Oil & Gas Geology ›› 2020, Vol. 41 ›› Issue (1): 223-234.doi: 10.11743/ogg20200120
Qian Ding1,2,3(), Zhiliang He1,3,4,*(), Jingbin Wang2,3,5, Dongya Zhu1,2,3
Received:
2019-07-30
Online:
2020-02-01
Published:
2020-01-19
Contact:
Zhiliang He
E-mail:dingqian.syky@sinopec.com;hezhiliang@sinopec.com
Supported by:
CLC Number:
Qian Ding, Zhiliang He, Jingbin Wang, Dongya Zhu. Simulation experiment of carbonate reservoir modification by source rock-derived acidic fluids[J]. Oil & Gas Geology, 2020, 41(1): 223-234.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Temperature and pressure parameters of hydrocarbon generation and dissolution simulation experiments of plunger-shaped samples from the Yingshan Formation, Tarim Basin"
生烃模拟 | 溶蚀模拟 | |||||||||
埋深/m | Ro/% | 地温梯度/(℃·km-1) | 模拟生烃温度/℃ | 体系 | 埋深/m | 温度梯度/(℃·km-1) | 溶蚀温度/℃ | 溶蚀压力/MPa | 体系 | |
3 100 | 0.90 | 32 | 330 | 封 | 2 000 | 32 | 89 | 20 | 开 | |
4 000 | 1.12 | 32 | 350 | 闭 | 3 300 | 32 | 131 | 33 | 放 | |
4 900 | 1.39 | 32 | 375 | 体 | 4 000 | 32 | 153 | 40 | 体 | |
5 700 | 1.63 | 32 | 420 | 系 | 4 700 | 32 | 169 | 47 | 系 |
Table 3
Contents and ratios of mass, CO2 percentage composition, and cations (Mg2+and Ca2+) of the plunger-shaped samples before and after experiments from the Yingshan Formation, Tarim Basin"
生烃温度/℃ | 溶蚀温度/℃ | 溶蚀实验前 | 溶蚀实验后 | 溶蚀实验前、后变化率/% | ||||||||||||||
溶蚀前质量m1 | CO2/% | 阳离子含量/(mg·L-1) | 溶蚀后质量m2 | CO2/% | 阳离子含量/(mg·L-1) | 质量 | CO2相对含量 | Mg2+ | Ca2+ | Ca2++Mg2+ | ||||||||
Mg2+ | Ca2+ | Ca2++Mg2+ | Mg2+ | Ca2+ | Ca2++Mg2+ | |||||||||||||
330 | 89 | 34.734 38 | 58.68 | 2.46 | 87.7 | 90.16 | 34.562 87 | 43.44 | 9.09 | 203.0 | 212.09 | 0.497 | 25.97 | 2.70 | 1.31 | 1.35 | ||
350 | 131 | 37.173 29 | 43.05 | 2.28 | 55.4 | 57.68 | 37.085 78 | 36.42 | 6.12 | 106.0 | 112.12 | 0.240 | 15.39 | 1.68 | 0.91 | 0.94 | ||
375 | 153 | 40.961 26 | 37.57 | 4.22 | 93.9 | 98.12 | 40.940 60 | 34.16 | 9.63 | 175.0 | 184.63 | 0.050 | 9.07 | 1.28 | 0.86 | 0.88 | ||
420 | 169 | 46.957 84 | 38.01 | 2.87 | 16.2 | 19.07 | 46.943 57 | 34.74 | 6.05 | 31.1 | 37.15 | 0.030 | 8.61 | 1.11 | 0.92 | 0.95 |
Table 4
The concentration of Ca2++Mg2+ cations of the plunger-shaped samples at different times during the simulation experiments, Yingshan Formation, Tarim Basin"
离子含量/(mg·L-1) | 生烃温度/℃ | 溶蚀温度/℃ | 时间/h | ||||||||||||
0.5 | 1.0 | 1.5 | 2.0 | 2.5 | 3.0 | 3.5 | 4.0 | 4.5 | 5.0 | 5.5 | 6.0 | 6.5 | |||
Ca2++Mg2+ | 330 | 89 | 240.42 | - | 237.55 | - | 211.12 | - | 214.96 | - | 242.81 | - | 266.37 | - | - |
350 | 131 | 153.14 | - | 172.64 | - | 259.08 | - | 231.73 | - | 211.76 | - | 245.42 | - | 246.01 | |
375 | 153 | 153.69 | - | - | 137.71 | - | - | 193.30 | - | 200.90 | - | - | 291.40 | - | |
420 | 169 | - | - | 145.42 | - | - | 169.85 | - | - | 201.54 | - | - | 226.93 | - |
Table 5
