Oil & Gas Geology ›› 2025, Vol. 46 ›› Issue (1): 62-77.doi: 10.11743/ogg20250105
• Petroleum Geology • Previous Articles Next Articles
Ling QI1,2(), Zhensheng SHI1,2(
), Hongyan WANG2,3, Tianqi ZHOU1,2, Guizhong LI1,2, Meng ZHAO1,2, Hui CHENG4, Zihao CHENG4
Received:
2024-06-25
Revised:
2024-11-14
Online:
2025-02-28
Published:
2025-03-03
Contact:
Zhensheng SHI
E-mail:qiling69@petrochina.com.cn;shizs69@petrochina.com.cn
CLC Number:
Ling QI, Zhensheng SHI, Hongyan WANG, Tianqi ZHOU, Guizhong LI, Meng ZHAO, Hui CHENG, Zihao CHENG. Methodology for research on the provenance of black shales and its problems and prospects: A case study of the Wufeng-Longmaxi formations, southern Sichuan Basin[J]. Oil & Gas Geology, 2025, 46(1): 62-77.
Table 1
Chemical weathering indices and their calculation formula"
风化指标 | 计算公式 | 参考文献 |
---|---|---|
帕克风化指数(WIP) | (2Na2O/0.35+MgO/0.9+2K2O/0.25+CaO*/0.7)×100 | Parker(1970)[ |
化学蚀变指数(CIA) | Al2O3/(Al2O3+CaO*+Na2O+K2O)×100 | Nesbitt和Young (1982)[ |
未发生钾交代作用的泥质岩CIA值(CIAcorr) | Al2O3 / (Al2O3 + CaO* + Na2O + K2Ocorr) ]×100 K2Ocorr =[m·Al2O3 +m·(CaO* + Na2O)]/(1-m), m = K2O / (Al2O3 + CaO* + Na2O + K2O) | Panahi ( 2000)[ |
化学风化指数(CIW) | Al2O3/( Al2O3+CaO*+ Na2O)×100 | Harnois(1988)[ |
斜长石蚀变指数(PIA) | (Al2O3-K2O)/(Al2O3+CaO*+Na2O-K2O)×100 | Fedo等(1995)[ |
成分变异指数(ICV) | (Fe2O3+K2O+Na2O+CaO*+MgO+TiO2)/Al2O3 | Cox等(1995)[ |
修正化学蚀变指数(CIX) | A12O3/(A12O3+Na2O+K2O)×100 | Garzanti等 (2014)[ |
1 | 施振生, 张亚雄, 曾番惠, 等. 海相细粒陆源碎屑岩主要沉积构造类型及页岩气意义[J]. 古地理学报, 2025, 27(1): 32-54. |
SHI Zhensheng, ZHANG Yaxiong, ZENG Fanhui, et al. Main sedimentary structure types of marine fine-grained terrigenous clastic rocks and their significance for shale gas[J]. Journal of Palaeogeography, 2025, 27(1): 32-54. | |
2 | 施振生, 周天琪. 海相细粒沉积成因机制与有机质富集模式研究进展[J]. 石油与天然气地质, 2024, 45(4): 910-928. |
SHI Zhensheng, ZHOU Tianqi. Advances and perspectives in the study of the genetic mechanism and organic matter enrichment models of marine fine-grained sediment[J]. Oil & Gas Geology, 2024, 45(4): 910-928. | |
3 | 马新华, 张晓伟, 熊伟, 等. 中国页岩气发展前景及挑战[J]. 石油科学通报, 2023, 8(4): 491-501. |
MA Xinhua, ZHANG Xiaowei, XIONG Wei, et al. Prospects and challenges of shale gas development in China[J]. Petroleum Science Bulletin, 2023, 8(4): 491-501. | |
4 | 王红岩, 周尚文, 赵群, 等. 川南地区深层页岩气富集特征、勘探开发进展及展望[J]. 石油与天然气地质, 2023, 44(6): 1430-1441. |
WANG Hongyan, ZHOU Shangwen, ZHAO Qun, et al. Enrichment characteristics, exploration and exploitation progress, and prospects of deep shale gas in the southern Sichuan Basin, China[J]. Oil & Gas Geology, 2023, 44(6): 1430-1441. | |
5 | 施振生, 周天琪, 孙莎莎, 等. 川南地区海相细粒储层研究与页岩气勘探[M]. 北京: 石油工业出版社, 2024, 1-231. |
SHI Zhensheng, ZHOU Tianqi, SUN Shasha, et al. Research on marine fine-grained reservoirs and shale gas exploration in Southern Sichuan Basin, China[M]. Beijing: Petroleum Industry Press, 2024, 1-231. | |
