Oil & Gas Geology ›› 2021, Vol. 42 ›› Issue (3): 570-586.doi: 10.11743/ogg20210304
• Petroleum Geology • Previous Articles Next Articles
Yixiong Qian1(), Chenglin Chu1, Yuejun Li2, Qingzhen Zhang1, Wangpeng Li3, Xin Yang3
Received:
2020-12-01
Online:
2021-06-28
Published:
2021-06-23
CLC Number:
Yixiong Qian, Chenglin Chu, Yuejun Li, Qingzhen Zhang, Wangpeng Li, Xin Yang. Characteristics, enviornment and geological dating of primary dolomite in the Neoproterozoic Pingwagou Formation at Hongliugou, Ruoqiang County, Xinjiang[J]. Oil & Gas Geology, 2021, 42(3): 570-586.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Fig.1
Simplified geological map of stratigraphic sections adjacent to the study area (a) stratigraphic sections (b) of Binggou group and comprehensive diagram for depositional sequences, diagenesis and porosity occurring in Pingwagou Formation, Neoproterozoic at Hongliugou section l, Ruoqiang County (c)"
Table 1
Mineral composition of dolomites in the Pingwagou Formation at Hongliugou section Ⅰ, Ruoqiang County"
样号 | 样品名称 | 矿物组成/% | ||||||||
粘土 | 石英 | 斜长石 | 方解石 | 白云石 | 菱铁矿 | 黄铁矿 | 石膏 | 硬石膏 | ||
HLG-029 | 亮晶球粒云岩 | 1.6 | 0.4 | 0.3 | 0.3 | 96.7 | 0.1 | 0.5 | 0.1 | - |
HLG-031 | 球粒-叠层石云岩 | 2.2 | 0.2 | 0.3 | 0.3 | 95.8 | 0.3 | 0.9 | - | - |
HLG-035 | 亮晶藻球粒云岩 | 2.9 | 1.1 | 0.3 | 0.1 | 95.6 | - | - | - | - |
HLG1-43 | 硅化藻鲕-球粒云岩 | 0.9 | 6.6 | 0.2 | 0.7 | 91.5 | - | - | - | 0.1 |
Table 2
The major and trace elements, ratios and C, O, Sr isotope data of dolomites in the Pingwagou Formation at Hongliugou section Ⅰ, Ruoqiang County"
样号 | HLG-023 | HLG-024 | HLG-025 | HLG-029 | HLG-031 | HLG-032 | HLG-033+1 | HLG-037 | HLG-039 | HLG-042 | HLG-43 |
SiO2 | 33.21 | 4.64 | 12.13 | 1.39 | 0.30 | 1.35 | 5.72 | 1.36 | 0.30 | 10.80 | 4.34 |
Al2O3 | 0.08 | 0.17 | 0.03 | 0.03 | 0.04 | 0.05 | 0.06 | 0.19 | 0.06 | 0.34 | 0.37 |
Fe2O3 | 0.26 | 0.15 | 0.18 | 0.04 | 0.06 | 0.05 | 0.16 | 0.05 | 0.12 | 0.56 | 0.58 |
FeO | 0.22 | 0.12 | 0.13 | 0.02 | 0.02 | 0.02 | 0.13 | 0.02 | 0.10 | 0.49 | 0.48 |
MgO | 15.34 | 22.24 | 20.59 | 23.49 | 23.84 | 23.44 | 22.27 | 23.39 | 23.34 | 20.16 | 21.23 |
CaO | 19.58 | 28.80 | 25.73 | 29.58 | 30.32 | 29.44 | 28.20 | 29.56 | 29.86 | 25.88 | 28.82 |
Na2O | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.015 |
K2O | 0.013 | 0.033 | 0.002 | 0.011 | 0.002 | 0.002 | 0.022 | 0.057 | 0.012 | 0.065 | 0.024 |
MnO | 0.048 | 0.028 | 0.030 | 0.021 | 0.016 | 0.017 | 0.040 | 0.024 | 0.030 | 0.152 | 0.064 |
TiO2 | 0.006 | 0.007 | 0.001 | 0.001 | 0.001 | 0.007 | 0.001 | 0.006 | 0.007 | 0.049 | 0.008 |
