Oil & Gas Geology ›› 2025, Vol. 46 ›› Issue (2): 365-376.doi: 10.11743/ogg20250203
• Petroleum Geology • Previous Articles Next Articles
Anping HU1,2,3(
), Feng LIANG1,2,3(
), Xianying LUO1,2,3, Yongsheng WANG1,2,3, Zhanfeng QIAO1,2,3, Xunyun HE1,2,3, Anjiang SHEN1,2,3
Received:2024-08-06
Revised:2024-11-23
Online:2025-04-30
Published:2025-04-27
Contact:
Feng LIANG
E-mail:huap_hz@petrochina.com.cn;liangf_hz@petrochina.com.cn
CLC Number:
Anping HU, Feng LIANG, Xianying LUO, Yongsheng WANG, Zhanfeng QIAO, Xunyun HE, Anjiang SHEN. Development and applications of new techniques for tests of trace elements and rare earth elements in carbonate minerals[J]. Oil & Gas Geology, 2025, 46(2): 365-376.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Comparison of technical indicators for trace element and REE tests based on the solution method before and after upgrading"
| 序号 | 对比内容 | 升级前技术指标 | 升级后技术指标 | 升级后技术优势 |
|---|---|---|---|---|
| 1 | 消解试剂 | 王水、高氯酸 | 氢氟酸、硝酸、盐酸 | 有效脱硅 |
| 2 | 试剂提纯 | 分析纯(AR级) | 二次纯化 | 降低本底,提高检测精度 |
| 3 | 消解方法 | 电热板法 | 高压罐消解法 | 有效提高消解效率 |
| 4 | 样品需求量 | 50 mg | 10 mg | 扩大检测样品的适用范围 |
| 5 | 耗酸量 | 10.0 mL | 3.4 mL | 降低耗酸量 |
| 6 | 溶液配置及使用器具 | 体积法(离心管、定容瓶,肉眼观测,精度1 mg) | 称重法(电子天平,精度0.01 mg) | 提高检测数据准确度 |
| 7 | 数据处理 | 单内标-单外标 | 多内标-多外标 | 提高微量稀土元素数据校正的精度 |
| 8 | 测试精度 | 相对误差5 % ~ 10 % | 相对误差2 % ~ 5 % | 检测精度提高1倍 |
Table 3
Comparison of technical indicators between the original and the new laser mapping techniques for trace elements and REEs"
| 序号 | 对比内容 | 原有技术指标 | 新技术指标 | 新技术技术优势 |
|---|---|---|---|---|
| 1 | 碳酸盐矿物标样 | 无碳酸盐矿物标样 | XK白云岩标样 | 解决了基体效应的问题 |
| 2 | 数据处理 | 无专属软件,半定量数据处理 | 多外标、多曲线数据处理软件,定量数据处理 | 提高数据精度和准确性 |
| 3 | 图像空间分辨率 | 5 μm | 1 μm | 图像空间分辨率大幅提高,图像更为清晰 |
| 4 | 灵敏度 | (1 ~ 10) × 10-9 | < 10-9 | 检测含量下限大幅降低 |
| 5 | 测试时长 | 扫描1 cm × 1 cm面积样品,50 µm直径激光束斑,20种元素扫描处理需要10 h | 扫描1 cm × 1 cm面积样品,50 µm直径激光束斑,20种元素扫描处理需要1 h | 测试效率提高到原来的10倍 |
Table 4
Geochemical characteristics of elements and their isotopes in various diagenetic fabrics in sample Q-58[19]"
| 结构组分 | U-Pb年龄/Ma | 碳、氧稳定同位素比值 | 87Sr/86Sr | 阴极发光 | 成岩环境 | |
|---|---|---|---|---|---|---|
| δ13C/‰ | δ18O/‰ | |||||
| 围岩 | 576.0±16.0 | 1.007 ~ 2.795 | -5.936 ~ -4.290 | 0.708 74 | 昏暗发光 | 蒸发海水成岩环境[ |
| 560.0±26.0 | 0.708 70 | |||||
| 纤状环边白云石 | 553.0±20.0 | 2.033 ~ 2.158 | -7.125 ~ -6.566 | 0.708 84 | 昏暗发光- 橘红色中等发光 | 蒸发海水成岩环境 |
| 556.0±17.0 | ||||||
| 513.0±20.0 | ||||||
| 叶片状白云石 | 542.7±8.0 | 1.001 ~ 1.598 | -6.651 ~ -6.610 | 0.708 85 | 昏暗发光 | 受大气淡水影响的封存海水 |
| 542.0±26.0 | ||||||
| 细-粉晶粒状白云石 | 486.3±6.8 | 1.834 | -8.253 | 0.709 00 | 不发光- 昏暗发光 | 还原的埋藏成岩环境 |
| 中晶粒状白云石 | 472.3±7.7 | 1.502 | -8.766 | 0.709 13 | ||
| 热液白云石及石英 | 215.0±30.0 | -3.53 ~ -3.51 | -10.39 ~ -9.50 | 0.709 30 ~ 0.709 46 | 橘红色, 明亮发光 | 印支早期构造热事件产物 |
| 1 | 李双应, 金福全, 王道轩. 碳酸盐岩成岩作用的微量元素地球化学特征[J]. 石油实验地质, 1995, 17(1): 55-62. |
