Oil & Gas Geology ›› 2023, Vol. 44 ›› Issue (1): 178-185.doi: 10.11743/ogg20230114
• Petroleum Geology • Previous Articles Next Articles
Huiyuan XU1,2(), Quanyou LIU1,3, Dongya ZHU1,2, Qingqiang MENG1,2, Zhijun JIN1,2,3
Received:
2022-05-25
Revised:
2022-10-12
Online:
2023-01-14
Published:
2023-01-13
CLC Number:
Huiyuan XU, Quanyou LIU, Dongya ZHU, Qingqiang MENG, Zhijun JIN. Geochemical characteristics of crude oils under alteration of deep Pb-Zn-bearing hydrothermal fluids[J]. Oil & Gas Geology, 2023, 44(1): 178-185.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | SIMONEIT B R T. Hydrothermal petroleum[M]//Wilkes H. Hydrocarbons, Oils and Lipids: Diversity, Origin, Chemistry and Fate. Cham: Springer, 2018: 1-35. |
2 | MCCOLLOM T M, SEEWALD J S, GERMAN C R. Investigation of extractable organic compounds in deep-sea hydrothermal vent fluids along the Mid-Atlantic Ridge[J]. Geochimica et Cosmochimica Acta, 2015, 156: 122-144. |
3 | HAWKES J A, HANSEN C T, GOLDHAMMER T, et al. Molecular alteration of marine dissolved organic matter under experimental hydrothermal conditions[J]. Geochimica et Cosmochimica Acta, 2016, 175: 68-85. |
4 | SIMONEIT B R T, LEIN A Y, PERESYPKIN V I, et al. Composition and origin of hydrothermal petroleum and associated lipids in the sulfide deposits of the Rainbow field (Mid-Atlantic Ridge at 36°N)[J]. Geochimica et Cosmochimica Acta, 2004, 68(10): 2275-2294. |
5 | CLIFTON C G, WALTERS C C, SIMONEIT B R T. Hydrothermal petroleums from Yellowstone National Park, Wyoming, U.S.A.[J]. Applied Geochemistry, 1990, 5(1/2): 169-191. |
6 | SANDER S G, KOSCHINSKY A. Metal flux from hydrothermal vents increased by organic complexation[J]. Nature Geoscience, 2011, 4(3): 145-150. |
7 | SEEWALD J S. Evidence for metastable equilibrium between hydrocarbons under hydrothermal conditions[J]. Nature, 1994, 370(6487): 285-287. |
8 | MCCOLLOM T M, SEEWALD J S, SIMONEIT B R T. Reactivity of monocyclic aromatic compounds under hydrothermal conditions[J]. Geochimica et Cosmochimica Acta, 2001, 65(3): 455-468. |
9 | YAMANAKA T, ISHIBASHI J, HASHIMOTO J. Organic geochemistry of hydrothermal petroleum generated in the submarine Wakamiko caldera, southern Kyushu, Japan[J]. Organic Geochemistry, 2000, 31(11): 1117-1132. |
10 | VENKATESAN M I, RUTH E, RAO P S, et al. Hydrothermal petroleum in the sediments of the Andaman Backarc Basin, Indian Ocean[J]. Applied Geochemistry, 2003, 18(6): 845-861. |
11 | ZÁRATE-DEL VALLE P F, SIMONEIT B R T. Hydrothermal bitumen generated from sedimentary organic matter of rift lakes-Lake Chapala, Citala Rift, western Mexico[J]. Applied Geochemistry, 2005, 20(12): 2343-2350. |
12 | SIMONEIT B R, ABOUL-KASSIM T A, TIERCELIN J J. Hydrothermal petroleum from lacustrine sedimentary organic matter in the East African Rift[J]. Applied Geochemistry, 2000, 15(3): 355-368. |
13 | SUN Yuzhuang, PÜTTMANN W. Oxidation of organic matter in the transition zone of the Zechstein Kupferschiefer from the Sangerhausen Basin, Germany[J]. Energy & Fuels, 2001, 15(4): 817-829. |