P2O5 | 0.010 | 0.042 | 0.009 | 0.010 | 0.008 | 0.012 | 0.010 | 0.009 | 0.029 | 0.014 | 0.071 |
烧失量 | 31.36 | 43.37 | 40.72 | 44.85 | 44.84 | 45.07 | 43.08 | 45.12 | 45.65 | 41.76 | 44.18 |
总计 | 100.13 | 99.60 | 99.55 | 99.44 | 99.44 | 99.46 | 99.69 | 99.79 | 99.52 | 100.27 | 100.18 |
Rb | 0.24 | 0.31 | 0.08 | 0.11 | 0.05 | 0.09 | 0.11 | 0.07 | 0.08 | 1.52 | 0.60 |
Ba | 46.49 | 55.48 | 16.89 | 16.82 | 20.11 | 18.37 | 13.99 | 18.89 | 39.62 | 44.57 | 37.42 |
Ga | 0.16 | 0.13 | 0.16 | 0.07 | 0.07 | 0.06 | 0.13 | 0.07 | 0.08 | 0.39 | 0.43 |
Sr | 104.38 | 137.43 | 77.38 | 89.52 | 86.85 | 81.97 | 71.08 | 95.31 | 122.80 | 51.91 | 644.22 |
Zr | 0.88 | 1.35 | 1.12 | 10.35 | 2.76 | 0.60 | 2.25 | 0.90 | 2.39 | 25.55 | 5.00 |
Hf | 0.01 | 0.03 | 0.01 | 0.03 | 0.02 | 0.01 | 0.03 | 0.01 | 0.02 | 0.20 | 0.09 |
Cr | 6.46 | 11.89 | 4.75 | 4.21 | 5.81 | 4.66 | 3.86 | 4.18 | 4.23 | 18.39 | 10.56 |
V | 2.66 | 2.53 | 1.64 | 2.07 | 1.69 | 1.06 | 1.55 | 1.13 | 2.71 | 21.67 | 7.05 |
Co | 0.97 | 0.91 | 1.06 | 0.84 | 0.86 | 0.77 | 1.04 | 0.91 | 0.94 | 3.23 | 1.65 |
Ni | 8.97 | 7.77 | 9.48 | 9.38 | 9.58 | 8.36 | 10.55 | 8.42 | 14.87 | 16.19 | 8.42 |
U | 0.17 | 0.27 | 0.18 | 0.17 | 0.19 | 0.16 | 0.29 | 0.14 | 0.24 | 0.45 | 0.43 |
Th | 0.04 | 0.09 | 0.03 | 0.02 | 0.03 | 0.03 | 0.03 | 0.04 | 0.07 | 0.17 | 0.18 |
Mo | 0.39 | 0.25 | 0.20 | 0.11 | 0.15 | 0.22 | 0.14 | 0.18 | 0.13 | 0.16 | 0.14 |
Cu | 4.54 | 2.87 | 3.76 | 3.79 | 3.21 | 5.24 | 3.60 | 3.86 | 4.81 | 7.93 | 6.95 |
Zn | 4.28 | 3.55 | 4.27 | 8.39 | 5.95 | 4.73 | 5.88 | 3.43 | 13.04 | 12.52 | 8.13 |
La | 0.20 | 0.42 | 0.13 | 0.17 | 0.24 | 0.14 | 0.19 | 0.20 | 0.49 | 0.79 | 1.82 |
Ce | 0.39 | 0.81 | 0.26 | 0.29 | 0.49 | 0.24 | 0.30 | 0.48 | 1.02 | 1.96 | 3.43 |
Pr | 0.05 | 0.10 | 0.03 | 0.04 | 0.05 | 0.04 | 0.05 | 0.05 | 0.14 | 0.22 | 0.47 |
Nd | 0.18 | 0.44 | 0.14 | 0.15 | 0.24 | 0.14 | 0.19 | 0.19 | 0.59 | 0.94 | 2.03 |
Sm | 0.05 | 0.10 | 0.03 | 0.03 | 0.05 | 0.03 | 0.05 | 0.04 | 0.13 | 0.21 | 0.43 |
Eu | 0.02 | 0.04 | 0.01 | 0.01 | 0.01 | 0.01 | 0.02 | 0.01 | 0.04 | 0.06 | 0.11 |
Gd | 0.06 | 0.13 | 0.04 | 0.06 | 0.07 | 0.04 | 0.06 | 0.07 | 0.18 | 0.26 | 0.58 |
Tb | 0.01 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.03 | 0.04 | 0.09 |
Dy | 0.06 | 0.13 | 0.05 | 0.08 | 0.08 | 0.04 | 0.07 | 0.06 | 0.20 | 0.27 | 0.48 |
Ho | 0.01 | 0.03 | 0.01 | 0.02 | 0.02 | 0.01 | 0.02 | 0.01 | 0.05 | 0.06 | 0.10 |
Er | 0.04 | 0.09 | 0.04 | 0.09 | 0.08 | 0.03 | 0.06 | 0.05 | 0.19 | 0.21 | 0.29 |
