Oil & Gas Geology ›› 2023, Vol. 44 ›› Issue (3): 521-538.doi: 10.11743/ogg20230301
• Petroleum Geology • Previous Articles Next Articles
Changgui XU1(), Chenglin GONG2,3
Received:
2023-02-16
Revised:
2023-04-12
Online:
2023-06-01
Published:
2023-06-05
CLC Number:
Changgui XU, Chenglin GONG. Predictive stratigraphy: From sequence stratigraphy to source-to-sink system[J]. Oil & Gas Geology, 2023, 44(3): 521-538.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | SLOSS L L, KRUMBEIN W C, DAPPLES E C. Integrated facies analysis[M]//LONGWELL C R, MOORE R C, MCKEE E D, et al. Sedimentary Facies in Geologic History. Boulder: Geological Society of America, 1949: 91-124. |
2 | WHEELER H E. Time-stratigraphy[J]. AAPG Bulletin, 1958, 42(5): 1047-1063. |
3 | MARTINSEN O J, SØMME T O, GROTH A. Development of predictive stratigraphy—sequences, source-to-sink, and back to seismic[M]//HART B, ROSEN N C, WEST D, et al. Sequence Stratigraphy: The Future Defined. Broken Arrow: SEPM Society for Sedimentary Geology, 2017: 7-8. |
4 | CATUNEANU O. Principles of sequence stratigraphy[M]. 2nd ed. San Diego: Elsevier Science, 2022: 1-336. |
5 | MITCHUM R M, Jr, VAIL P R, THOMPSON S III. Seismic stratigraphy and global changes of sea level, part 2: The depositional sequence as a basic unit for stratigraphic analysis[M]//PAYTON C E. Seismic Stratigraphy—Applications to Hydrocarbon Exploration. Tulsa: American Association of Petroleum Geologists, 1977: 53-62. |
6 | VAIL P R, MITCHUM R M, Jr, THOMPSON S III. Seismic stratigraphy and global changes of sea level, part 3: Relative changes of sea level from coastal onlap[M]//PAYTON C E. Seismic Stratigraphy—Applications to Hydrocarbon Exploration. Tulsa: American Association of Petroleum Geologists, 1977: 63-81. |
7 | VAN WAGONER J C, POSAMENTIER H W, MITCHUM R M, et al. An overview of the fundamentals of sequence stratigraphy and key definitions[M]//WILGUS C K, HASTINGS B S, POSAMENTIER H, et al. Sea-Level Changes: An Integrated Approach. Broken Arrow: SEPM Society for Sedimentary Geology, 1988: 39-45. |
8 | 林畅松. 盆地沉积动力学: 研究现状与未来发展趋势[J]. 石油与天然气地质, 2019, 40(4): 685-700. |
LIN Changsong. Sedimentary dynamics of basin: Status and trend[J]. Oil & Gas Geology, 2019, 40(4): 685-700. | |
9 | 龚承林, STEEL R J, 彭旸, 等. 深海碎屑岩层序地层学50年 (1970—2020) 重要进展[J]. 沉积学报, 2022, 40(2): 292-318. |
GONG Chenglin, STEEL R J, PENG Yang, et al. Major advances in deep-marine siliciclastic sequence stratigraphy, 1970 to 2020[J]. Acta Sedimentologica Sinica, 2022, 40(2): 292-318. | |
10 | GILBERT G K. Hydraulic-mining debris in the Sierra Nevada[R]. Washington, D.C.: U.S. Geological Survey, 1917: 105-154. |
11 | BROWN W M, RITTER J R. Sediment transport and turbidity in the Eel River Basin, California[R]. Washington, D.C.: U.S. Government Printing Office, 1971: 13-65. |
12 | SCHUMM S A. The fluvial system[M]. New York: Wiley, 1977: 338. |
13 | ROMANS B W, CASTELLTORT S, COVAULT J A, et al. Environmental signal propagation in sedimentary systems across timescales[J]. Earth-Science Reviews, 2016, 153: 7-29. |
14 | 林畅松, 夏庆龙, 施和生, 等. 地貌演化、源-汇过程与盆地分析[J]. 地学前缘, 2015, 22(1): 9-20. |
LIN Changsong, XIA Qinglong, SHI Hesheng, et al. Geomorphological evolution, source to sink system and basin analysis[J]. Earth Science Frontiers, 2015, 22(1): 9-20. | |
15 | HELLAND-HANSEN W, SØMME T O, MARTINSEN O J, et al. Deciphering earth’s natural hourglasses: Perspectives on source-to-sink analysis[J]. Journal of Sedimentary Research, 2016, 86(9): 1008-1033. |