6 | SHI Zhensheng, ZHOU Tianqi, WANG Hongyan, et al. Depositional structures and their reservoir characteristiccs in the Wufeng-Longmaxi shale in Southern Sichuanm Basin China[J]. Energies, 2022, 15, 1618. |
7 | JOHNSON M E. Relationship of Silurian sea-level fluctuations to oceanic episodes and events[J]. GFF, 2006, 128(2): 115-121. |
8 | CHEN Xu, FAN Junxuan, CHEN Qing, et al. Toward a stepwise Kwangsian Orogeny[J]. Science China Earth Sciences, 2014, 57(3): 379-387. |
9 | DING Meng, LI Yifan, FAN Tailiang, et al. Geochemistry of the lower Silurian black shales from the upper Yangtze platform, South China: Implications for paleoclimate, provenance, and tectonic setting[J]. Journal of Asian Earth Sciences, 2023, 242: 105493. |
10 | SHI Zhensheng, ZHAO Shengxian, ZHOU Tianqi, et al. Mineralogy and geochemistry of the Upper Ordovician and Lower Silurian Wufeng-Longmaxi shale on the Yangtze platform, South China: Implications for provenance analysis and shale gas sweet-spot interval[J]. Minerals, 2022, 12(10): 1190. |
11 | Xin MEN, MOU Chuanlong, GE Xiangying. Changes in palaeoclimate and palaeoenvironment in the Upper Yangtze area (South China) during the Ordovician-Silurian transition[J]. Scientific Reports, 2022, 12(1): 13186. |
12 | 牟传龙, 葛祥英, 余谦, 等. 川西南地区五峰-龙马溪组黑色页岩古气候及物源特征: 来自新地2井地球化学记录[J]. 古地理学报, 2019, 21(5): 835-854. |
MOU Chuanlong, GE Xiangying, YU Qian, et al. Palaeoclimatology and provenance of black shales from Wufeng-Longmaxi formations in southwestern Sichuan Province: From geochemical records of Well Xindi-2[J]. Journal of Palaeogeography (Chinese Edition), 2019, 21(5): 835-854. | |
13 | 彭浩, 陈雷, 胡云鹏, 等. 四川盆地及其周缘五峰组—龙马溪组页岩物源及构造环境分析[J]. 高校地质学报, 2024, 30(2): 231-240. |
PENG Hao, CHEN Lei, HU Yunpeng, et al. Provenance and tectonic setting analysis of the Wufeng-Longmaxi Formation shale in the Sichuan Basin and its surrounding area[J]. Geological Journal of China Universities, 2024, 30(2): 231-240. | |
14 | QI Ling, WANG Hongyan, SHI Zhensheng, et al. Mineralogical and geochemical characteristics of the deeply buried Wufeng-Longmaxi shale in the southern Sichuan Basin, China: Implications for provenance and tectonic setting[J]. Minerals, 2023, 13(12): 1502. |
15 | LI Xinwei, LI Chao, JIANG Xiaojun, et al. High-resolution Re-Os isotope stratigraphy, and geochemical fingerprints identification of Late Ordovician-Early Silurian strata in northern Guizhou, China: Implications for LOME and environmental changes[J]. Earth-Science Reviews, 2023, 243: 104497. |
16 | CHEN Chao, MU Chuanlong, ZHOU Kenken, et al. The geochemical characteristics and factors controlling the organic matter accumulation of the Late Ordovician-Early Silurian black shale in the Upper Yangtze Basin, South China[J]. Marine and Petroleum Geology, 2016, 76: 159-175. |
17 | 刘冯斌. 四川盆地上奥陶统宝塔—临湘组地球化学特征与岩相古地理研究[D]. 成都: 成都理工大学, 2021. |
LIU Fengbin. Geochemical characteristics and lithofacies paleogeography of the Upper Ordovician Baota-Linxiang Formation in Sichuan Basin[D]. Chengdu: Chengdu University of Technology, 2021. | |