Tm | 0.01 | 0.01 | 0.01 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.03 | 0.03 | 0.04 |
Yb | 0.03 | 0.08 | 0.04 | 0.11 | 0.09 | 0.03 | 0.06 | 0.05 | 0.22 | 0.21 | 0.22 |
Lu | 0.01 | 0.01 | 0.01 | 0.03 | 0.02 | 0.00 | 0.01 | 0.01 | 0.04 | 0.03 | 0.03 |
Y | 0.44 | 1.02 | 0.52 | 1.39 | 0.97 | 0.37 | 0.78 | 0.53 | 2.41 | 2.29 | 3.38 |
∑REE | 1.55 | 3.43 | 1.33 | 2.50 | 2.42 | 1.14 | 1.87 | 1.75 | 5.76 | 7.58 | 13.49 |
Mg/Ca | 1.09 | 1.07 | 1.11 | 1.10 | 0.98 | 1.11 | 1.10 | 1.10 | 1.09 | 1.08 | 1.02 |
Sr/Mn | 15.70 | 34.82 | 18.30 | 30.24 | 6.47 | 34.21 | 12.61 | 28.17 | 29.04 | 2.42 | 71.41 |
Fe/Mn | 3.05 | 6.70 | 6.91 | 1.73 | 8.68 | 2.40 | 5.01 | 1.72 | 5.15 | 4.84 | 11.49 |
Sr/Ba | 2.25 | 2.48 | 4.58 | 5.32 | 4.32 | 4.46 | 5.08 | 5.05 | 3.10 | 1.16 | 17.22 |
Mn/Sr | 5.59 | 2.48 | 4.79 | 2.46 | 2.46 | 2.60 | 5.05 | 2.54 | 3.00 | 37.35 | 1.14 |
Fe/Sr | 17.06 | 8.84 | 16.30 | 6.80 | 9.54 | 7.93 | 14.40 | 5.53 | 7.81 | 54.96 | 4.58 |
Ca/Sr | 3 121 | 3 357 | 5 493 | 5 315 | 5 506 | 5 728 | 6 356 | 5 031 | 3 863 | 8 217 | 709 |
Rb/Sr | 0.002 3 | 0.002 3 | 0.001 1 | 0.001 3 | 0.000 5 | 0.001 2 | 0.001 5 | 0.000 8 | 0.000 7 | 0.030 0 | 0.001 0 |
Sr/Ca | 0.000 3 | 0.000 3 | 0.000 2 | 0.000 2 | 0.000 2 | 0.000 2 | 0.000 2 | 0.000 2 | 0.000 3 | 0.000 1 | 0.001 4 |
U/Th | 4.19 | 3.08 | 7.30 | 7.47 | 5.85 | 6.06 | 9.01 | 3.78 | 3.63 | 2.68 | 2.32 |
Th/K | 2.44 | 5.49 | 1.76 | 0.96 | 1.60 | 2.00 | 4.76 | 2.17 | 4.17 | 2.99 | 7.14 |
LREE/HREE | 1.35 | 1.24 | 0.84 | 0.38 | 0.80 | 1.11 | 0.73 | 1.23 | 0.72 | 1.23 | 1.59 |
Ce/La | 1.95 | 1.93 | 2.00 | 1.71 | 2.04 | 1.71 | 1.58 | 2.40 | 2.08 | 2.48 | 1.88 |
δEuN | 1.28 | 1.09 | 0.96 | 0.93 | 0.75 | 1.05 | 0.83 | 0.90 | 0.76 | 0.81 | 0.64 |
δCeN | 0.69 | 0.62 | 0.64 | 0.58 | 0.67 | 0.55 | 0.52 | 0.83 | 0.61 | 0.74 | 0.58 |
Y/Ho | 36.82 | 35.33 | 42.48 | 58.43 | 43.84 | 37.55 | 43.31 | 36.10 | 45.92 | 37.43 | 34.21 |
(La/Yb)N | 0.43 | 0.38 | 0.25 | 0.11 | 0.19 | 0.31 | 0.22 | 0.31 | 0.16 | 0.27 | 0.62 |
(Nd/Yb)N | 0.45 | 0.45 | 0.29 | 0.11 | 0.21 | 0.37 | 0.25 | 0.33 | 0.22 | 0.37 | 0.77 |
(Sm/Yb)N | 0.77 | 0.60 | 0.42 | 0.29 | 0.29 | 0.50 | 0.45 | 0.41 | 0.30 | 0.50 | 1.01 |
δ13C(PDB) | 6.30 | 7.30 | 7.20 | 7.40 | 8.40 | 7.70 | 8.20 | 4.40 | 3.20 | ||
δ18O(PDB) | -3.30 | -1.60 | 0.10 | -0.40 | -1.20 | -2.40 | -0.40 | -4.80 | -1.30 | ||
δ18O(SMOW) | 27.50 | 29.30 | 31.00 | 30.50 | 29.60 | 28.40 | 30.50 | 26.00 | 29.60 | ||
87Sr/86Sr | 0.709 82 | 0.708 06 | 0.708 06 | 0.708 04 | 0.708 11 | 0.707 65 | 0.709 29 | ||||
