihui, ZHANG Jinyou, et al. Characteristics of geological section of Well-GY8HC in Gulong Sag, Northern Songliao Basin[J]. Reservoir Evaluation and Development, 2022, 12(1): 1-9. | |
11 | 张林晔, 张守春, 黄开权, 等. 半咸水湖相未熟油成因机理模拟实验研究[J]. 科学通报, 1999, 44(4): 361-368. |
ZHANG Linye, ZHANG Shouchun, HUANG Kaiquan, et al. Simulation experiment on genetic mechanism of immature oil in semi-saline water lacustrine source rock[J]. Chinese Science Bulletin, 1999, 44(4): 361-368. | |
12 | 石亚军. 晚期构造运动对柴达木盆地西部地区古近系咸化湖盆油气成藏的影响[D]. 成都: 成都理工大学, 2017. |
SHI Yajun. The late tectonic movement affects hydrocarbon reservoir of Paleogene saline lacustrine lake deposit in the western Qaidam Basin[D]. Chengdu: Chengdu University of Technology, 2017. | |
13 | HU Tao, WU Guanyun, XU Zhi, et al. Potential resources of conventional, tight, and shale oil and gas from Paleogene Wenchang Formation source rocks in the Huizhou Depression[J]. Advances in Geo-Energy Research, 2022, 6(5): 402-414. |
14 | PENG Junwen, HU Zongquan, FENG Dongjun, et al. Sedimentology and sequence stratigraphy of lacustrine deep-water fine-grained sedimentary rocks: The Lower Jurassic Dongyuemiao Formation in the Sichuan Basin, Western China[J]. Marine and Petroleum Geology, 2022, 146: 105933. |
15 | PENG Junwen, HU Zongquan, FENG Dongjun, et al. Variations of organic matter content and type within the sequence stratigraphic framework of the lacustrine deep-water Dongyuemiao Formation, Sichuan Basin, Western China[J]. Marine and Petroleum Geology, 2023, 149: 106104. |
16 | 胡宗全, 杜伟, 彭勇民, 等. 页岩微观孔隙特征及源-储关系——以川东南地区五峰组-龙马溪组为例[J]. 石油与天然气地质, 2015, 36(6): 1001-1008. |
HU Zongquan, DU Wei, PENG Yongmin, et al. Microscopic pore characteristics and the source-reservoir relationship of shale—A case study from the Wufeng and Longmaxi formations in Southeast Sichuan Basin[J]. Oil & Gas Geology, 2015, 36(6): 1001-1008. | |
17 | WANG Guanping, ZHANG Qian, ZHU Rukai, et al. Geological controls on the pore system of lacustrine unconventional shale reservoirs: The Triassic Chang 7 member in the Ordos Basin, China[J]. Geoenergy Science and Engineering, 2023, 221: 111139. |
18 | WANG Guanping, JIN Zhijun, LIU Guangxiang, et al. Pore system of the multiple lithofacies reservoirs in unconventional lacustrine shale oil formation[J]. International Journal of Coal Geology, 2023, 273: 104270. |
19 | 王濡岳, 胡宗全, 龙胜祥, 等. 四川盆地上奥陶统五峰组-下志留统龙马溪组页岩储层特征与演化机制[J]. 石油与天然气地质, 2022, 43(2): 353-364. |
WANG Ruyue, HU Zongquan, LONG Shengxiang, et al. Reservoir characteristics and evolution mechanisms of the Upper Ordovician Wufeng-Lower Silurian Longmaxi shale, Sichuan Basin[J]. Oil & Gas Geology, 2022, 43(2): 353-364. | |