Temperature and pressure parameters in the source rock hydrocarbon generation and dissolution simulation experiments, and the porosity and permeability of the plunger-shaped samples taken from the Yingshan Formation, Tarim Basin"
生烃温度/℃ | 溶蚀温度/℃ | 反应前孔隙度/% | 反应前渗透率/(10-3 μm2) | 反应后孔隙度/% | 反应后渗透率/(10-3 μm2) | 孔隙度变化率/% | 渗透率变化率/% |
330 | 89 | 1.49 | 1.300 | - | - | - | - |
350 | 131 | 1.43 | 0.733 | 1.54 | - | 7.7 | - |
375 | 153 | 1.00 | 0.740 | 1.10 | 0.157 | 10.0 | -79 |
420 | 169 | 0.89 | 1.082 | 1.03 | 0.133 | 16.0 | -88 |
1 | 焦方正. 塔里木盆地顺北特深碳酸盐岩断溶体油气藏发现意义与前景[J]. 石油与天然气地质, 2018, 39 (2): 5- 14. |
Jiao Fangzheng . Significance of oil and gas exploration in NE strike-slip fault belts in Shuntuoguole area of Tarim Basin[J]. Oil&Gas Geology, 2018, 39 (2): 5- 14. | |
2 | 何治亮, 张军涛, 丁茜, 等. 深层-超深层优质碳酸盐岩储层形成控制因素[J]. 石油与天然气地质, 2017, 38 (4): 633- 644, 763. |
He Zhiliang , Zhang Juntao , Ding Qian , et al. Factors controlling the formation of high-quality deep to ultra-deep carbonate reservoirs[J]. Oil&Gas Geology, 2017, 38 (4): 633- 644, 763. | |
3 | Schmoker J W , Halley R B . Carbonate porosity versus depth:A predictable relation for South Florida[J]. AAPG Bulletin, 1982, 66 (12): 2561- 2570. |
4 | Ehrenberg S N , Nadeau P H . Sandstone versus carbonate petroleum reservoirs:A global perspective on porosity depth and porosity-permeability relationships[J]. AAPG Bulletin, 2005, 89 (4): 435- 445. |
5 | Ehrenberg S N , Walderhaug O , Bjorlykke . Carbonate porosity cretation by mesogenetic dissolution:Reality or illusion?[J]. AAPG Bulletin, 2012, 97 (2): 345- 345. |
6 | Zhu D Y , Meng Q Q , Jin Z J , et al. Formation mechanism of deep Cambrian dolomite reservoirs in the Tarim basin, northwestern China[J]. Marine&Petroleum Geology, 2015, 59 (59): 232- 244. |
7 | Hao F , Zhang X , Wang C , et al. The fate of CO2 derived from thermochemical sulfate reduction (TSR) and effect of TSR on carbonate porosity and permeability, Sichuan Basin, China[J]. Earth-Science Reviews, 2015, 141, 154- 177. |
8 | 朱光有, 张水昌, 梁英波, 等. TSR对深部碳酸盐岩储层的溶蚀改造——四川盆地深部碳酸盐岩优质储层形成的重要方式[J]. 岩石学报, 2006, 22 (8): 2182- 2194. |
Zhu Guangyou , Zhang Shuichang , Liang Yingbo , et al. Dissolution and alteration of the deep carbonate reservoir by TSR:An important type of deep-burial high-quality carbonate reservoirs in Sichuan Basin[J]. Acta Petrologica Sinica, 2006, 22 (8): 2182- 2194. | |
9 | 朱东亚, 金之钧, 胡文瑄, 等. 塔里木盆地深部流体对碳酸盐岩储层影响[J]. 地质论评, 2008, 54 (3): 348- 354. |
Zhu Dongya , Jin Zhijin , Hu Wenxuan , et al. Effects of deep fluid on carbonate reservoir in Tarim Basin[J]. Geological Review, 2008, 54 (3): 348- 354. | |
10 | 朱东亚, 张殿伟, 张荣强, 等. 中国南方地区灯影组白云岩储层流体溶蚀改造机制[J]. 石油学报, 2015, 36 (10): 1188- 1198. |
Zhu Dongya , Zhang Dianwei , Zhang Rongqiang , et al. Fluid alteration mechanism of dolomite reservoirs in Dengying Formation, South China[J]. Acta Petrolei Sinica, 2015, 36 (10): 1188- 1198. | |
