Oil & Gas Geology ›› 2023, Vol. 44 ›› Issue (1): 203-212.doi: 10.11743/ogg20230117
• Methods and Technologies • Previous Articles Next Articles
Taizhong DUAN1(), Wenbiao ZHANG1, Zhiliang HE2(), Yanfeng LIU1, Qiqi MA1, Meng LI1, Peiqing LIAN1, Yuan HUANG1
Received:
2022-05-31
Revised:
2022-11-11
Online:
2023-01-14
Published:
2023-01-13
Contact:
Zhiliang HE
E-mail:duantz.syky@sinopec.com;hezhiliang@sinopec.com
CLC Number:
Taizhong DUAN, Wenbiao ZHANG, Zhiliang HE, Yanfeng LIU, Qiqi MA, Meng LI, Peiqing LIAN, Yuan HUANG. Deep learning-based geological modeling of ultra-deep fault-karst reservoirs in Shunbei oilfield, Tarim Basin[J]. Oil & Gas Geology, 2023, 44(1): 203-212.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | 云露, 朱秀香. 一种新型圈闭: 断控缝洞型圈闭[J]. 石油与天然气地质, 2022, 43(1): 34-42. |
YUN Lu, ZHU Xiuxiang. A new trap type: Fault-controlled fracture-vuggy trap[J]. Oil & Gas Geology, 2022, 43(1): 34-42. | |
2 | 漆立新, 云露, 曹自成, 等. 顺北油气田地质储量评估与油气勘探方向[J]. 新疆石油地质, 2021, 42(2): 127-135. |
QI Lixin, YUN Lu, CAO Zicheng, et al. Geological reserves assessment and petroleum exploration targets in Shunbei Oil & Gas Field[J]. Xinjiang Petroleum Geology, 2021, 42(2): 127-135. | |
3 | 焦方正. 塔里木盆地顺北特深碳酸盐岩断溶体油气藏发现意义与前景[J]. 石油与天然气地质, 2018, 39(2): 207-216. |
JIAO Fangzheng. Significance and prospect of ultra-deep carbonate fault-karst reservoirs in Shunbei area, Tarim Basin[J]. Oil & Gas Geology, 2018, 39(2): 207-216. | |
4 | 况安鹏, 曹东升, 曾联波, 等. 顺北地区超深层碳酸盐岩断溶体钻录井识别[J]. 石油地质与工程, 2021, 35(3): 35-40. |
KUANG Anpeng, CAO Dongsheng, ZENG Lianbo, et al. Drilling and logging identification of the ultra-deep carbonate fault-karst reservoirs in Shunbei area of Tarim Basin[J]. Petroleum Geology and Engineering, 2021, 35(3): 35-40. | |
5 | 云露. 顺北地区奥陶系超深断溶体油气成藏条件[J]. 新疆石油地质, 2021, 42(2): 136-142. |
YUN Lu. Hydrocarbon accumulation of ultra-deep Ordovician fault-karst reservoirs in Shunbei area[J]. Xinjiang Petroleum Geology, 2021, 42(2): 136-142. | |
6 | 吕海涛, 韩俊, 张继标, 等. 塔里木盆地顺北地区超深碳酸盐岩断溶体发育特征与形成机制[J]. 石油实验地质, 2021, 43(1): 14-22. |
Haitao LYU, HAN Jun, ZHANG Jibiao, et al. Development characteristics and formation mechanism of ultra-deep carbonate fault-dissolution body in Shunbei area, Tarim Basin[J]. Petroleum Geology and Experiment, 2021, 43(1): 14-22. | |
7 | 邓尚, 李慧莉, 张仲培, 等. 塔里木盆地顺北及邻区主干走滑断裂带差异活动特征及其与油气富集的关系[J]. 石油与天然气地质, 2018, 39(5): 878-888. |
DENG Shang, LI Huili, ZHANG Zhongpei, et al. Characteristics of differential activities in major strike-slip fault zones and their control on hydrocarbon enrichment in Shunbei area and its surroundings, Tarim Basin[J]. Oil & Gas Geology, 2018, 39(5): 878-888. | |
8 | 邓尚, 李慧莉, 韩俊, 等. 塔里木盆地顺北5号走滑断裂中段活动特征及其地质意义[J]. 石油与天然气地质, 2019, 40(5): 990-998, 1073. |
DENG Shang, LI Huili, HAN Jun, et al. Characteristics of the central segment of Shunbei 5 strike-slip fault zone in Tarim Basin and its geological significance[J]. Oil & Gas Geology, 2019, 40(5): 990-998, 1073. | |
9 | 韩俊, 况安鹏, 能源, 等. 顺北5号走滑断裂带纵向分层结构及其油气地质意义[J]. 新疆石油地质, 2021, 42(2): 152-160. |
HAN Jun, KUANG Anpeng, NENG Yuan, et al. Vertical layered structure of Shunbei No.5 strike-slip fault zone and its significance on hydrocarbon accumulation[J]. Xinjiang Petroleum Geology, 2021, 42(2): 152-160. | |
10 | 赵锐, 赵腾, 李慧莉, 等. 塔里木盆地顺北油气田断控缝洞型储层特征与主控因素[J]. 特种油气藏, 2019, 26(5): 8-13. |
ZHAO Rui, ZHAO Teng, LI Huili, et al. Fault-controlled fracture-cavity reservoir characterization and main-controlling factors in the Shunbei hydrocarbon field of Tarim Basin[J]. Special Oil & Gas Reservoirs, 2019, 26(5): 8-13. | |