| LI Shuangying, JIN Fuquan, WANG Daoxuan. Geochemical characteristics of carbonate rock diagenesis[J]. Petroleum Geology & Experiment, 1995, 17(1): 55-62. | |
| 2 | TRIBOVILLARD N, ALGEO T J, LYONS T, et al. Trace metals as paleoredox and paleoproductivity proxies: An update[J]. Chemical Geology, 2006, 232(1/2): 12-32. |
| 3 | PARSAPOOR A, KHALILI M, MACKIZADEH M A. The behaviour of trace and rare earth elements (REE) during hydrothermal alteration in the Rangan area (Central Iran)[J]. Journal of Asian Earth Sciences, 2009, 34(2): 123-134. |
| 4 | SHOLKOVITZ E, SHEN G T. The incorporation of rare earth elements in modern coral[J]. Geochimica et Cosmochimica Acta, 1995, 59(13): 2749-2756. |
| 5 | LAWRENCE M G, GREIG A, COLLERSON K D, et al. Rare earth element and Yttrium variability in South east Queensland waterways[J]. Aquatic Geochemistry, 2006, 12(1): 39-72. |
| 6 | MICHARD A, ALBARÈDE F. The REE content of some hydrothermal fluids[J]. Chemical Geology, 1986, 55(1/2): 51-60. |
| 7 | SHIELDS G A, WEBB G E. Has the REE composition of seawater changed over geological time?[J]. Chemical Geology, 2004, 204(1/2): 103-107. |
| 8 | TOSTEVIN R, SHIELDS G A, TARBUCK G M, et al. Effective use of cerium anomalies as a redox proxy in carbonate-dominated marine settings[J]. Chemical Geology, 2016, 438: 146-162. |
| 9 | GRAY A L. Solid sample introduction by laser ablation for inductively coupled plasma source mass spectrometry[J]. Analyst, 1985, 110(5): 551-556. |
| 10 | COOK N, CIOBANU C L, GEORGE L, et al. Trace element analysis of minerals in magmatic-hydrothermal ores by laser ablation inductively-coupled plasma mass spectrometry: Approaches and opportunities[J]. Minerals, 2016, 6(4): 111. |
| 11 | GAO J F, JACKSON S E, DUBÉ B, et al. Genesis of the Canadian Malartic, Côté Gold, and Musselwhite gold deposits: Insights from LA-ICP-MS element mapping of pyrite[M]//DUBÉ B, MERCIER-LANGEVIN P. Targeted Geoscience Initiative 4: Contributions to the Understanding of Precambrian Lode Gold Deposits and Implications for Exploration. Ottawa: Natural Resources Canada, 2015: 157-175. |
| 12 | LARGE R R, DANYUSHEVSKY L, HOLLIT C, et al. Gold and trace element zonation in pyrite using a laser imaging technique: Implications for the timing of gold in orogenic and Carlin-style sediment-hosted deposits[J]. Economic Geology, 2009, 104(5): 635-668. |
| 13 | SABINE BECKER J. Imaging of metals in biological tissue by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS): State of the art and future developments[J]. Journal of Mass Spectrometry, 2013, 48(2): 255-268. |
| 14 | PENG Sheng, HU Qinhong, EWING R P, et al. Quantitative 3-D elemental mapping by LA-ICP-MS of a basaltic clast from the Hanford 300 area, Washington, USA[J]. Environmental Science & Technology, 2012, 46(4): 2025-2032. |
| 15 | PATON C, HELLSTROM J, PAUL B, et al. Iolite: Freeware for the visualisation and processing of mass spectrometric data[J]. Journal of Analytical Atomic Spectrometry, 2011, 26(12): 2508-2518. |