11 | Zhu D , Meng Q , Jin Z , et al. Fluid environment for preservation of pore spaces in a deep dolomite reservoir[J]. Geofluids, 2014, 15 (4): 527- 545. |
12 | Jia L , Cai C , Yang H , et al. Thermochemical and bacterial sulfate reduction in the Cambrian and Lower Ordovician carbonates in the Tazhong Area, Tarim Basin, NW China:Evidence from fluid inclusions, C, S and Sr isotopic data[J]. Geofluids, 2015, 15 (3): 421- 437. |
13 | Jiang L , Worden R H , Yang C . Thermochemical sulphate reduction can improve carbonate petroleum reservoir quality[J]. Geochimica et Cosmochimica Acta, 2018, 223, 127- 140. |
14 | 尤东华, 王亮, 胡文瑄, 等. 从成岩-蚀变特征探讨塔深1井白云岩储层成因[J]. 岩石矿物学杂志, 2018, 37 (1): 34- 46. |
You Donghua , Wang Liang , Hu Wenxuan , et al. Formation of deep dolomite reservoir of Well TS1:Insights from diagenesis and alteration investigations[J]. Acta Petrologica et Mineralogica, 2018, 37 (1): 34- 46. | |
15 | Lu Z , Chen H , Qing H , et al. Petrography, fluid inclusion and isotope studies in Ordovician carbonate reservoirs in the Shunnan area, Tarim basin, NW China:Implications for the nature and timing of silicification[J]. Sedimentary Geology, 2017, 359, 29- 43. |
16 | 李映涛, 叶宁, 袁晓宇, 等. 塔里木盆地顺南4井中硅化热液的地质与地球化学特征[J]. 石油与天然气地质, 2015, 36 (6): 934- 944. |
Li Yingtao , Ye Ning , Yuan Xiaoyu , et al. Geological and geochemical characteristics of silicified hydrothermal fluids in Well Shunnan 4, Tarim Basin[J]. Oil&Gas Geology, 2015, 36 (6): 934- 944. | |
17 | 范明, 胡凯, 蒋小琼, 等. 酸性流体对碳酸盐岩储层的改造作用[J]. 地球化学, 2009, 38 (1): 20- 26. |
Fan Ming , Hu Kai , Jiang Xiaoqiong , et al. Effect of acid fluid on carbonate reservoir reconstruction[J]. Geochimica, 2009, 38 (1): 20- 26. | |
18 | 鲜强, 冯许魁, 刘永雷, 等. 塔中地区碳酸盐岩缝洞型储层叠前流体识别[J]. 石油与天然气, 2019, 40 (1): 196- 204. |
Xian Qiang , Feng Xukui , Liu Yonglei , et al. Pre-stack fluid identification for fractured-vuggy carbonate reservoir in Tazhong area[J]. Oil&Gas Geology, 2019, 40 (1): 196- 204. | |
19 | 贾晓静, 柯光明, 徐守成, 等. 超深层复杂碳酸盐岩滩相储层发育特征[J]. 石油地质与工程, 2019, 33 (5): 5- 10. |
Jia Xiaojing , Ke Guangming , Xu Shoucheng , et al. Development characteristics of ultra-deep complex carbonste shoal facies reservoirs[J]. Petroleum Geology and Engineering, 2019, 33 (5): 5- 10. | |
20 | 寿建峰, 佘敏, 沈安江. 深层条件下碳酸盐岩溶蚀改造效应的模拟实验研究[J]. 矿物岩石地球化学通报, 2016, 35 (5): 860- 867. |
Shou Jianfeng , She Min , Shen Anjiang . Experimental simulation of dissolution effect of carbonate rock under deep burial condition[J]. Bulletion of Mineralogy, Petrology and Geochemistry, 2016, 35 (5): 860- 867. | |
21 | 丁茜, 何治亮, 沃玉进, 等. 高温高压条件下碳酸盐岩溶蚀过程控制因素[J]. 石油与天然气地质, 2017, 38 (4): 784- 791. |
Ding Qian , He Zhiliang , Wo Yujin , et al. Factors controlling carbonate rock dissolution under high temperature and pressure[J]. Oil&Gas Geology, 2017, 38 (4): 784- 791. | |