87Sr/86Sr误差 | 0.000 02 | 0.000 01 | 0.000 02 | 0.000 02 | 0.000 02 | 0.000 02 | 0.000 02 |
1 | Hood A V S , Wallace M W . Extreme ocean anoxia during the Late cryogenian recorded in reefal carbonates of Southern Australia[J]. Precambrian Resarch, 2015, 261 (1): 96- 111. |
2 |
苏玲, 陈留勤. 叠层石衰减事件及臼齿构造碳酸盐岩作用幕—了解前寒武纪碳酸盐岩世界的重要线索[J]. 地质科技情报, 2008, 27 (6): 17- 23.
doi: 10.3969/j.issn.1000-7849.2008.06.004 |
Su Lin , Chen Liuqin . Stromatolite declines and Molar-Tooth Carbonates: Contributions to the understanding of the Precambrian Carbonate World[J]. Geological Science and Technology Information, 2008, 27 (6): 17- 23.
doi: 10.3969/j.issn.1000-7849.2008.06.004 |
|
3 | Nutman A P , Bennett V C , Friend C R L , et al. Cross-examining earth's oldest stromatolites: Seeing through the effects of heterogeneous deformation, metamorphism and metasomatism affecting Isua (Greenland)~3 700 Ma sedimentary rocks[J]. Precambrian Research, 2019, 331 (9): 105- 347. |
4 | Lewis K H , Cavalazzi B , Foucher F , et al. Most ancient evidence for life in the Barberton greenstone belt: Microbial mats and biofabrics of the~3.47Ga Middle Marker horizon[J]. Precambrian Research, 2018, 312 (7): 45- 67. |
5 | 周丽清, 赵微林, 刘孟慧. 燕山西段前寒武系雾迷山组叠层石的环境意义[J]. 石油大学学报(自然科学版), 1989, 13 (3): 11- 19. |
Zhou Liqing , Zhou Weilin , Liu Menghui . The environment significance of stromatolites in Wumishan Formation of Precambrian in Western YanShan Mountains of North China[J]. Journal of the University of Petroleum, China, 1989, 13 (3): 11- 19. | |
6 | Riding R . Microbial carbonates: The geological record of calcified bacterial-algal mats and biofilms[J]. Sedimentology, 2000, 47 (S1): 179- 214. |
7 | Andres M S , Reid R P . Growth morphologies of modern marine Stromatolites: A case study from Highborne Cay, B ahamas[J]. Sedimentary Geology, 2006, 85 (3): 319- 328. |
8 | Bowlin E M , Klaus J S , Foster J S , et al. Environmental controls on microbial community cycling in modern marine Stromatolites[J]. Sedimentary Geology, 2012, 263 (64): 45- 55. |
9 | Papineau D , Purohit R , Fogel M L , et al. High phosphate availability as a possible cause for massive cyanobacterial production of oxygen in the Paleoproterozoic atmosphere[J]. Earth and Planetary Science Letters, 2013, 362 (1): 225- 236. |
10 |
Williams G E , Jenkins R J F , Walter M R . No heliotropism in Neoproterozoic column stromatolite growth, Amadeus basin Central Australia: Geophysical implications[J]. Palaeogeography, Palaeoclimato-logy, Palaeoecology, 2007, 249 (1-2): 80- 89.