16 | WALSH J P, WIBERG P L, AALTO R, et al. Source-to-sink research: Economy of the earth’s surface and its strata[J]. Earth-Science Reviews, 2016, 153: 1-6. |
17 | 徐长贵. 陆相断陷盆地源-汇时空耦合控砂原理: 基本思想、概念体系及控砂模式[J]. 中国海上油气, 2013, 25(4): 1-11, 21. |
XU Changgui. Controlling sand principle of source-sink coupling in time and space in continental rift basins: Basic idea, conceptual systems and controlling sand models[J]. China Offshore Oil and Gas, 2013, 25(4): 1-11, 21. | |
18 | 徐长贵, 杜晓峰. 陆相断陷盆地源-汇理论工业化应用初探——以渤海海域为例[J]. 中国海上油气, 2017, 29(4): 9-18. |
XU Changgui, DU Xiaofeng. Industrial application of source-to-sink theory in continental rift basin: A case study of Bohai sea area[J]. China Offshore Oil and Gas, 2017, 29(4): 9-18. | |
19 | SØMME T O, HELLAND-HANSEN W, MARTINSEN O J, et al. Relationships between morphological and sedimentological parameters in source-to-sink systems: A basis for predicting semi-quantitative characteristics in subsurface systems[J]. Basin Research, 2009, 21(4): 361-387. |
20 | 朱红涛, 朱筱敏, 刘强虎, 等. 层序地层学与源-汇系统理论内在关联性与差异性[J]. 石油与天然气地质, 2022, 43(4): 763-776. |
ZHU Hongtao, ZHU Xiaomin, LIU Qianghu, et al. Sequence stratigraphy and source-to-sink system: Connections and distinctions[J]. Oil & Gas Geology, 2022, 43(4): 763-776. | |
21 | 王成善, 林畅松. 中国沉积学近十年来的发展现状与趋势[J]. 矿物岩石地球化学通报, 2021, 40(6): 1217-1229. |
WANG Chengshan, LIN Changsong. Development status and trend of sedimentology in china in recent ten years[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2021, 40(6): 1217-1229. | |
22 | HELLAND-HANSEN W. Towards the standardization of sequence stratigraphy[J]. Earth-Science Reviews, 2009, 94(1/4): 95-97. |
23 | HUNT D, TUCKER M E. Stranded parasequences and the forced regressive wedge systems tract: Deposition during base-level'fall[J]. Sedimentary Geology, 1992, 81(1/2): 1-9. |
24 | CATUNEANU O. Principles of sequence stratigraphy[M]. Amsterdam: Elsevier Press, 2006: 105-290. |
25 | NEAL J, ABREU V. Sequence stratigraphy hierarchy and the accommodation succession method[J]. Geology, 2009, 37(9): 779-782. |
26 | POSAMENTIER H W, JERVEY M T, VAIL P R. Eustatic controls on clastic deposition I-conceptual framework[M]//WILGUS C K, HASTINGS B S, POSAMENTIER H, et al. Sea-Level Changes: An Integrated Approach. Broken Arrow: SEPM Society for Sedimentary Geology, 1988: 109-124. |
27 | CATUNEANU O, ABREU V, BHATTACHARYA J P, et al. Towards the standardization of sequence stratigraphy[J]. Earth-Science Reviews, 2009, 92(1/2): 1-33. |
28 | GONG Chenglin, WANG Yingmin, PYLES D R, et al. Shelf-edge trajectories and stratal stacking patterns: Their sequence-stratigraphic significance and relation to styles of deep-water sedimentation and amount of deep-water sandstone[J]. AAPG Bulletin, 2015, 99(7): 1211-1243. |
29 | GONG Chenglin, WANG Yingmin, STEEL R J, et al. Growth styles of shelf-margin clinoforms: Prediction of sand- and sediment-budget partitioning into and across the shelf[J]. Journal of Sedimentary Research, 2015, 85(3): 209-229. |
30 | CARVAJAL C R, STEEL R J. Thick turbidite successions from supply-dominated shelves during sea-level highstand[J]. Geology, 2006, 34(8): 665-668. |
31 | GONG Chenglin, STEEL R J, WANG Yingmin, et al. Shelf-margin architecture variability and its role in sediment-budget partitioning into deep-water areas[J]. Earth-Science Reviews, 2016, 154: 72-101. |