22 | He Z L , Ding Q , Wo Y J , et al. Experiment of carbonate dissolution:Implication for high quality carbonate reservoir formation in deep and ultradeep basins[J]. Geofluids, 2017, 8439259, 1- 8. |
23 | 彭军, 王雪龙, 韩浩东, 等. 塔里木盆地寒武系碳酸盐岩溶蚀作用机理模拟实验[J]. 石油勘探与开发, 2018, 45 (3): 415- 425. |
Peng Jun , Wang Xuelong , Han Haodong , et al. Simulation for the dissolution mechanism of Cambrian carbonate rocks in Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2018, 45 (3): 415- 425. | |
24 | 范明, 蒋小琼, 刘伟新, 等. 不同温度条件下CO2水溶液对碳酸盐岩的溶蚀作用[J]. 沉积学报, 2007, 25 (6): 825- 830. |
Fan Ming , Jiang Xiaoqiong , Liu Weixin , et al. Dissolution of carbonate rocks in CO2 solution under the different temperature[J]. Acta Sedimentologica Sinica, 2007, 25 (6): 825- 830. | |
25 | Pokrovsky O S , Golubev S V , Schott J , et al. Calcite, dolomite and magnesite dissolution kinetics in aqueous solutions at acid to circumneutral pH, 25 to 150℃ and 1 to 55atm pCO2:New constraints on CO2, sequestration in sedimentary basins[J]. Chemical Geology, 2009, 265 (1-2): 20- 32. |
26 | Elkhoury J E , Ameli P , Detwiler R L . Dissolution and deformation in fractured carbonates caused by flow of CO2-rich brine under reservoir conditions[J]. International Journal of Greenhouse Gas Control, 2013, 16 (Si): 203- 215. |
27 | 杨云坤, 刘波, 秦善, 等. 基于模拟实验的原位观察对碳酸盐岩深部溶蚀的再认识[J]. 北京大学学报(自然科学版), 2014, 50 (2): 316- 322. |
Yang Yunkun , Liu Bo , Qin Shan , et al. Re-recognition of deep carbonate dissolution based on the observation of in-situ simulation experiment[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2014, 50 (2): 316- 322. | |
28 | Garcia-Rios M , Luquot L , Soler J M , et al. Influence of the flow rate on dissolution and precipitation features during percolation of CO2-rich sulfate solutions through fractured limestone samples[J]. Chemical Geology, 2015, 414, 95- 108. |
29 | 赫俊民,王小圭,孙建芳,等.塔里木盆地塔河地区中-下奥陶统碳酸盐岩储层天然裂缝发育特征及主控因素[J].石油与天然气地质, 2019, 40(5): 1022-1030. |
Hao Junmin, Wang Xiao Jianfang, et al.Characteristics and maincontrolling factors of natural frcatures in the Lower-to-Middle Ordovician carbonate ressrvoirs in Tahearea, northern Tarim Basin[J]. Oil&Geology, 2019, 40(5): 1022-1030. | |
30 | 胡明毅, 蔡习尧, 胡忠贵, 等. 塔中地区奥陶系碳酸盐岩深部埋藏溶蚀作用研究[J]. 石油天然气学报, 2009, 31 (6): 49- 54. |
Hu Mingyi , Cai Xirao , Hu Zhonggui , et al. Deep buried dissolution of Ordovician carbonates in Tazhong area of Tarim Basin[J]. Journal of Oil and Gas Technology, 2009, 31 (6): 49- 54. | |
31 | 佘敏, 寿建峰, 贺训云, 等. 碳酸盐岩溶蚀机制的实验探讨:表面溶蚀与内部溶蚀对比[J]. 海相油气地质, 2013, 18 (3): 55- 61. |
She Min , Shou Jianfeng , He Xunyun , et al. Experiment of dissolution mechanism of carbonate rocks:Surface dissolution and internal dissolution[J]. Marine Origin Petroleum Geology, 2013, 18 (3): 55- 61. | |
32 | 倪斌, 汤良杰, 郭颖, 等. 塔里木盆地玉北地区埋藏史及热史分析[J]. 现代地质, 2017, 31 (2): 151- 160. |