20 | 王濡岳, 胡宗全, 包汉勇, 等. 四川盆地上奥陶统五峰组—下志留统龙马溪组页岩关键矿物成岩演化及其控储作用[J]. 石油实验地质, 2021, 43(6): 996-1005. |
WANG Ruyue, HU Zongquan, BAO Hanyong, et al. Diagenetic evolution of key minerals and its controls on reservoir quality of Upper Ordovician Wufeng-Lower Silurian Longmaxi shale of Sichuan Basin[J]. Petroleum Geology and Experiment, 2021, 43(6): 996-1005. | |
21 | 朱毅秀, 金振奎, 金科, 等. 中国陆相湖盆细粒沉积岩岩石学特征及成岩演化表征——以四川盆地元坝地区下侏罗统大安寨段为例[J]. 石油与天然气地质, 2021, 42(2): 494-508. |
ZHU Yixiu, JIN Zhenkui, JIN Ke, et al. Petrologic features and diagenetic evolution of fine-grained sedimentary rocks in continental lacustrine basins: A case study on the Lower Jurassic Da’anzhai Member of Yuanba area, Sichuan Basin[J]. Oil & Gas Geology, 2021, 42(2): 494-508. | |
22 | 李向军, 罗静兰, 罗晓容, 等. 鄂尔多斯盆地长7段泥页岩系孔隙特征及其演化规律[J]. 地质科技情报, 2017, 36(4): 19-28. |
LI Xiangjun, LUO Jinglan, LUO Xiaorong, et al. Pore characteristics and evolution of the Chang 7 mud shale in Ordos Basin[J]. Bulletin of Geological Science and Technology, 2017, 36(4): 19-28. | |
23 | 赵杏媛, 何东博. 黏土矿物与页岩气[J]. 新疆石油地质, 2012, 33(6): 643-647. |
ZHAO Xingyuan, HE Dongbo. Clay minerals and shale gas[J]. Xinjiang Petroleum Geology, 2012, 33(6): 643-647. | |
24 | FU Qiang, HU Zongquan, QIN Tingting, et al. Diagenesis and pore formation evolution of continental shale in the Da’anzhai Lower Jurassic section in the Sichuan Basin[J]. Minerals, 2023, 13(4): 535. |
25 | 赵文智, 朱如凯, 刘伟, 等. 我国陆相中高熟页岩油富集条件与分布特征[J]. 地学前缘, 2023, 30(1): 116-127. |
ZHAO Wenzhi, ZHU Rukai, LIU Wei, et al. Lacustrine medium-high maturity shale oil in onshore China: Enrichment conditions and occurrence features[J]. Earth Science Frontiers, 2023, 30(1): 116-127. | |
26 | ZHAO Wenzhi, HU Suyun, HOU Lianhua. Connotation and strategic role of in-situ conversion processing of shale oil underground in the onshore China[J]. Petroleum Exploration and Development, 2018, 45(4): 563-572. |
27 | 王濡岳, 胡宗全, 刘敬寿, 等. 中国南方海相与陆相页岩裂缝发育特征及主控因素对比——以黔北岑巩地区下寒武统为例[J]. 石油与天然气地质, 2018, 39(4): 631-640. |
WANG Ruyue, HU Zongquan, LIU Jingshou, et al. Comparative analysis of characteristics and controlling factors of fractures in marine and continental shales: A case study of the Lower Cambrian in Cengong area, northern Guizhou Province[J]. Oil & Gas Geology, 2018, 39(4): 631-640. | |
28 | 胡宗全, 朱彤, 杜伟, 等. 细粒沉积研究与页岩岩相编图[M]. 北京: 地质出版社, 2020. |
HU Zongquan, ZHU Tong, DU Wei, et al. Fine-grained sedimentary research and shale petrographic mapping[M]. Beijing: Geological Publishing House, 2020. | |