doi: 10.1016/j.palaeo.2007.01.005 |
11 | Corkeron M , Webb G E , Moulds J , et al. Discrominating stromatolite formation modes using rare earth element geochemistry: Trapping and binding versus in situ precipitation of stromatolites from the Neopro-terozoic Bitter springs Formation, Northern territory Australia[J]. Precambrian Resarch, 2012, 212-213 (8): 194- 206. |
12 | Craig J , Thurow J , Thusu B , et al. Global Neoproterozoic petroleum systems: the emerging potential in North Africa.Geological Society[M]. London: Special Publication, 2019: 1- 25. |
13 | 崔建堂, 王炬川, 边小卫, 等. 新疆喀喇昆仑地区甜水海岩群发现青白口纪叠层石[J]. 沉积与特提斯地质, 2005, 25 (1-2): 194- 197. |
Cui Jiantang , Wang Juchuan , Bian Xiaowei , et al. The Qingbaikouan stromatolites from the Tianshuihai Group Complex in the Karakorum region, Xinjiang[J]. Sedimentary Geology and Tethyan Geology, 2005, 25 (1-2): 194- 197. | |
14 |
王国灿, 魏启荣, 贾春兴, 等. 关于东昆仑地区前寒武纪地质的几点认识[J]. 地质通报, 2007, 26 (8): 929- 937.
doi: 10.3969/j.issn.1671-2552.2007.08.003 |
Wang Guocan , Wei Qi rong , Jia Chunxing , et al. Some ideas of Precambrian geology in the East Kunlun, China[J]. Geological Bulletin of China, 2007, 26 (8): 929- 937.
doi: 10.3969/j.issn.1671-2552.2007.08.003 |
|
15 | 新疆维吾尔自治区地质矿产局. 新疆维吾尔自治区区域地质志[M]. 北京: 地质出版社, 1982: 8- 33. |
Bureau of Geology and Mineral Resources of Xinjiang Uygur Autonomous Region . Regional geology of Xinjiang Uygur Autonomous Region[M]. Beijing: Geological Press, 1982: 8- 33. | |
16 | 青海省地质矿产局. 青海省区域地质志[M]. 北京: 地质出版社, 1982: 15- 21. |
Bureau of Geology and Mineral Resources of QingHai Province . Regional geology of QingHai Province[M]. Beijing: Geological Press, 1982: 19- 21. | |
17 |
Bian Q T , Zhu S X , Pospelov I I , et al. Discovery of the Jiawengmen Stromatolite Assemblage in the Southern Belt of Eastern Kunlun, NW China and Its Significance[J]. Acta Geologica Sinica-English Edition, 2005, 79 (4): 471- 480.
doi: 10.1111/j.1755-6724.2005.tb00913.x |
18 | 牟墩玲, 李三忠, 王倩, 等. 塔里木盆地东南缘早古生代弯山构造[J]. 岩石学报, 2018, 34 (12): 3739- 3757. |
Mu Dunling , Li Sanzhong , Wang Qian , et al. The Early Paleozoic orocline in the southeastern Tarim Basin[J]. Acta Petrologica Sinica, 2018, 34 (12): 3739- 3757. | |
19 | 龚正, 李海兵, 孙知明, 等. 阿尔金断裂带中侏罗世走滑活动及其断裂规模的探讨-来自软沉积物变形的证据[J]. 岩石学报, 2013, 29 (6): 2233- 2250. |
Gong Zheng , Li Haibing , Sun ZhiMing , et al. Middle Jurassic strike slip movement and fault scale of the Altyn Tagh fault system: Evidence from the soft sediment deformation[J]. Acta Petrologica Sinica, 2013, 29 (6): 2233- 2250. | |
20 | 吴磊, 巩庆霖, 覃素华. 阿尔金断裂新生代大规模走滑起始时间的厘定[J]. 岩石学报, 2013, 29 (8): 2837- 2850. |
Wu Lei , Gong Qinglin , Tan Suhua . When did Cenozoic left-slip along the Altyn Tagh Fault initiate? A comprehensive approach[J]. Acta Petrologica Sinica, 2013, 29 (8): 2837- 2850. | |
21 |
Sibley D F , Dedoes R E , Bartlett T R . Kinetics of dolomitization[J]. Geology, 1987, 15, 1112- 1114.