32 | PAUMARD V, BOURGET J, PAYENBERG T, et al. Controls on shelf-margin architecture and sediment partitioning during a syn-rift to post-rift transition: Insights from the Barrow Group (Northern Carnarvon Basin, North West Shelf, Australia)[J]. Earth-Science Reviews, 2018, 177: 643-677. |
33 | STEEL R, OLSEN T. Clinoforms, clinoform trajectories and deepwater sands[M]//ARMENTROUT J M, ROSEN N C. Sequence Stratigraphic Models for Exploration and Production: Evolving Methodology, Emerging Models and Application Histories. Broken Arrow: SEPM Society for Sedimentary Geology, 2002: 367-380. |
34 | HELLAND-HANSEN W, HAMPSON G J. Trajectory analysis: Concepts and applications[J]. Basin Research, 2009, 21(5): 454-483. |
35 | PELLEGRINI C, PATRUNO S, HELLAND-HANSEN W, et al. Clinoforms and clinothems: Fundamental elements of basin infill[J]. Basin Research, 2020, 32(2): 187-205. |
36 | PAUMARD V, BOURGET J, PAYENBERG T, et al. From quantitative 3D seismic stratigraphy to sequence stratigraphy: Insights into the vertical and lateral variability of shelf-margin depositional systems at different stratigraphic orders[J]. Marine and Petroleum Geology, 2019, 110: 797-831. |
37 | NEAL J E, ABREU V, BOHACS K M, et al. Accommodation succession (δA/δS) sequence stratigraphy: Observational method, utility and insights into sequence boundary formation[J]. Journal of the Geological Society, 2016, 173(5): 803-816. |
38 | MARTIN J, PAOLA C, ABREU V, et al. Sequence stratigraphy of experimental strata under known conditions of differential subsidence and variable base level[J]. AAPG Bulletin, 2009, 93(4): 503-533. |
39 | 李思田, 潘元林, 陆永潮, 等. 断陷湖盆隐蔽油藏预测及勘探的关键技术——高精度地震探测基础上的层序地层学研究[J]. 地球科学, 2002, 27(5): 592-598. |
LI Sitian, PAN Yuanlin, LU Yongchao, et al. Key technology of prospecting and exploration of subtle traps in lacustrine fault basins: Sequence stratigraphic researches on the basis of high resolution seismic survey[J]. Earth Science, 2002, 27(5): 592-598. | |
40 | LIN Changsong, ERIKSSON K, LI Sitian, et al. Sequence architecture, depositional systems, and controls on development of lacustrine basin fills in part of the Erlian Basin, northeast China[J]. AAPG Bulletin, 2001, 85(11): 2017-2043. |
41 | 林畅松, 潘元林, 肖建新, 等. “构造坡折带”——断陷盆地层序分析和油气预测的重要概念[J]. 地球科学, 2000, 25(3): 260-266. |
LIN Changsong, PAN Yuanlin, XIAO Jianxin, et al. Structural slope-break zone: Key concept for stratigraphic sequence analysis and petroleum forecasting in fault subsidence basins[J]. Earth Science, 2000, 25(3): 260-266. | |
42 | 朱红涛, 刘可禹, 朱筱敏, 等. 陆相盆地层序构型多元化体系[J]. 地球科学, 2018, 43(3): 770-785 |
ZHU Hongtao, LIU Keyu, ZHU Xiaomin, et al. Varieties of sequence stratigraphic configurations in continental basins[J]. Earth Science, 2018, 43(3): 770-785. | |
43 | 徐长贵, 杜晓峰, 徐伟, 等. 沉积盆地 “源-汇” 系统研究新进展[J]. 石油与天然气地质, 2017, 38(1): 1-11. |
XU Changgui, DU Xiaofeng, XU Wei, et al. New advances of the “source-to-sink” system research in sedimentary basin[J]. Oil & Gas Geology, 2017, 38(1): 1-11. | |
44 | 徐长贵, 杜晓峰, 朱红涛. 陆相断陷盆地源汇系统控砂原理与应用[M]. 北京: 科学出版社, 2020: 1-233. |
XU Changgui, DU Xiaofeng, ZHU Hongtao. Principle and application of source-sink system for sand control in continental faulted basins[M]. Beijing: Science Press, 2020: 1-233. | |
45 | 冯有良, 胡素云, 李建忠, 等. 准噶尔盆地西北缘同沉积构造坡折对层序建造和岩性油气藏富集带的控制[J]. 岩性油气藏, 2018, 30(4): 14-25. |
FENG Youliang, HU Suyun, LI Jianzhong, et al. Controls of syndepotitional structural slope-break zones on sequence architecture and enrichment zones of lithologic reservoirs in northwestern margin of Junggar Basin[J]. Lithologic Reservoirs, 2018, 30(4): 14-25. | |