Ni Bin , Tang Liangjie , Guo Ying , et al. Analysis of burial history and thermal history in Yubei area, Tarim Basin[J]. Geoscience, 2017, 31 (2): 151- 160. | |
33 | 郑剑锋, 沈安江, 黄理力, 等. 基于埋藏溶蚀模拟实验的白云岩储层孔隙效应研究——以塔里木盆地下寒武统肖尔布拉克组为例[J]. 石油实验地质, 2017, 39 (5): 716- 723. |
Zheng Jianfeng , Shen Anjiang , Huang Lili , et al. Pore effect of dolomite reservoirs based on burial dissolution simulation:A case study of the Lower Cambrian Xiaoerbulake Formation in the Tarim Basin[J]. Petroleum Geology and Experiment, 2017, 39 (5): 716- 723. | |
34 | 何治亮, 魏修成, 钱一雄, 等. 海相碳酸盐岩优质储层形成机理与分布预测[J]. 石油与天然气地质, 2011, 32 (4): 489- 498. |
He Zhiliang , Wei Xiucheng , Qian Yixiong , et al. Forming mechanism and distribution prediction of quality marine carbonate reservoirs[J]. Oil&Gas Geology, 2011, 32 (4): 489- 498. | |
35 | 马永生, 蔡勋育, 赵培荣, 等. 深层超深层碳酸盐岩优质储层发育机理和"三元控储"模式——以四川普光气田为例[J]. 地质学报, 2010, 84 (8): 1087- 1094. |
Ma Yongsheng , Cai Xunyu , Zhao Peirong , et al. Formation mechanism of deep buried carbonate reservoir and its model of three element controlling reservoir:A case study from the Puguang oil field in Sichuan[J]. Acta Geologica Sinica, 2010, 84 (8): 1087- 1094. | |
36 | Choquette P W , James N P . Diagenesis in limestones-(3).The deep burial environment[J]. Geoscience, 1987, 14 (3): 30- 35. |
37 | Zeebe R E , Wolf-G D . CO2 in seawater:Equilibrium, kinetics, isotopes[M]. Amsterdam: Elsevier, 2001. |
38 | 佘敏, 寿建峰, 沈安江, 等. 碳酸盐岩溶蚀规律与孔隙演化实验研究[J]. 石油勘探与开发, 2016, 43 (4): 564- 572. |
She Min , Shou Jianfeng , Shen Anjiang , et al. Experimental simulation of dissolution law and porosity evolution of carbonate rock[J]. Petroleum Exploration and Development, 2016, 43 (4): 564- 572. |
[1] | Pengyuan HAN, Wenlong DING, Debin YANG, Juan ZHANG, Hailong MA, Shenghui WANG. Characteristics of the S80 strike-slip fault zone and its controlling effects on the Ordovician reservoirs in the Tahe oilfield, Tarim Basin [J]. Oil & Gas Geology, 2024, 45(3): 770-786. |
[2] | Yanqiu ZHANG, Honghan CHEN, Xiepei WANG, Peng WANG, Danmei SU, Zhou XIE. Assessment of connectivity between source rocks and strike-slip fault zone in the Fuman oilfield, Tarim Basin [J]. Oil & Gas Geology, 2024, 45(3): 787-800. |
[3] | Wenlong DING, Yuntao LI, Jun HAN, Cheng HUANG, Laiyuan WANG, Qingxiu MENG. Methods for high-precision tectonic stress field simulation and multi-parameter prediction of fracture distribution for carbonate reservoirs and their application [J]. Oil & Gas Geology, 2024, 45(3): 827-851. |
[4] | Zicheng CAO, Lu YUN, Lixin QI, Haiying LI, Jun HAN, Feng GENG, Bo LIN, Jingping CHEN, Cheng HUANG, Qingyan MAO. A major discovery of hydrocarbon-bearing layers over 1,000-meter thick in well Shunbei 84X, Shunbei area, Tarim Basin and its implications [J]. Oil & Gas Geology, 2024, 45(2): 341-356. |