doi: 10.1130/0091-7613(1987)15<1112:KOD>2.0.CO;2 |
22 | Flügel E . Microfacies of carbonate rocks: Analysis, interpretation and application[J]. Berlin: Springer-Verlag, 2004, 369- 396. |
23 | McLennan S M , Hemming S , McDaniel D K , et al. Geochemical approaches to Sedimentation, Provenance, and Tectonics[J]. Geological Society of America Special Papers, 1993, 284 (1): 21- 40. |
24 | Wang W , Bolhar R , Zhou M F , et al. Enhanced terrestrial input into Paleoproterozoic to Mesoproterozoic carbonates in the southwestern South China Block during the fragmentation of the Columbia supercontinent[J]. Precambrian Resarch, 2018, 313 (1): 1- 17. |
25 | Veizer J , Ala D , Bruckschen P , et al. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater[J]. Chemical Geology, 1999, 161 (1): 59- 88. |
26 |
Halverson G P , Dud S F , Maloof A C , et al. Evolution of the 87Sr/86Sr composition of Neoproterozoic seawater[J]. Palaeongeography, Palaeoclimatology, Palaeoecology, 2007, 256 (3-4): 103- 129.
doi: 10.1016/j.palaeo.2007.02.028 |
27 | Verdel C , Phelps B , Welsh K . Rare earth element and 87Sr/86Sr step-leaching geochemistry of central Australian Neoproterozoic carbonate[J]. Precambrian Research, 2018, 310 (6): 229- 242. |
28 | Hesse R . Silica diagenesis: Origin of inorganic and replacement cherts[J]. Earth-Science Reviews, 1989, 26 (4): 253- 284. |
29 | Rodriguez-Blanco J D , Shaw S , Bots P , et al. The role of Mg in the crystallization of monohydrocalcite[J]. Geochimica et Cosmochimica Acta, 2014, 127 (2): 204- 220. |
30 |
Hood A S , Wallace M W , Drysdale R N . Neoproterozoic aragonite-do-lomite seas? Widespread marine dolomite precipitation in Cryogenian reef complexes[J]. Geology, 2011, 39 (9): 871- 874.
doi: 10.1130/G32119.1 |
31 | Hood A S , Wallace M W , Reedb C P , et al. Enigmatic carbonates of the Ombombo Subgroup, Otavi Fold Belt, Namibia: A prelude to extreme Cryogenian anoxia?[J]. Sedimentary Geology, 2015, 324 (1): 12- 31. |
32 | Schlager W . Benthic carbonate factories of the Phanerozoic[J]. International Journal Earth Sciences, 2003, 92 (8): 445- 464. |
33 | Taylor S R , Mcclennan S M . The continental crust: its composition and evolution-An examination of the geochemical record preserved in sedimentary rocks[M]. Oxford London: Blackwell Scientific Publications, 1985: 57- 277. |
34 |
Tribovillard N , Algeo T J , Lyons T . Trace metals as paleoredox and paleo-productivity proxies: An update[J]. Chemical Geology, 2006, 232 (1-2): 12- 32.
doi: 10.1016/j.chemgeo.2006.02.012 |
35 | Garrison R L , Lee R , Kump M A . Shallow water redox conditions from the Permian-Triassic boundary microbialite: The rare earth element and iodine geochemistry of carbonates from Turkey and South China[J]. Chemical Geology, 2013, 351 (5): 195- 208. |
36 |
Kaufman A J , Knoll A H . Neoprototerozoic variation in the C-isotope composition of seawater: stratigraphic and biogeochemical implications[J]. Precambrian Research, 1995, 73 (1-4): 27- 49.