18 | 何龙. 四川盆地东南缘五峰组—龙马溪组页岩有机质富集机制及沉积环境演化[D]. 广州: 中国科学院大学(中国科学院广州地球化学研究所), 2020. |
HE Long. Organic matter enrichment and evolution of sedimentary environment of the Wufeng-Longmaxi shale in southeastern margins of the Sichuan Basin[D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 2020. | |
19 | 李艳芳. 上扬子地区晚奥陶世—早志留世页岩地球化学特征、有机质富集及古环境意义[D]. 兰州: 兰州大学, 2017. |
LI Yanfang. Geochemical characteristics and organic matter accumulation of Late Ordovician-Early Silurian shale in the Upper Yangtze platform, and implications for paleoenvironment[D]. Lanzhou: Lanzhou University, 2017. | |
20 | 周锡强, 陈代钊, 刘牧, 等. 中国沉积学发展战略: 沉积地球化学研究现状与展望[J]. 沉积学报, 2017, 35(6): 1293-1316. |
ZHOU Xiqiang, CHEN Daizhao, LIU Mu, et al. The future of sedimentology in China: A review and perspective of sedimentary geochemistry[J]. Acta Sedimentologica Sinica, 2017, 35(6): 1293-1316. | |
21 | MCLENNAN S M, HEMMING S, MCDANIEL D K, et al. Geochemical approaches to sedimentation, provenance, and tectonics[M]//JOHNSSON M J, BASU A. Processes Controlling the Composition of Clastic Sediments. Boulder: Geological Society of America, 1993: 21-40. |
22 | NESBITT H W, YOUNG G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299(5885): 715-717. |
23 | DICKINSON W R, SUCZEK C A. Plate tectonics and sandstone compositions[J]. AAPG Bulletin, 1979, 63(12): 2164-2182. |
24 | GARZANTI E, ANDÒ S, VEZZOLI G. Grain-size dependence of sediment composition and environmental bias in provenance studies[J]. Earth and Planetary Science Letters, 2009, 277(3/4): 422-432. |
25 | GARZANTI E, PADOAN M, SETTI M, et al. Weathering geochemistry and Sr-Nd fingerprints of equatorial upper Nile and Congo muds[J]. Geochemistry Geophysics Geosystems, 2013, 14(2): 292-316. |
26 | ESWARAN H, STOOPS G, DE PAEPEP P. A contribution to the study of soil formation on Isla Santa Cruz, Galapagos[J]. Pedologie, 1973, 23(2): 100-122. |
27 | PARKER A. An index of weathering for silicate rocks[J]. Geological Magazine, 1970, 107(6): 501-504. |
28 | COX R, LOWE D R, CULLERS R L. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States[J]. Geochimica et Cosmochimica Acta, 1995, 59(14): 2919-2940. |
29 | PANAHI A, YOUNG G M, RAINBIRD R H. Behavior of major and trace elements (including REE) during Paleoproterozoic pedogenesis and diagenetic alteration of an Archean granite near Ville Marie, Québec, Canada[J]. Geochimica et Cosmochimica Acta, 2000, 64(13): 2199-2220. |
30 | HARNOIS L. The CIW index: A new chemical index of weathering[J]. Sedimentary Geology, 1988(55): 319-322. |
31 | FEDO C M, WAYNE NESBITT H, YOUNG G M. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance[J]. Geology, 1995, 23(10): 921-924. |
32 | GARZANTI E, PADOAN M, SETTI M, et al. Provenance versus weathering control on the composition of tropical river mud (southern Africa)[J]. Chemical Geology, 2014, 366: 61-74. |