11 | 郑函庆, 丁心鲁, 刘学清, 等. 塔里木盆地碳酸盐岩缝洞型储层试井资料特征及KT1井储层缝洞组合关系认识[J]. 石油地质与工程, 2021, 35(4): 26-29, 37. |
ZHENG Hanqing, DING Xinlu, LIU Xueqing, et al. Well test data characteristics of fracture-cave reservoir in carbonate rocks of Tarim Basin and understanding of fracture-cave association of KT1 Well[J]. Petroleum Geology and Engineering, 2021, 35(4): 26-29, 37. | |
12 | 刘宝增. 塔里木盆地顺北地区油气差异聚集主控因素分析——以顺北1号、顺北5号走滑断裂带为例[J]. 中国石油勘探, 2020, 25(3): 83-95. |
LIU Baozeng. Analysis of main controlling factors of oil and gas differential accumulation in Shunbei area, Tarim Basin—taking Shunbei No.1 and No.5 strike slip fault zones as examples[J]. China Petroleum Exploration, 2020, 25(3): 83-95. | |
13 | 何治亮, 马永生, 朱东亚, 等. 深层-超深层碳酸盐岩储层理论技术进展与攻关方向[J]. 石油与天然气地质, 2021, 42(3): 533-546. |
HE Zhiliang, MA Yongsheng, ZHU Dongya, et al. Theoretical and technological progress and research direction of deep and ultra-deep carbonate reservoirs[J]. Oil & Gas Geology, 2021, 42(3): 533-546. | |
14 | 张文彪, 段太忠, 李蒙, 等. 塔河油田托甫台区奥陶系断溶体层级类型及表征方法[J]. 石油勘探与开发, 2021, 48(2): 314-325. |
ZHANG Wenbiao, DUAN Taizhong, LI Meng, et al. Architecture characterization of Ordovician fault-controlled paleokarst carbonate reservoirs in Tuoputai, Tahe Oilfield, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2021, 48(2): 314-325. | |
15 | 商晓飞, 段太忠, 张文彪, 等. 断控岩溶主控的缝洞型碳酸盐岩内部溶蚀相带表征——以塔河油田10区奥陶系油藏为例[J]. 石油学报, 2020, 41(3): 329-341. |
SHANG Xiaofei, DUAN Taizhong, ZHANG Wenbiao, et al. Characterization of dissolution facies belt in fracture-cavity carbonate rocks mainly controlled by fault-controlling karst: A case study of Ordovician reservoirs in the Block 10 of Tahe Oilfieid[J]. Acta Petrolei Sinica, 2020, 41(3): 329-341. | |
16 | 张文彪, 张亚雄, 段太忠, 等. 塔里木盆地塔河油田托甫台区奥陶系碳酸盐岩断溶体系层次建模方法[J]. 石油与天然气地质, 2022, 43(1): 207-218. |
ZHANG Wenbiao, ZHANG Yaxiong, DUAN Taizhong, et al. Hierarchy modeling of the Ordovician fault-karst carbonate reservoir in Tuoputai area, Tahe Oilfield, Tarim Basin, NW China[J]. Oil & Gas Geology, 2022, 43(1): 207-218. | |
17 | 张文彪, 段太忠, 赵华伟, 等. 断控岩溶体系空间结构差异性与三维建模——以顺北1号断裂带为例[J]. 科学技术与工程, 2021, 21(28): 12094-12108. |
ZHANG Wenbiao, DUAN Taizhong, ZHAO Huawei, et al. Hierarchical characteristics and 3D modeling of fault-controlled paleokarst systems: A case study of Shunbei 1 strike-slip fault zone[J]. Science Technology and Engineering, 2021, 21(28): 12094-12108. | |
18 | DUAN Taizhong, ZHANG Wenbiao, LU Xinbian, et al. Architectural characterization of Ordovician fault-controlled paleokarst carbonate reservoirs, Tahe Oilfield, China[J]. Interpretation, 2020, 8(4): T953-T965. |
19 | DEUTSCH C V, WANG Libing. Hierarchical object-based stochastic modeling of fluvial reservoirs[J]. Mathematical Geology, 1996, 28(7): 857-880. |
20 | 刘彦锋, 张文彪, 段太忠, 等. 深度学习油气藏地质建模研究进展[J]. 地质科技通报, 2021, 40(4): 235-241. |
LIU Yanfeng, ZHANG Wenbiao, DUAN Taizhong, et al. Progress of deep learning in oil and gas reservoir geological modeling[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 235-241. | |
21 | 田启川, 王满丽. 深度学习算法研究进展[J]. 计算机工程与应用, 2019, 55(22): 25-33. |
TIAN Qichuan, WANG Manli. Research progress on deep learning algorithms[J]. Computer Engineering and Applications, 2019, 55(22): 25-33. | |
22 | 李苍柏, 范建福, 宋相龙. 深度学习在地质学上的应用[J]. 地质学刊, 2018, 42(1): 115-121. |
LI Cangbai, FAN Jianfu, SONG Xianglong. A study on application of deep learning in geology[J]. Journal of Geology, 2018, 42(1): 115-121. | |