doi: 10.1016/0301-9268(94)00070-8 |
37 | Tang H S , Chen Y J , Santosh M , et al. REE geochemistry of carbonates form the GuanmenShen Formation, Liaohe Group, NE Sino-Korean: Implication for seawater compositional change during the Great oxidation Event[J]. Precambrian Research, 2013, 227 (SI): 316- 336. |
38 | Meyer E E , Quicksall A N , Landis J D , et al. Trace and rare earth elemental investigation of a Sturtian Cap carbonate, Pocattllo, Idaha: Evidence for ocean redox conditions before and during carbonate deposition[J]. Precambrian Research, 2012, 192-195 (1): 89- 106. |
39 | Des Maaris J.Isotopic evolution of the biogeochemical carbon cycle during the Precambrian[C]// Valley JW, Cole DR.Stable isotope geochemistry reviews in mineralogy & geochemistry.Washington D.C.: Mineralogical Society of America, 2001. |
40 |
Giddings J A , Wallace M W . Sedimentology and C-isotope geoche-mistry of the 'Sturtian' cap carbonate, South Australia[J]. Sedimentary Geology, 2009, 216 (1-2): 1- 14.
doi: 10.1016/j.sedgeo.2009.01.007 |
41 | Manning-Berg A R , Wood R S , Williford K H , et al. The taphonomy of proterozoic microbial mats and implications for early diagenetic silicification[J]. Geosciences, 2019, 9 (1): 469- 483. |
42 | Viehmann S , Bau M , BVhu B , et al. Geochemical characterization of Neoproterozoic marine habitats: Evidence from trace elements and Nd isotopes in the Urucum iron and manganese formations, Brazil[J]. Precambrian Research, 2016, 282 (1): 74- 96. |
43 | Purohit R , Papineay D , KrÖner A , et al. Carbon isotope geochemistry and geochronological constraints of Neoproterozoic Sirohi Group from northwest India[J]. Precambrian Research, 2012, 220-221 (11): 80- 90. |
44 | Hohl S V , Becker H , Gamper A , et al. Secular changes of water chemistry in shallow-water Ediacaran ocean: Evidence from carbonates at Xiaofenghe, Three Gorges areas, Yangtze platform, South China[J]. Precambrian Research, 2015, 270 (11): 50- 79. |
45 | Cox G M , Isakson V , Homan P F , et al. South Australian U-Pb zircon (CA-ID-TIMS) age supports globally synchronous Sturtian deglaciation[J]. Precambrian Research, 2018, 315 (9): 257- 263. |
46 | 钱一雄, 何治亮, 李慧莉, 等. 塔里木盆地北部上震旦统葡萄状白云岩的发现及成因探讨[J]. 古地理学报, 2017, 19 (2): 196- 207. |
Qian Yixiong , He Zhiliang , Li Huili , et al. The discovery and interpretation for origin of grape-like dolostone in the Upper Sinian in NorthTarim[J]. Journal of Palaeogeography, 2017, 19 (2): 196- 207. | |
47 | 钱一雄, 冯菊芳, 何冶亮, 等. 从岩石学及微区同位素探讨四川盆地灯影组皮壳-葡萄状白云石成因[J]. 石油与天然气地质, 2017, 38 (4): 665- 676. |
Qian Yixiong , Feng Jufang , He Zhiliang , et al. Applications of petrographic and δ13CPDB, δ18OPDB of Micro-drill samplings to the study of genesis of grape-like dolomite of Dengying formation, Upper Sinian, Sichuan Basin[J]. Oil & Gas Geology, 2017, 38 (4): 665- 676. | |
48 | Xiao S H , Shen B , Tang Q , et al. Biostratigraphic and chemostratigraphic constraints on the age of early Neoproterozoic carbonate successions in North China[J]. Precambrian Research, 2014, 246 (6): 208- 225. |
49 | Arubam C K , Manikyamba C , Subramanyam K S V , et al. Archean sea water composition and depositional environment-Geochemical and isotopic signatures from the stromatolitic carbonates of Dharwar Craton, India[J]. Precambrian Research, 2019, 330 (8): 35- 57. |
50 |
Hill A C , Cotter K L , Grey K . Mid-Neoproterozoic biostratigraphy and isotope stratigraphy in Australia[J]. Precambrian Research, 2000, 100 (1-3): 281- 298.
doi: 10.1016/S0301-9268(99)00077-7 |
51 | Caxito F A , Frei R , Uhlein G J , et al. Multiproxy geochemical and isotope stratigraphy records of a neoproterozoic oxygenation event in the Ediacaran Sete Lagoas cap carbonate, Bambuí Group, Brazil[J]. Chemical Geology, 2018, 481 (3): 119- 132. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||