33 | TAYLOR S R, MCCLENNAN S M. The continental crust: Its composition and evolution[M]. Oxford: Blackwell Scientific, 1985. |
34 | NESBITT H W, YOUNG G M. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations[J]. Geochimica et Cosmochimica Acta, 1984, 48(7): 1523-1534. |
35 | YOUNG G M, WAYNE NESBITT H. Paleoclimatology and provenance of the glaciogenic Gowganda Formation (Paleoproterozoic), Ontario, Canada: A chemostratigraphic approach[J]. GSA Bulletin, 1999, 111(2): 264-274. |
36 | CULLERS R L, BASU A, SUTTNER L J. Geochemical signature of provenance in sand-size material in soils and stream sediments near the Tobacco Root batholith, Montana, U.S.A[J]. Chemical Geology, 1988, 70(4): 335-348. |
37 | MCLENNAN S M, TAYLOR S R, MCCULLOCH M T, et al. Geochemical and Nd-Sr isotopic composition of deep-sea turbidites: Crustal evolution and plate tectonic associations[J]. Geochimica et Cosmochimica Acta, 1990, 54(7): 2015-2050. |
38 | GARCIA D, FONTEILLES M, MOUTTE J. Sedimentary fractionations between Al, Ti, and Zr and the genesis of strongly peraluminous granites[J]. The Journal of Geology, 1994, 102(4): 411-422. |
39 | FLÈCHE M R, CAMIRÉ G. Geochemistry and provenance of metasedimentary rocks from the Archean Golden Pond sequence (Casa Berardi mining district, Abitibi subprovince)[J]. Canadian Journal of Earth Sciences, 1996, 33(5): 676-690. |
40 | LI Qiugen, LIU Shuwen, HAN Baofu, et al. Geochemistry of metasedimentary rocks of the Proterozoic Xingxingxia complex: Implications for provenance and tectonic setting of the eastern segment of the Central Tianshan Tectonic Zone, northwestern China[J]. Canadian Journal of Earth Sciences, 2005, 42(3): 287-306. |
41 | LI Qiugen, LIU Shuwen, WANG Zongqi, et al. Contrasting provenance of Late Archean metasedimentary rocks from the Wutai Complex, North China Craton: detrital zircon U-Pb, whole-rock Sm-Nd isotopic, and geochemical data[J]. International Journal of Earth Sciences, 2008, 97(3): 443-458. |
42 | CRICHTON J G, CONDIE K C. Trace elements as source indicators in cratonic sediments: A case study from the Early Proterozoic Libby Creek Group, southeastern Wyoming[J]. The Journal of Geology, 1993, 101(3): 319-332. |
43 | 冯增昭. 沉积岩石学[M]. 2版. 北京: 石油工业出版社, 1994: 13-23. |
FENG Zengzhao. Sedimentary petrology[M]. 2nd ed. Beijing: Petroleum Industry Press, 1994: 13-23. | |
44 | CARACCIOLO L. Sediment generation and sediment routing systems from a quantitative provenance analysis perspective: Review, application and future development[J]. Earth-Science Reviews, 2020, 209: 103226. |
45 | BHATIA M R, TAYLOR S R. Trace-element geochemistry and sedimentary provinces: A study from the Tasman Geosyncline, Australia[J]. Chemical Geology, 1981, 33(1/4): 115-125. |
46 | VALLONI R E, MAYNARD J B. Detrital modes of recent deep-sea sands and their relation to tectonic setting: A first approximation[J]. Sedimentology, 1981, 28(1): 75-83. |