46 | CARROLL A R, BOHACS K M. Stratigraphic classification of ancient lakes: Balancing tectonic and climatic controls[J]. Geology, 1999, 27(2): 99-102. |
47 | 朱筱敏, 陈贺贺, 葛家旺, 等. 陆相断陷湖盆层序构型与砂体发育分布特征[J]. 石油与天然气地质, 2022, 43(4): 746-762. |
ZHU Xiaomin, CHEN Hehe, GE Jiawang, et al. Characterization of sequence architectures and sandbody distribution in continental rift basins[J]. Oil & Gas Geology, 2022, 43(4): 746-762. | |
48 | FONGNGERN R, OLARIU C, STEEL R J, et al. Clinoform growth in a Miocene, Para-Tethyan deep lake basin: Thin topsets, irregular foresets and thick bottomsets[J]. Basin Research, 2016, 28(6): 770-795. |
49 | GONG Chenglin, QI Kun, MA Yuan, et al. Tight coupling between the cyclicity of deep-water systems and rising-then-flat shelf-edge pairs along the submarine segment of the Qiongdongnan sediment-routing system[J]. Journal of Sedimentary Research, 2019, 89(10): 956-975. |
50 | LIU Jianping, XIAN Benzhong, JI Youliang, et al. Alternating of aggradation and progradation dominated clinothems and its implications for sediment delivery to deep lake: The Eocene Dongying Depression, Bohai Bay Basin, East China[J]. Marine and Petroleum Geology, 2020, 114: 104197. |
51 | SZTANÓ O, SZAFIÁN P, MAGYAR I, et al. Aggradation and progradation controlled clinothems and deep-water sand delivery model in the Neogene Lake Pannon, Makó Trough, Pannonian Basin, SE Hungary[J]. Global and Planetary Change, 2013, 103: 149-167. |
52 | 龚承林, 齐昆, 徐杰, 等. 深水源—汇系统对多尺度气候变化的过程响应与反馈机制[J]. 沉积学报, 2021, 39(1): 231-252. |
GONG Chenglin, QI Kun, XU Jie, et al. Process-product linkages and feedback mechanisms of deepwater source-to-sink responses to multi-scale climate changes[J]. Acta Sedimentologica Sinica, 2021, 39(1): 231-252. | |
53 | LYONS R P, SCHOLZ C A, BUONICONTI M R, et al. Late quaternary stratigraphic analysis of the lake Malawi rift, East Africa: An integration of drill-core and seismic-reflection data[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 303(1/4): 20-37. |
54 | GILLI A, ANSELMETTI F S, GLUR L, et al. Lake sediments as archives of recurrence rates and intensities of past flood events[M]//SCHNEUWLY-BOLLSCHWEILER M, STOFFEL M, RUDOLF-MIKLAU F. Dating Torrential Processes on Fans and Cones: Methods and Their Application for Hazard and Risk Assessment. Dordrecht: Springer, 2013: 225-242. |
55 | 李相博, 刘化清, 杨伟伟, 等. 一个由干湿交替极端气候事件主导的内陆湖盆: 来自鄂尔多斯盆地上三叠统延长组露头剖面的沉积学证据[J]. 地球科学, 2023, 48(1): 293-316. |
LI Xiangbo, LIU Huaqing, YANG Weiwei, et al. A lacustrine basin driven by extreme events of alternate dry-wet climatic cycles: Evidence from outcrops of Yanchang Formation in Upper Triassic, Ordos Basin[J]. Earth Science, 2023, 48(1): 293-316. | |
56 | GEARON J H, OLARIU C, STEEL R J. The supply-generated sequence: A unified sequence-stratigraphic model for closed lacustrine sedimentary basins with evidence from the Green River Formation, Uinta Basin, Utah, U.S.A.[J]. Journal of Sedimentary Research, 2022, 92(9): 813-835. |
57 | 徐杰, 姜在兴. 碎屑岩物源研究进展与展望[J]. 古地理学报, 2019, 21(3): 379-396. |
XU Jie, JIANG Zaixing. Provenance analysis of clastic rocks: Current research status and prospect[J]. Journal of Palaeogeography, 2019, 21(3): 379-396. | |
58 | LAWTON T F. Small grains, big rivers, continental concepts[J]. Geology, 2014, 42(7): 639-640. |