29 | 王濡岳, 胡宗全, 周彤, 等. 四川盆地及其周缘五峰组-龙马溪组页岩裂缝发育特征及其控储意义[J]. 石油与天然气地质, 2021, 42(6): 1295-1306. |
WANG Ruyue, HU Zongquan, ZHOU Tong, et al. Characteristics of fractures and their significance for reservoirs in Wufeng-Longmaxi shale, Sichuan Basin and its periphery[J]. Oil & Gas Geology, 2021, 42(6): 1295-1306. | |
30 | 胡文瑄, 姚素平, 陆现彩, 等. 典型陆相页岩油层系成岩过程中有机质演化对储集性的影响[J]. 石油与天然气地质, 2019, 40(5): 947-956, 1047. |
HU Wenxuan, YAO Suping, LU Xiancai, et al. Effects of organic matter evolution on oil reservoir property during diagenesis of typical continental shale sequences[J]. Oil & Gas Geology, 2019, 40(5): 947-956, 1047. | |
31 | 曾韬, 俞凌杰, 夏文谦, 等. 元坝地区吴家坪组沉凝灰岩及凝灰质泥岩储层微观孔隙结构特征研究[J]. 矿物岩石, 2022, 42(4): 83-93. |
ZENG Tao, YU Lingjie, XIA Wenqian, et al. Pore structure characteristics of tuff and tuffaceous mud-stone reservoirs in Wujiaping Formation, Yuanba area[J]. Mineralogy and Petrology, 2022, 42(4): 83-93. | |
32 | 任战利, 张盛, 高胜利, 等. 鄂尔多斯盆地构造热演化史及其成藏成矿意义[J]. 中国科学(D辑:地球科学), 2007, 37(S1): 23-32. |
REN Zhanli, ZHANG Sheng, GAO Shengli, et al. Tectonic thermal history and its significance on the formation of oil and gas accumulation and mineral deposit in Ordos Basin[J]. Science China Earth Sciences, 2007, 37(S1): 23-32. | |
33 | 田涛, 任战利, 韩伟, 等. 鄂尔多斯盆地延长组埋藏史、成藏期次与致密油储层演化关系[J]. 地质论评, 2013, 59(S1): 1261-1262. |
TIAN Tao, REN Zhanli, HAN Wei, et al. Relationship between burial history, accumulation periods, and evolution of tight sandstone reservoirs in the Yanchang Formation of the Ordos Basin[J]. Geological Review, 2013, 59(S1):1261-1262. | |
34 | 易娟子, 张少敏, 蔡来星, 等. 川东地区下侏罗统凉高山组地层-沉积充填特征与油气勘探方向[J]. 吉林大学学报(地球科学版), 2022, 52(3): 795-815. |
YI Juanzi, ZHANG Shaomin, CAI Laixing, et al. Strata and sedimentary filling characteristics of the Lower Jurassic Lianggaoshan Formation and its hydrocarbon exploration in eastern Sichuan Basin[J]. Journal of Jilin University(Earth Science Edition), 2022, 52(3): 795-815. | |
35 | 孔祥晔, 曾溅辉, 罗群, 等. 川中地区大安寨段陆相页岩岩相对孔隙结构的控制作用[J]. 新疆石油地质, 2023, 44(4): 392-403. |
KONG Xiangye, ZENG Jianhui, LUO Qun, et al. Controls of continental shale lithofacies on pore structure of Jurassic Da’anzhai member in central Sichuan Basin[J]. Xinjiang Petroleum Geology, 2023, 44(4): 392-403. | |
36 | 周永, 吴伟, 张琳, 等. 基于热模拟的页岩矿物及孔隙演化特征研究——以东营凹陷利页1井沙三下亚段为例[J]. 石油地质与工程, 2022, 36(6): 49-56. |
ZHOU Yong, WU Wei, ZHANG Lin, et al. Evolution characteristics of shale minerals and pores based on thermal simulation—by taking the lower Es3 member of Shahejie Formation in Well Liye 1 of Dongying Sag an example[J]. Petroleum Geology and Engineering, 2022, 36(6): 49-56. | |