47 | BHATIA M R. Plate tectonics and geochemical composition of sandstones[J]. The Journal of Geology, 1983, 91(6): 611-627. |
48 | BHATIA M R, CROOK K A W. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins[J]. Contributions to Mineralogy and Petrology, 1986, 92(2): 181-193. |
49 | ROSER B P, KORSCH R J. Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio[J]. The Journal of Geology, 1986, 94(5): 635-650. |
50 | VERMA S P, ARMSTRONG-ALTRIN J S. New multi-dimensional diagrams for tectonic discrimination of siliciclastic sediments and their application to Precambrian basins[J]. Chemical Geology, 2013, 355: 117-133. |
51 | VERMA S P, DÍAZ-GONZÁLEZ L, ARMSTRONG-ALTRIN J S. Application of a new computer program for tectonic discrimination of Cambrian to Holocene clastic sediments[J]. Earth Science Informatics, 2016, 9(2): 151-165. |
52 | YAN Detian, CHEN Daizhao, WANG Qingchen, et al. Predominance of stratified anoxic Yangtze Sea interrupted by short-term oxygenation during the Ordo-Silurian transition[J]. Chemical Geology, 2012, 291: 69-78. |
53 | FLOYD P A, LEVERIDGE B E. Tectonic environment of the Devonian Gramscatho basin, south Cornwall: framework mode and geochemical evidence from turbiditic sandstones[J]. Journal of the Geological Society, 1987, 144(4): 531-542. |
54 | CHEN Weizhen, TIAN Jingchun, LIN Xiaobing, et al. Climate fluctuations during the Ordovician-Silurian transition period in South China: Implications for paleoenvironmental evolution and organic matter enrichment[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2023, 613: 111411. |
55 | ARMSTRONG-ALTRIN J S, VERMA S P. Critical evaluation of six tectonic setting discrimination diagrams using geochemical data of Neogene sediments from known tectonic settings[J]. Sedimentary Geology, 2005, 177(1/2): 115-129. |
56 | 施振生, 周天琪, 郭伟, 等. 海相页岩定量古地理编图及深水陆棚沉积微相划分——以川南泸州地区五峰组—龙马溪组龙一11-4小层为例[J]. 沉积学报, 2022, 40(6): 1728-1744. |
SHI Zhensheng, ZHOU Tianqi, GUO Wei, et al. Quantitative paleogeographic mapping and sedimentary microfacies division in a deep-water marine shale shelf: Case study of Wufeng Formation-Longmaxi Formation shale, southern Sichuan Basin, China[J]. Acta Sedimentologica Sinica, 2022, 40(6): 1728-1744. | |
57 | 童广勤, 陈林, 李培军, 等. 基于地层元素测井的鄂西宜昌地区下寒武统水井沱组页岩储层参数评价[J]. 矿物岩石地球化学通报, 2024, 43(3): 553-562. |
TONG Guangqin, CHEN Lin, LI Peijun, et al. The evaluation for parameters of shale reservoir within the Lower Cambrian Shuijingtuo Formation in the Yichang area of the western Hubei based on the stratigraphic element logging[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2024, 43(3): 553-562. | |
58 | 王红岩, 施振生, 孙莎莎, 等. 陆表海页岩沉积微相类型及微相分布模式——以川南地区五峰组—龙马溪组为例[J]. 石油勘探与开发, 2023, 50(1): 51-64. |
WANG Hongyan, SHI Zhensheng, SUN Shasha, et al. Microfacies types and distribution of epicontinental shale: A case study of the Wufeng-Longmaxi shale in southern Sichuan Basin, China[J]. Petroleum Exploration and Development, 2023, 50(1): 51-64. | |