| 16 | PAUL B, PATON C, NORRIS A, et al. CellSpace: A module for creating spatially registered laser ablation images within the Iolite freeware environment[J]. Journal of Analytical Atomic Spectrometry, 2012, 27(4): 700-706. |
| 17 | JACKSON B, HARPER S, SMITH L, et al. Elemental mapping and quantitative analysis of Cu, Zn, and Fe in rat brain sections by laser ablation ICP-MS[J]. Analytical and Bioanalytical Chemistry, 2006, 384(4): 951-957. |
| 18 | RITTNER M, MÜLLER W. 2D mapping of LA-ICPMS trace element distributions using R[J]. Computers & Geosciences, 2012, 42: 152-161. |
| 19 | 杨翰轩, 胡安平, 郑剑锋, 等. 面扫描和定年技术在古老碳酸盐岩储集层研究中的应用——以塔里木盆地西北部震旦系奇格布拉克组为例[J]. 石油勘探与开发, 2020, 47(5): 935-946. |
| YANG Hanxuan, HU Anping, ZHENG Jianfeng, et al. Application of mapping and dating techniques in the study of ancient carbonate reservoirs: A case study of Sinian Qigebrak Formation in northwestern Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(5): 935-946. | |
| 20 | TUCKER M E. Precambrian dolomites: Petrographic and isotopic evidence that they differ from Phanerozoic dolomites[J]. Geology, 1982, 10(1): 7-12. |
| 21 | HOOD A V S, WALLACE M W. Synsedimentary diagenesis in a Cryogenian reef complex: Ubiquitous marine dolomite precipitation[J]. Sedimentary Geology, 2012, 255/256: 56-71. |
| 22 | CANFIELD D E, POULTON S W, KNOLL A H, et al. Ferruginous conditions dominated later Neoproterozoic deep-water chemistry[J]. Science, 2008, 321(5891): 949-952. |
| 23 | HOOD A V S, WALLACE M W. Extreme ocean anoxia during the Late Cryogenian recorded in reefal carbonates of Southern Australia[J]. Precambrian Research, 2015, 261: 96-111. |
| 24 | BURNS S J, HAUDENSCHILD U, MATTER A. The Strontium isotopic composition of carbonates from the Late Precambrian (~ 560-540 Ma) Huqf Group of Oman[J]. Chemical Geology, 1994, 111(1/4): 269-282. |
| 25 | 刘丽红, 黄思静, 王春连, 等. 碳酸盐岩中方解石胶结物的阴极发光环带与微量元素构成的关系——以塔河油田奥陶系碳酸盐岩为例[J]. 海相油气地质, 2010, 15(1): 55-60. |
| LIU Lihong, HUANG Sijing, WANG Chunlian, et al. Cathodoluminescence zonal texture of calcite cement in carbonate rock and its relationship with trace element composition: A case of Ordovician carbonate rock of Tahe Oilfield, Tarim Basin[J]. Marine Origin Petroleum Geology, 2010, 15(1): 55-60. | |
| 26 | MACHEL H G. Application of cathodoluminescence to carbonate diagenesis[M]//PAGEL M, BARBIN V, BLANC P, et al. Cathodoluminescence in Geosciences. Berlin: Springer, 2000: 271-301. |
| 27 | SHI Zejin, WANG Yong, TIAN Yaming, et al. Cementation and diagenetic fluid of algal dolomites in the Sinian Dengying Formation in southeastern Sichuan Basin[J]. Science China Earth Sciences, 2013, 56(2): 192-202. |