14 | WANG Guangli, CHANG Xiangchun, WANG T G, et al. Pregnanes as molecular indicators for depositional environments of sediments and petroleum source rocks[J]. Organic Geochemistry, 2015, 78: 110-120. |
15 | SIMONEIT B R T. Hydrothermal alteration of organic matter in marine and terrestrial systems[M]//Engel M H, Macko S A. Organic Geochemistry: Principles and Applications. Boston: Springer, 1993: 397-418. |
16 | MARTIN W, BAROSS J, KELLEY D, et al. Hydrothermal vents and the origin of life[J]. Nature Reviews Microbiology, 2008, 6(11): 805-814. |
17 | ZHU Dongya, LIU Quanyou, MENG Qingqiang, et al. Enhanced effects of large-scale CO2 transportation on oil accumulation in oil-gas-bearing basins—Implications from supercritical CO2 extraction of source rocks and a typical case study[J]. Marine and Petroleum Geology, 2018, 92: 493-504. |
18 | ZHU Dongya, LIU Quanyou, JIN Zhijun, et al. Effects of deep fluids on hydrocarbon generation and accumulation in Chinese petroliferous basins[J]. Acta Geologica Sinica(English Edition), 2017, 91(1): 301-319. |
19 | LIU Quanyou, ZHU Dongya, JIN Zhijun, et al. Effects of deep CO2 on petroleum and thermal alteration: The case of the Huangqiao oil and gas field[J]. Chemical Geology, 2017, 469: 214-229. |
20 | 朱东亚, 孟庆强, 解启来, 等. 云南腾冲热液发育模式及其对塔里木盆地热液溶蚀改造的启示[J]. 石油与天然气地质, 2010, 31(3): 327-334. |
ZHU Dongya, MENG Qingqiang, XIE Qilai, et al. Development pattern of hydrothermal fluids in Tengchong, Yunnan Province and its implications for hydrothermal dissolution in the Tarim Basin[J]. Oil & Gas Geology, 2010, 31(3): 327-334. | |
21 | 张治波, 朱志军, 王文锋, 等. 滇西兰坪盆地中—新生代蒸发岩元素地球化学特征及其形成环境[J]. 吉林大学学报(地球科学版), 2019, 49(2): 356-379. |
ZHANG Zhibo, ZHU Zhijun, WANG Wenfeng, et al. Geochemical characteristics and formation environment of Mesozoic and Cenozoic evaporative rocks in Lanping Basin, western Yunnan[J]. Journal of Jilin University(Earth Science Edition), 2019, 49(2): 356-379. | |
22 | 薛春纪, 高永宝, Chi Guoxiang, 等. 滇西北兰坪金顶可能的古油气藏及对铅锌大规模成矿的作用[J]. 地球科学与环境学报, 2009, 31(3): 221-229. |
XUE Chunji, GAO Yongbao, CHI Guoxiang, et al. Possible former oil-gas reservoir in the giant Jinding Pb-Zn deposit, Lanping, NW-Yunnan: The role in the ore accumulation[J]. Journal of Earth Sciences and Environment, 2009, 31(3): 221-229. | |
23 | WILLIFORD K H, GRICE K, LOGAN G A, et al. The molecular and isotopic effects of hydrothermal alteration of organic matter in the Paleoproterozoic McArthur River Pb/Zn/Ag ore deposit[J]. Earth and Planetary Science Letters, 2011, 301(1/2): 382-392. |
24 | CHEN Junhong, WALTER M R, LOGAN G A, et al. The Paleoproterozoic McArthur River (HYC) Pb/Zn/Ag deposit of northern Australia: Organic geochemistry and ore genesis[J]. Earth and Planetary Science Letters, 2003, 210(3/4): 467-479. |
25 | XUE Chunji, ZENG Rong, LIU Shuwen, et al. Geologic, fluid inclusion and isotopic characteristics of the Jinding Zn-Pb deposit, western Yunnan, South China: A review[J]. Ore Geology Reviews, 2007, 31(1/4): 337-359. |
26 | DENG Jun, WANG Changming, BAGAS L, et al. Insights into ore genesis of the Jinding Zn-Pb deposit, Yunnan Province, China: Evidence from Zn and in-situ S isotopes[J]. Ore Geology Reviews, 2017, 90: 943-957. |