59 | 王红岩, 施振生, 周天琪, 等. 海相黑色页岩甜点类型、特征及页岩气勘探意义——以四川盆地南部五峰组—龙马溪组为例[J]. 天然气工业, 2023, 43(10): 1-13. |
WANG Hongyan, SHI Zhensheng, ZHOU Tianqi, et al. Types and characteristics of sweet spots of marine black shale and significance for shale gas exploration: A case study of Wufeng-Longmaxi in southern Sichuan Basin[J]. Natural Gas Industry, 2023, 43(10): 1-13. | |
60 | BOUCHEZ J, VON BLANCKENBURG F, SCHUESSLER J A. Modeling novel stable isotope ratios in the weathering zone[J]. American Journal of Science, 2013, 313(4): 267-308. |
61 | GUO Yulong, YANG Shouye, SU Ni, et al. Revisiting the effects of hydrodynamic sorting and sedimentary recycling on chemical weathering indices[J]. Geochimica et Cosmochimica Acta, 2018, 227: 48-63. |
62 | LIU Jianbao, CHEN Jianhui, SELVARAJ K, et al. Chemical weathering over the last 1200 years recorded in the sediments of Gonghai Lake, Lvliang mountains, North China: A high-resolution proxy of past climate[J]. Boreas, 2014, 43(4): 914-923. |
63 | LUČIĆ M, VDOVIĆ N, BAČIĆ N, et al. Disentangling the influence of lithology and non-provenance factors on the geochemistry of rare earth elements: A study of fine-grained sediments from the Sava River headwaters (Slovenia, Croatia)[J]. Journal of Soils and Sediments, 2021, 21(11): 3704-3716. |
64 | 张学敏, 岳琼申. 地球化学方法在化学风化作用和物源判别中的应用综述[J]. 华南地质与矿产, 2018, 34(1): 41-58. |
ZHANG Xuemin, YUE Qiongshen. Review of the application of element and isotopic geochemistry in chemical weathering and provenance[J]. Geology and Mineral Resources of South China, 2018, 34(1): 41-58. | |
65 | ROSER B P, KORSCH R J. Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data[J]. Chemical Geology, 1988, 67(1/2): 119-139. |
66 | OHTA T. Geochemistry of Jurassic to earliest Cretaceous deposits in the Nagato Basin, SW Japan: Implication of factor analysis to sorting effects and provenance signatures[J]. Sedimentary Geology, 2004, 171(1/4): 159-180. |
67 | 施振生, 周天琪. 海相细粒沉积成因机制与有机质富集模式研究进展[J]. 石油与天然气地质, 2024, 45(4): 910-928. |
SHI Zhensheng, ZHOU Tianqi. Advances and perspectives in the study of the genetic mechanism and organic matter enrichment models of marine fine-grained sediment[J]. Oil & Gas Geology, 2024, 45(4): 910-928. | |
68 | QI Yuhan, GONG Yingzeng, WU Fei, et al. Coupled variations in V-Fe abundances and isotope compositions in latosols: Implications for V mobilization during chemical weathering[J]. Geochimica et Cosmochimica Acta, 2022, 320: 26-40. |
69 | 林承焰, 陈柄屹, 任丽华, 等. 沉积数值模拟研究现状及实例[J]. 地质学报, 2023, 97(8): 2756-2773. |
LIN Chengyan, CHEN Bingyi, REN Lihua, et al. A review of depositional numerical simulation and a case study[J]. Acta Geologica Sinica, 2023, 97(8): 2756-2773. | |
70 | 乔璐璐, 史经昊, 高飞, 等. 我国陆架泥质区沉积动力数值模拟研究进展[J]. 海洋地质与第四纪地质, 2014, 34(3): 155-166. |
QIAO Lulu, SHI Jinghao, GAO Fei, et al. Numerical simulation of sediment dynamic processes for mud areas on the east china sea continental shelves: A review[J]. Marine Geology & Quaternary Geology, 2014, 34(3): 155-166. | |