| 28 | MOORE C H. Upper Jurassic subsurface cements: A case history[M]//SCHNEIDERMANN N, Harris P M. Carbonate Cements: Based on a Symposium Sponsored by the Society of Economic Paleontologists and Mineralogists. Broken Arrow: SEPM Society for Sedimentary Geology, 1985: 291-308. |
| 29 | MORFORD J L, EMERSON S. The geochemistry of redox sensitive trace metals in sediments[J]. Geochimica et Cosmochimica Acta, 1999, 63(11/12): 1735-1750. |
| 30 | ALGEO T J, MAYNARD J B. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems[J]. Chemical Geology, 2004, 206(3/4): 289-318. |
| 31 | 张军涛, 武重阳, 杨佳奇, 等. 富硅质碳酸盐岩储层地球化学特征及成因——以四川盆地泰来地区茅口组为例[J]. 断块油气田, 2023, 30(5): 790-798, 807. |
| ZHANG Juntao, WU Chongyang, YANG Jiaqi, et al. Geochemical characteristics and origin of silicon-rich carbonate reservoirs: A case study of Maokou Formation in Tailai area, Sichuan Basin[J]. Fault-Block Oil and Gas Field, 2023, 30(5): 790-798, 807. | |
| 32 | 陈丽华, 郭舜玲, 王衍琦, 等. 中国油气储层研究图集(卷五): 自生矿物 显微荧光 阴极发光[M]. 北京: 石油工业出版社, 1994. |
| CHEN Lihua, GUO Shunling, WANG Yanqi, et al. China petroleum reservoir study atlas (volume 5): Authigenic mineral microscope fluorescence cathodoluminescence[M]. Beijing: Petroleum Industry Press, 1994. | |
| 33 | 韩月卿, 张军涛, 何治亮, 等. 川西中二叠统栖霞组白云岩特征与成因[J]. 石油与天然气地质, 2023, 44(1): 75-88. |
| HAN Yueqing, ZHANG Juntao, HE Zhiliang, et al. Characteristics and genesis of the Middle Permian Qixia Formation dolostone in western Sichuan Basin[J]. Oil & Gas Geology, 2023, 44(1): 75-88. | |
| 34 | 宋志敏. 阴极发光地质学基础[M]. 武汉: 中国地质大学出版社, 1993. |
| SONG Zhimin. Fundamentals of cathodoluminescence geology[M]. Wuhan: China University of Geosciences Press, 1993. | |
| 35 | 杜玉山, 蒋龙, 倪良田, 等. 东营凹陷沙河街组页岩中纹层状亮晶方解石成因与储集意义[J]. 油气地质与采收率, 2024, 31(3): 1-15. |
| DU Yushan, JIANG Long, NI Liangtian, et al. Genesis and reservoir significance of lamellar sparry calcites of Shahejie Formation shale in Dongying Sag[J]. Petroleum Geology and Recovery Efficiency, 2024, 31(3): 1-15. | |
| 36 | MACHEL H G. Cathodoluminescence in calcite and dolomite and its chemical interpretation[J]. Geoscience Canada, 1985, 12(4): 139-147. |
| [1] | Chao Guo, Qianping Zhao, Gang Liu, Shiyan Hao, Chao Gao, Jianbo Sun, Chao Liu, Yiyi Chen. Super-resolution imaging of thin sections for lacustrine shale reservoirs [J]. Oil & Gas Geology, 2021, 42(5): 1202-1209. |
| [2] | Zhen Qiu, Hengye Wei, Hanlin Liu, Nan Shao, Yuman Wang, Leifu Zhang, Qin Zhang. Accumulation of sediments with extraordinary high organic matter content: Insight gained through geochemical characterization of indicative elements [J]. Oil & Gas Geology, 2021, 42(4): 931-948. |
| [3] | Yuxi Zhang, Jianwen Chen, Jiangyu Zhou. Geochemical features and organic matter enrichment in the Early Cambrian black shale, northern Jiangsu area [J]. Oil & Gas Geology, 2020, 41(4): 838-851. |
| [4] | Qiangfu Kong, Cai Yang, Hao Li, Chao Geng, Jian Deng. A lithology recognition method based on multi-resolution graph-based clustering and K-Nearest Neighbor:A case study from the Leikoupo Formation carbonate reservoirs in western Sichuan Basin [J]. Oil & Gas Geology, 2020, 41(4): 884-890. |