37 | 刘耀光. 松辽盆地地热场特征与油气勘探的关系[J]. 石油勘探与开发, 1982, 9(3): 26-31. |
LIU Yaoguang. Relationship between characteristic of geothermal field and hydrocarbon occurrence in Songliao Basin[J]. Petroleum Exploration and Development, 1982, 9(3): 26-31. | |
38 | 徐明, 朱传庆, 田云涛, 等. 四川盆地钻孔温度测量及现今地热特征[J]. 地球物理学报, 2011, 54(4): 1052-1060. |
XU Ming, ZHU Chuanqing, TIAN Yuntao, et al. Borehole temperature logging and characteristics of subsurface temperature in the Sichuan Basin[J]. Chinese Journal of Geophysics, 2011, 54(4): 1052-1060. | |
39 | 李洪波, 张敏, 李红磊. 松南地区梨树断陷深层油气成藏历史分析[J]. 矿物岩石地球化学通报, 2014, 33(6): 839-846. |
LI Hongbo, ZHANG Min, LI Honglei. History of hydrocarbon accumulations in the deep of the Lishu fault depression, southern Songliao Basin[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2014, 33(6): 839-846. |
[1] | 吴伟涛, 冯炎松, 费世祥, 王一妃, 吴和源, 杨旭东. 鄂尔多斯盆地神木气田二叠系石千峰组5段致密气富集因素及有利区预测[J]. 石油与天然气地质, 2024, 45(3): 739-751. |
[2] | 方锐, 蒋裕强, 杨长城, 邓海波, 蒋婵, 洪海涛, 唐松, 谷一凡, 朱讯, 孙莎莎, 蔡光银. 四川盆地侏罗系凉高山组不同岩性组合页岩油赋存状态及可动性[J]. 石油与天然气地质, 2024, 45(3): 752-769. |
[3] | 李宁, 李瑞磊, 苗贺, 曹开芳, 田军. 松辽盆地深层中-基性火山岩有利相带及储层“甜点”逐级识别[J]. 石油与天然气地质, 2024, 45(3): 801-815. |
[4] | 赵喆, 白斌, 刘畅, 王岚, 周海燕, 刘羽汐. 中国石油陆上中-高成熟度页岩油勘探现状、进展与未来思考[J]. 石油与天然气地质, 2024, 45(2): 327-340. |
[5] | 刘成林, 丁振刚, 范立勇, 康锐, 洪思婕, 朱玉新, 陈践发, 王海东, 许诺. 鄂尔多斯盆地含氦天然气地球化学特征与富集影响因素[J]. 石油与天然气地质, 2024, 45(2): 384-392. |
[6] | 万俊雨, 朱建辉, 姚素平, 张毅, 李春堂, 张威, 姜海健, 王杰. 鄂尔多斯盆地中、东部奥陶系马家沟组成烃生物及烃源岩地球生物学评价[J]. 石油与天然气地质, 2024, 45(2): 393-405. |
[7] | 柳波, 蒙启安, 付晓飞, 林铁锋, 白云风, 田善思, 张金友, 姚瑶, 程心阳, 刘召. 松辽盆地白垩系青山口组一段页岩生、排烃组分特征及页岩油相态演化[J]. 石油与天然气地质, 2024, 45(2): 406-419. |
[8] | 何骁, 郑马嘉, 刘勇, 赵群, 石学文, 姜振学, 吴伟, 伍亚, 宁诗坦, 唐相路, 刘达东. 四川盆地“槽-隆”控制下的寒武系筇竹寺组页岩储层特征及其差异性成因[J]. 石油与天然气地质, 2024, 45(2): 420-439. |
[9] | 张赫驿, 杨帅, 张玺华, 彭瀚霖, 李乾, 陈聪, 高兆龙, 陈安清. 川东地区中二叠统茅口组沉积微相与环境演变[J]. 石油与天然气地质, 2024, 45(2): 457-470. |
[10] | 潘辉, 蒋裕强, 朱讯, 邓海波, 宋林珂, 王占磊, 李杪, 周亚东, 冯林杰, 袁永亮, 王猛. 河流相致密砂岩气地质甜点评价[J]. 石油与天然气地质, 2024, 45(2): 471-485. |
[11] | 杨丽华, 刘池洋, 黄雷, 周义军, 刘永涛, 秦阳. 鄂尔多斯盆地古峰庄地区疑似侵入岩体的发现及其地质意义[J]. 石油与天然气地质, 2024, 45(1): 142-156. |
[12] | 师良, 范柏江, 李忠厚, 余紫巍, 蔺子瑾, 戴欣洋. 鄂尔多斯盆地中部三叠系延长组7段烃组分的运移分异作用[J]. 石油与天然气地质, 2024, 45(1): 157-168. |
[13] | 曹江骏, 王继平, 张道锋, 王龙, 李笑天, 李娅, 张园园, 夏辉, 于占海. 深层致密砂岩储层成岩演化对含气性的影响[J]. 石油与天然气地质, 2024, 45(1): 169-184. |
[14] | 张宝收, 张本健, 汪华, 陈践发, 刘凯旋, 豆霜, 戴鑫, 陈双玲. 四川盆地金秋气田:一个典型以中生界沉积岩为氦源岩的含氦-富氦气田[J]. 石油与天然气地质, 2024, 45(1): 185-199. |
[15] | 张自力, 乔艳萍, 豆霜, 李堃宇, 钟原, 武鲁亚, 张宝收, 戴鑫, 金鑫, 王斌, 宋金民. 四川盆地蓬莱气区震旦系灯影组二段岩溶古地貌与控储模式[J]. 石油与天然气地质, 2024, 45(1): 200-214. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||