27 | TANG Yongyong, BI Xianwu, YIN Runsheng, et al. Concentrations and isotopic variability of mercury in sulfide minerals from the Jinding Zn-Pb deposit, southwest China[J]. Ore Geology Reviews, 2017, 90: 958-969. |
28 | WANG Changming, YANG Lifei, BAGAS L, et al. Mineralization processes at the giant Jinding Zn-Pb deposit, Lanping Basin, Sanjiang Tethys Orogen: Evidence from in situ trace element analysis of pyrite and marcasite[J]. Geological Journal, 2018, 53(4): 1279-1294. |
29 | 高永宝, 薛春纪, 曾荣. 滇西北兰坪金顶铅锌矿床有机物质地球化学[J]. 地球化学, 2008, 37(3): 223-232. |
GAO Yongbao, XUE Chunji, ZENG Rong. Geochemistry of organic matters in the Jinding zinc-lead deposit, Lanping Basin, northwest Yunnan Province[J]. Geochimica, 2008, 37(3): 223-232. | |
30 | 薛春纪, 高永宝, 曾荣, 等. 滇西北兰坪盆地金顶超大型矿床有机岩相学和地球化学[J]. 岩石学报, 2007, 23(11): 2889-2900. |
XUE Chunji, GAO Yongbao, ZENG Rong, et al. Organic petrography and geochemistry of the giant Jinding deposit, Lanping Basin, northwestern Yunnan, China[J]. Acta Petrologica Sinica, 2007, 23(11): 2889-2900. | |
31 | XU Huiyuan, LIU Quanyou, ZHU Dongya, et al. Hydrothermal catalytic conversion and metastable equilibrium of organic compounds in the Jinding Zn/Pb ore deposit[J]. Geochimica et Cosmochimica Acta, 2021, 307: 133-150. |
32 | WALTERS C C, QIAN Kuangnan, WU Chunping, et al. Proto-solid bitumen in petroleum altered by thermochemical sulfate reduction[J]. Organic Geochemistry, 2011, 42(9): 999-1006. |
33 | PÜTTMANN W, MERZ C, SPECZIK S. The secondary oxidation of organic material and its influence on Kupferschiefer mineralization of southwest Poland[J]. Applied Geochemistry, 1989, 4(2): 151-161. |
34 | MARYNOWSKI L, ROSPONDEK M J, MEYER Zu Reckendorf R, et al. Phenyldibenzofurans and phenyldibenzothiophenes in marine sedimentary rocks and hydrothermal petroleum[J]. Organic Geochemistry, 2002, 33(7): 701-714. |
35 | GRAFKA O, MARYNOWSKI L, SIMONEIT B R T. Phenyl derivatives of polycyclic aromatic compounds as indicators of hydrothermal activity in the Silurian black siliceous shales of the Bardzkie mountains, Poland[J]. International Journal of Coal Geology, 2015, 139: 142-151. |
36 | PÜTTMANN W, GOβEL W. The Permian Kupferschiefer of southwest Poland: A geochemical trap for migrating, metal-bearing solutions[J]. Applied Geochemistry, 1990, 5(1/2): 227-235. |
37 | WALTERS C C, WANG F C, QIAN Kuangnan, et al. Petroleum alteration by thermochemical sulfate reduction—A comprehensive molecular study of aromatic hydrocarbons and polar compounds[J]. Geochimica et Cosmochimica Acta, 2015, 153: 37-71. |
38 | ZHANG TONGWEI, ELLIS G S, WANG Kangshi, et al. Effect of hydrocarbon type on thermochemical sulfate reduction[J]. Organic Geochemistry, 2007, 38(6): 897-910. |
39 | WANG GUANGLI, LI NINGXI, GAO Bo, et al. Thermochemical sulfate reduction in fossil Ordovician deposits of the Majiang area: Evidence from a molecular-marker investigation[J]. Chinese Science Bulletin, 2013, 58(28): 3588-3594. |
40 | SHIPP J A, GOULD I R, SHOCK E L, et al. Sphalerite is a geochemical catalyst for carbon-hydrogen bond activation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(32): 11642-11645. |