| [5] | Jiaqing Liu, Zhong Li, Mengke Yan, K.Swart Peter, Liu Yang, Chaojin Lu. Diagenetic fluid evolution of dolomite from the Lower Ordovician in Tazhong area, Tarim Basin: Clumped isotopic evidence [J]. Oil & Gas Geology, 2020, 41(1): 68-82. |
| [6] | Zhao Rixin, Lu Shuangfang, Xue Haitao, Tian Shansi. Effect of SEM parameters on quantitative evaluation of shale micropores [J]. Oil & Gas Geology, 2019, 40(5): 1141-1154. |
| [7] | Liu Yukun, He Sheng, He Zhiliang, Zhang Dianwei, Li Tianyi, Wang Xiaolong, Guo Xiaowen. The rock physics modeling experiment under overpressure and theoretical model for overpressure prediction in carbonate rocks [J]. Oil & Gas Geology, 2019, 40(4): 716-724. |
| [8] | Jiang Qigui, Li Maowen, Qian Menhui, Bao Yunjie, Liu Peng, Tao Guoliang, Ma Xiaoxiao, Li Zhiming, Cao Tingting, Wu Shiqiang. Experimental procedures of well-site geological evaluation for shale oil and related technological progress [J]. Oil & Gas Geology, 2019, 40(3): 571-582. |
| [9] | Li Meijun, Zhang Zhongtao, Chen Cong, Yang Chengyu, Lu Xiaolin, Fu Jian, Dai Jinhui, Tang Youjun. Origin of reservoir bitumen and its implications for adjustment and reformation of hydrocarbon-accumulation in Baiyuan Sag, Pearl River Mouth Basin [J]. Oil & Gas Geology, 2019, 40(1): 133-141. |
| [10] | Ma Dong, Zhang Kun, Hu Juncheng, Li Hehui, Ma Long, Tang Tang. Correlation between relative permeability, capillary pressure and resistivity index [J]. Oil & Gas Geology, 2019, 40(1): 190-195. |
| [11] | Wang Sheng, Liu Bo, Fu Xiaofei, Zhao Wanchun. Evaluation of the brittleness and fracturing characteristics for tight clastic reservoir [J]. Oil & Gas Geology, 2018, 39(6): 1270-1279. |
| [12] | Wang Fei, Bian Huiyuan, Zhang Yonghao, Duan Chaowei, Zhao Lun, Li Jianxin. Experimental study on dynamic and static elastic modulus conversion for shale under different temperatures and pressures [J]. Oil & Gas Geology, 2018, 39(5): 1048-1055. |
| [13] | Ma Anlai, Jin Zhijun, Zhu Cuishan, Gu Yi, Li Huili, Lu Qinghua. Effect of TSR on the crude oil in Ordovician reservoirs of Well Luosi-2 from Maigaiti Slope,Tarim Basin: Evidences from molecular markers [J]. Oil & Gas Geology, 2018, 39(4): 730-737,748. |
| [14] | Deng Hui, Zhang Mi, Deng Tonghai, Zhang Qian. A triaxial compression test of tight quartz sandstone under high temperature and high confining pressure [J]. Oil & Gas Geology, 2017, 38(6): 1172-1179. |
| [15] | Liu Wenhui, Luo Houyong, Tenger, Wang Wanchun, Wang Jie, Lu Longfei, Tao Cheng, Wang Ping, Zhao Heng. Simulation experiments on crude oil cracking and carbon isotopic evolution in carbonate reservoirs [J]. Oil & Gas Geology, 2016, 37(5): 627-633. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||