71 | 李苍柏, 肖克炎, 李楠, 等. 支持向量机、随机森林和人工神经网络机器学习算法在地球化学异常信息提取中的对比研究[J]. 地球学报, 2020, 41(2): 309-319. |
LI Cangbai, XIAO Keyan, LI Nan, et al. A comparative study of support vector machine, random forest and artificial neural network machine learning algorithms in geochemical anomaly information extraction[J]. Acta Geoscientica Sinica, 2020, 41(2): 309-319. | |
72 | 周统, 邱昆峰, 王瑀, 等. 磷灰石Eu/Y-Ce: 基于大数据的源区类型判别新图解[J]. 岩石学报, 2022, 38(1): 291-299. |
ZHOU Tong, QIU Kunfeng, WANG Yu, et al. Apatite Eu/Y-Ce discrimination diagram: A big data based approach for provenance classification[J]. Acta Petrologica Sinica, 2022, 38(1): 291-299. | |
73 | 王瑀, 邱昆峰, 侯照亮, 等. 石英Ti/Ge-P: 基于机器学习的矿床类型判别新图解[J]. 岩石学报, 2022, 38(1): 281-290. |
WANG Yu, QIU Kunfeng, HOU Zhaoliang, et al. Quartz Ti/Ge-P discrimination diagram: A machine learning based approach for deposit classification[J]. Acta Petrologica Sinica, 2022, 38(1): 281-290. | |
74 | 周永章, 张良均, 张奥多, 等. 地球科学大数据挖掘与机器学习[M]. 广州: 中山大学出版社, 2018: 44-203. |
ZHOU Yongzhang, ZHANG Liangjun, ZHANG Aoduo, et al. Big data mining & machine learning in geoscience[M]. Guangzhou: Sun Yat-Sen University Press, 2018: 44-203. | |
75 | 刘彦锋, 段太忠, 黄渊, 等. 沉积过程模拟驱动下的深度学习地质建模方法[J]. 石油与天然气地质, 2023, 44(1): 226-237. |
LIU Yanfeng, DUAN Taizhong, HUANG Yuan, et al. Deep learning-based geological modeling driven by sedimentary process simulation[J]. Oil & Gas Geology, 2023, 44(1): 226-237. | |
76 | 施振生, 袁渊, 赵群, 等. 川南地区五峰组—龙马溪组沉积期古地貌及含气页岩特征[J]. 天然气地球科学, 2022, 33(12): 1969-1985. |
SHI Zhensheng, YUAN Yuan, ZHAO Qun, et al. Paleogeomorphology and oil-bearing shale characteristics of the Wufeng-Longmaxi shale in southern Sichuan Basin, China[J]. Natural Gas Geoscience, 2022, 33(12): 1969-1985. | |
77 | 王华建, 柳宇柯, 王晓梅, 等. 松辽盆地青山口组页岩有机质的源-汇过程与地质驱动因素[J]. 矿物岩石地球化学通报, 2024, 43(2): 306-318. |
WANG Huajian, LIU Yuke, WANG Xiaomei, et al. The source and sink process and its geological driving factors of shale organic matter in the Qingshankou Formation, Songliao Basin[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2024, 43(2): 306-318. | |
78 | 熊亮, 董晓霞, 魏力民, 等. 川西南井研—犍为地区筇竹寺组沉积古环境与有机质富集机制[J/OL]. 天然气地球科学: 1-22. . |
XIONG Liang, DONG Xiaoxia, WEI Limin, et al. Sedimentary paleoenvironment and organic matter enrichment mechanism of the Qiongzhusi Formation in Jingyan-Qianwei area, southwest Sichuan[J/OL]. Natural Gas Geoscience: 1-22. . | |
79 | 邹才能, 龚剑明, 王红岩, 等. 笔石生物演化与地层年代标定在页岩气勘探开发中的重大意义[J]. 中国石油勘探, 2019, 24(1): 1-6. |
ZOU Caineng, GONG Jianming, WANG Hongyan, et al. Importance of graptolite evolution and biostratigraphic calibration on shale gas exploration[J]. China Petroleum Exploration, 2019, 24(1): 1-6. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 117
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 66
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||