23 | RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedical image segmentation[C]//NAVAB N, HORNEGGER J, WELLS W M, eds. Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015, Munich, 2015. Cham: Springer, 2015: 234-241. |
24 | SALIMANS T, GOODFELLOW I, ZAREMBA W, et al. Improved techniques for training GANs[C]//LEE D D, VON LUXBURG U, GARNETT R, eds. Proceedings of the 30th International Conference on Neural Information Processing Systems, Barcelona, 2016. Red Hook: Curran Associates Inc., 2016: 2234-2242. |
25 | ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein GAN[EB/OL]. (2017-12-06)[2022-05-30]. . |
26 | GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//GHAHRAMANI Z, WELLING M, CORTES C, eds. Proceedings of the 27th International Conference on Neural Information Processing Systems, Montreal, 2014. Cambridge: MIT Press, 2014: 2672-2680. |
27 | CHAVDAROVA T, FLEURET F. SGAN: An alternative training of generative adversarial networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, 2018. Piscataway, NJ: IEEE, 2018: 9407-9415. |
28 | YEH R A, CHEN Chen, LIM T Y, et al. Semantic image inpainting with deep generative models[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, 2017. Piscataway, NJ: IEEE, 2017: 6882-6890. |
29 | CHAN S, ELSHEIKH A H. Parametrization of stochastic inputs using generative adversarial networks with application in geology[J]. Frontiers in Water, 2020, 2: 5. |
30 | RUFFINO C, HÉRAULT R, LALOY E, et al. Pixel-wise conditioned generative adversarial networks for image synthesis and completion[EB/OL]. (2020-02-04)[2022-05-30]. . |
31 | ZHANG Tuanfeng, TILKE P, DUPONT E, et al. Generating geologically realistic 3D reservoir facies models using deep learning of sedimentary architecture with generative adversarial networks[J]. Petroleum Science, 2019, 16(3): 541-549. |
32 | SONG Suihong, MUKERJI T, HOU Jiagen. Geological facies modeling based on progressive growing of generative adversarial networks (GANs)[J]. Computational Geosciences, 2021, 25(3): 1251-1273. |
33 | SONG Suihong, MUKERJI T, HOU Jiagen. GANSim: Conditional facies simulation using an improved progressive growing of generative adversarial networks (GANs)[J]. Mathematical Geosciences, 2021, 53(7):1413-1444. |
34 | ISOLA P, ZHU Junyan, ZHOU Tinghui, et al. Image-to-image translation with conditional adversarial networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, 2017. Piscataway, NJ: IEEE, 2017: 5967-5976. |
35 | DENTON E, CHINTALA S, SZLAM A, et al. Deep generative image models using a Laplacian pyramid of adversarial networks[C]//CORTES C, LEE D D, SUGIYAMA M, eds. Proceedings of the 28th International Conference on Neural Information Processing Systems, Montreal, 2015. Cambridge: MIT Press, 2015: 1486-1494. |
36 | KORJANI M, POPA A, GRIJALVA E, et al. A new approach to reservoir characterization using deep learning neural networks[C]//SPE Western Regional Meeting, Anchorage, 2016. London: SPE, 2016: SPE-180359-MS. |
[1] | Pengyuan HAN, Wenlong DING, Debin YANG, Juan ZHANG, Hailong MA, Shenghui WANG. Characteristics of the S80 strike-slip fault zone and its controlling effects on the Ordovician reservoirs in the Tahe oilfield, Tarim Basin [J]. Oil & Gas Geology, 2024, 45(3): 770-786. |
[2] | Yanqiu ZHANG, Honghan CHEN, Xiepei WANG, Peng WANG, Danmei SU, Zhou XIE. Assessment of connectivity between source rocks and strike-slip fault zone in the Fuman oilfield, Tarim Basin [J]. Oil & Gas Geology, 2024, 45(3): 787-800. |