41 | ASIF M, ALEXANDER R, FAZEELAT T, et al. Geosynthesis of dibenzothiophene and alkyl dibenzothiophenes in crude oils and sediments by carbon catalysis[J]. Organic Geochemistry, 2009, 40(8): 895-901. |
42 | ASIF M, ALEXANDER R, FAZEELAT T, et al. Sedimentary processes for the geosynthesis of heterocyclic aromatic hydrocarbons and fluorenes by surface reactions[J]. Organic Geochemistry, 2010, 41(5): 522-530. |
43 | 刘全有, 朱东亚, 孟庆强, 等. 深部流体及有机-无机相互作用下油气形成的基本内涵[J]. 中国科学: 地球科学, 2019, 49(3): 499-520. |
LIU Quanyou, ZHU Dongya, MENG Qingqiang, et al. The scientific connotation of oil and gas formations under deep fluids and organic-inorganic interaction[J]. Scientia Sinica(Terrae), 2019, 49(3): 499-520. | |
44 | VENTURA G T, SIMONEIT B R T, NELSON R K, et al. The composition, origin and fate of complex mixtures in the maltene fractions of hydrothermal petroleum assessed by comprehensive two-dimensional gas chromatography[J]. Organic Geochemistry, 2012, 45: 48-65. |
45 | 刘佳宜, 刘全有, 朱东亚, 等. 深部 流体对有机质生烃演化过程的影响[J]. 天然气地球科学, 2019, 30(4): 478-492. |
LIU Jiayi, LIU Quanyou, ZHU Dongya, et al. Influences of the deep fluid on organic matter during the hydrocarbon generation and evolution process[J]. Natural Gas Geoscience, 2019, 30(4): 478-492. | |
46 | 金之钧, 杨雷, 曾溅辉, 等. 东营凹陷深部流体活动及其生烃效应初探[J]. 石油勘探与开发, 2002, 29(2): 42-44. |
JIN Zhijun, YANG Lei, ZENG Jianhui, et al. Deep fluid activities and their effects on generation of hydrocarbon in Dongying Depression[J]. Petroleum Exploration and Development, 2002, 29(2): 42-44. | |
47 | 阎丽妮, 杨映涛, 蔡李梅, 等.储层流体特征在天然气运移中的示踪意义探讨[J]. 石油地质与工程, 2021, 35(2): 35-39. |
YAN Lini, YANG Yingtao, CAI Limei, et al. Tracer significance of reservoir fluid characteristics in natural gas migration[J]. Petroleum Geology & Engineering, 2021, 35(2): 35-39. | |
48 | 李平平, 王淳, 邹华耀, 等. 团簇同位素在白云岩化流体恢复中的应用与局限性[J]. 石油与天然气地质, 2021, 42(3): 738-746. |
LI Pingping, WANG Chun, ZOU Huayao, et al. Application of clumped isotopes to restoration of dolomitizing fluids and its limitations[J]. Oil & Gas Geology, 2021, 42(3): 738-746. | |
49 | 袁静, 周涛, 乔俊, 等. 深层砂砾岩中的深部热流体作用及其地质意义——以渤海湾盆地东营凹陷民丰—盐家地区古近系沙河街组四段为例[J]. 石油与天然气地质, 2022, 43(4): 929-942. |
YUAN Jing, ZHOU Tao, QIAO Jun, et al.Deep hydrothermalism of deep coarse-grained siliciclastic rocks and its geological significance: A case study of the 4th member of the Paleogene Shahejie Formation in Minfeng-Yanjia area, Dongying Sag, Bohai Bay Basin[J]. Oil & Gas Geology, 2022, 43(4): 929-942. | |
50 | 白龙辉, 柳波, 迟亚奥, 等. 二维核磁共振技术表征页岩所含流体特征的应用[J]. 石油与天然气地质, 2021, 42(6): 1389-1400. |
BAI Longhui, LIU Bo, CHI Yaao, et al. 2D NMR studies of fluids in organic-rich shale from the Qingshankou Formation, Songliao Basin[J]. Oil & Gas Geology, 2021, 42(6): 1389-1400. | |
51 | 徐田武, 张成富, 金爱民, 等. 东濮凹陷北部流体作用与油气运聚[J]. 断块油气田, 2022, 29(2): 152-156. |
XU Tianwu, ZHANG Chengfu, JIN Aimin, et al. Fluid action and hydrocarbon migration and accumulation in the northern part of Dongpu Sag[J]. Fault-Block Oil and Gas Field, 2022, 29(2): 152-156. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||