59 | PICKERING K T, CARTER A, ANDÒ S, et al. Deciphering relationships between the Nicobar and Bengal submarine fans, Indian Ocean[J]. Earth and Planetary Science Letters, 2020, 544: 116329. |
60 | BLUM M, ROGERS K, GLEASON J, et al. Allogenic and autogenic signals in the stratigraphic record of the deep-sea Bengal Fan[J]. Scientific Reports, 2018, 8(1): 7973. |
61 | 龚承林, 刘力, 邵大力, 等. 晚中新世以来孟加拉-尼科巴扇跷跷板式沉积转换及其源-汇成因机制[J]. 地学前缘, 2022, 29(4): 25-41. |
GONG Chenglin, LIU Li, SHAO Dali, et al. Depositional patterns of the Bengal-Nicobar Fan system since the Late Miocene: Seesaw-like stepwise changes and the source-sink model[J]. Earth Science Frontiers, 2022, 29(4): 25-41. | |
62 | XU Shaohua, HAN Jianhui, WANG Yingmin, et al. How much systems-tract scale, three-dimensional stratigraphic variability is present in sequence stratigraphy?: An answer from the Middle Miocene Pearl River Mouth Basin[J]. AAPG Bulletin, 2020, 104(6): 1261-1285. |
63 | SNEDDEN J W, GALLOWAY W E, MILLIKEN K T, et al. Validation of empirical source-to-sink scaling relationships in a continental-scale system: The Gulf of Mexico Basin Cenozoic record[J]. Geosphere, 2018, 14(2): 768-784. |
64 | NYBERG B, HELLAND-HANSEN W, GAWTHORPE R L, et al. Revisiting morphological relationships of modern source-to-sink segments as a first-order approach to scale ancient sedimentary systems[J]. Sedimentary Geology, 2018, 373: 111-133. |
65 | HOOKE J M. The significance of mid-channel bars in an active meandering river[J]. Sedimentology, 1986, 33(6): 839-850. |
66 | BULL W B. The alluvial-fan environment[J]. Progress in Physical Geography: Earth and Environment, 1977, 1(2): 222-270. |
67 | BLUM M, MARTIN J, MILLIKEN K, et al. Paleovalley systems: Insights from Quaternary analogs and experiments[J]. Earth-Science Reviews, 2013, 116: 128-169. |
68 | GONG Chenglin, LI Dongwei, STEEL R J, et al. Delta-to-fan source-to-sink coupling as a fundamental control on the delivery of coarse clastics to deepwater: Insights from stratigraphic forward modelling[J]. Basin Research, 2021, 33(6): 2960-2983. |
69 | PAUMARD V, BOURGET J, PAYENBERG T, et al. Controls on deep-water sand delivery beyond the shelf edge: Accommodation, sediment supply, and deltaic process regime[J]. Journal of Sedimentary Research, 2020, 90(1): 104-130. |
70 | GONG Chenglin, LI Dongwei, QI Kun, et al. Flow processes and sedimentation in a straight submarine channel on the Qiongdongnan margin, northwestern South China Sea[J]. Journal of Sedimentary Research, 2020, 90(10): 1372-1388. |
71 | GONG Chenglin, STEEL R J, WANG Yingmin, et al. Grain size and transport regime at shelf edge as fundamental controls on delivery of shelf-edge sands to deepwater[J]. Earth-Science Reviews, 2016, 157: 32-60. |
72 | DIXON J F, STEEL R J, OLARIU C. Shelf-edge delta regime as a predictor of deep-water deposition[J]. Journal of Sedimentary Research, 2012, 82(9): 681-687. |
73 | 刘强虎, 朱筱敏, 李顺利, 等. 沙垒田凸起前古近系基岩分布及源-汇过程[J]. 地球科学, 2016, 41(11): 1935-1949. |
LIU Qianghu, ZHU Xiaomin, LI Shunli, et al. Pre-Palaeogene bedrock distribution and source-to-sink system analysis in the Shaleitian uplift[J]. Earth Science, 2016, 41(11): 1935-1949. | |
74 | 朱红涛, 徐长贵, 朱筱敏, 等. 陆相盆地源—汇系统要素耦合研究进展[J]. 地球科学, 2017, 42(11): 1851-1870. |
ZHU Hongtao, XU Changgui, ZHU Xiaomin, et al. Advances of the source-to-sink units and coupling model research in continental basin[J]. Earth Science, 2017, 42(11): 1851-1870. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||