[3] | Wenlong DING, Yuntao LI, Jun HAN, Cheng HUANG, Laiyuan WANG, Qingxiu MENG. Methods for high-precision tectonic stress field simulation and multi-parameter prediction of fracture distribution for carbonate reservoirs and their application [J]. Oil & Gas Geology, 2024, 45(3): 827-851. |
[4] | Zicheng CAO, Lu YUN, Lixin QI, Haiying LI, Jun HAN, Feng GENG, Bo LIN, Jingping CHEN, Cheng HUANG, Qingyan MAO. A major discovery of hydrocarbon-bearing layers over 1,000-meter thick in well Shunbei 84X, Shunbei area, Tarim Basin and its implications [J]. Oil & Gas Geology, 2024, 45(2): 341-356. |
[5] | Debin YANG, Xinbian LU, Dian BAO, Fei CAO, Yan WANG, Ming WANG, Runcheng XIE. New insights into the genetic types and characteristics of the Ordovician marine fault-karst carbonate reservoirs in the northern Tarim Basin [J]. Oil & Gas Geology, 2024, 45(2): 357-366. |
[6] | Changjian ZHANG, Debin YANG, Lin JIANG, Yingbing JIANG, Qi CHANG, Xuejian MA. Characteristics and origin of over-dissolution residual fault-karst reservoirs in the northern Tahe oilfield, Tarim Basin [J]. Oil & Gas Geology, 2024, 45(2): 367-383. |
[7] | Tongwen JIANG, Xingliang DENG, Peng CAO, Shaoying CHANG. Storage space types and water-flooding efficiency for fault-controlled fractured oil reservoirs in Fuman oilfield, Tarim Basin [J]. Oil & Gas Geology, 2024, 45(2): 542-552. |
[8] | Yuemeng NIU, Jun HAN, Yixin YU, Cheng Huang, Bo Lin, Fan YANG, Lang YU, Junyu CHEN. Igneous rock intrusions in the western Shunbei area, Tarim Basin: Characteristics and coupling relationships with faults [J]. Oil & Gas Geology, 2024, 45(1): 231-242. |
[9] | San ZHANG, Qiang JIN, Jinxiong SHI, Mingyi HU, Mengyue DUAN, Yongqiang LI, Xudong ZHANG, Fuqi CHENG. Filling patterns and reservoir property of the Ordovician buried-river karst caves in the Tabei area, Tarim Basin [J]. Oil & Gas Geology, 2023, 44(6): 1582-1594. |
[10] | Wei HU, Ting XU, Yang YANG, Zengmin LUN, Zongyu LI, Zhijiang KANG, Ruiming ZHAO, Shengwen MEI. Fluid phases and behaviors in ultra-deep oil and gas reservoirs, Tarim Basin [J]. Oil & Gas Geology, 2023, 44(4): 1044-1053. |
[11] | Tan ZHANG, Wei YAO, Yongqiang ZHAO, Yushuang ZHOU, Jiwen HUANG, Xinyu FAN, Yu LUO. Time scale and denudation thickness calculation of Carboniferous Kalashayi Formation in the Bamai area, Tarim Basin [J]. Oil & Gas Geology, 2023, 44(4): 1054-1066. |
[12] | Honghui GUO, Jianwei FENG, Libin ZHAO. Characteristics of passive strike-slip structure and its control effect on fracture development in Bozi-Dabei area, Tarim Basin [J]. Oil & Gas Geology, 2023, 44(4): 962-975. |
[13] | Bin LI, Xingxing ZHAO, Guanghui WU, Jianfa HAN, Baozhu GUAN, Chunguang SHEN. Differential hydrocarbon accumulation model of the Ordovician in Tazhong Ⅱ block, Tarim Basin [J]. Oil & Gas Geology, 2023, 44(2): 308-320. |
[14] | Hongbo ZHANG, Yushuang ZHOU, Xuguang SHA, Shang DENG, Xiangcun SHEN, Zhongzheng JIANG. Development characteristics and evolution mechanism of the uplifted segment of the No. 5 strike-slip fault zone in Shunbei area, Tarim Basin [J]. Oil & Gas Geology, 2023, 44(2): 321-334. |
[15] | Xingguo SONG, Shi CHEN, Zhou XIE, Pengfei KANG, Ting LI, Minghui YANG, Xinxin LIANG, Zijun PENG, Xukai SHI. Strike-slip faults and hydrocarbon accumulation in the eastern part of Fuman oilfield, Tarim Basin [J]. Oil & Gas Geology, 2023, 44(2): 335-349. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||