[5] | Debin YANG, Xinbian LU, Dian BAO, Fei CAO, Yan WANG, Ming WANG, Runcheng XIE. New insights into the genetic types and characteristics of the Ordovician marine fault-karst carbonate reservoirs in the northern Tarim Basin [J]. Oil & Gas Geology, 2024, 45(2): 357-366. |
[6] | Changjian ZHANG, Debin YANG, Lin JIANG, Yingbing JIANG, Qi CHANG, Xuejian MA. Characteristics and origin of over-dissolution residual fault-karst reservoirs in the northern Tahe oilfield, Tarim Basin [J]. Oil & Gas Geology, 2024, 45(2): 367-383. |
[7] | Junyu WAN, Jianhui ZHU, Suping YAO, Yi ZHANG, Chuntang LI, Wei ZHANG, Haijian JIANG, Jie WANG. Geobiological evaluation of hydrocarbon-generating organisms and source rocks in the Ordovician Majiagou Formation, east-central Ordos Basin [J]. Oil & Gas Geology, 2024, 45(2): 393-405. |
[8] | Tongwen JIANG, Xingliang DENG, Peng CAO, Shaoying CHANG. Storage space types and water-flooding efficiency for fault-controlled fractured oil reservoirs in Fuman oilfield, Tarim Basin [J]. Oil & Gas Geology, 2024, 45(2): 542-552. |
[9] | Yuemeng NIU, Jun HAN, Yixin YU, Cheng Huang, Bo Lin, Fan YANG, Lang YU, Junyu CHEN. Igneous rock intrusions in the western Shunbei area, Tarim Basin: Characteristics and coupling relationships with faults [J]. Oil & Gas Geology, 2024, 45(1): 231-242. |
[10] | San ZHANG, Qiang JIN, Jinxiong SHI, Mingyi HU, Mengyue DUAN, Yongqiang LI, Xudong ZHANG, Fuqi CHENG. Filling patterns and reservoir property of the Ordovician buried-river karst caves in the Tabei area, Tarim Basin [J]. Oil & Gas Geology, 2023, 44(6): 1582-1594. |
[11] | Wei HU, Ting XU, Yang YANG, Zengmin LUN, Zongyu LI, Zhijiang KANG, Ruiming ZHAO, Shengwen MEI. Fluid phases and behaviors in ultra-deep oil and gas reservoirs, Tarim Basin [J]. Oil & Gas Geology, 2023, 44(4): 1044-1053. |
[12] | Tan ZHANG, Wei YAO, Yongqiang ZHAO, Yushuang ZHOU, Jiwen HUANG, Xinyu FAN, Yu LUO. Time scale and denudation thickness calculation of Carboniferous Kalashayi Formation in the Bamai area, Tarim Basin [J]. Oil & Gas Geology, 2023, 44(4): 1054-1066. |
[13] | Honghui GUO, Jianwei FENG, Libin ZHAO. Characteristics of passive strike-slip structure and its control effect on fracture development in Bozi-Dabei area, Tarim Basin [J]. Oil & Gas Geology, 2023, 44(4): 962-975. |
[14] | Faqi HE, Wei ZHANG, Xiaoqi DING, Zhuangzhuang QI, Chuntang LI, Hanjing SUN. Controlling mechanism of Wushenqi paleo-uplift on paleo-karst gas reservoirs in Ordos Basin [J]. Oil & Gas Geology, 2023, 44(2): 276-291. |
[15] | Bin LI, Xingxing ZHAO, Guanghui WU, Jianfa HAN, Baozhu GUAN, Chunguang SHEN. Differential hydrocarbon accumulation model of the Ordovician in Tazhong Ⅱ block, Tarim Basin [J]. Oil & Gas Geology, 2023, 44(2): 308-320. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||