Oil & Gas Geology ›› 2023, Vol. 44 ›› Issue (3): 707-719.doi: 10.11743/ogg20230314
• Petroleum Geology • Previous Articles Next Articles
Xintao ZHANG1(), Xiyu QU2(), Peng XU3, Qingbin WANG3, Xiaojian LIU3, Tao YE3
Received:
2022-12-05
Revised:
2023-02-17
Online:
2023-06-01
Published:
2023-06-05
Contact:
Xiyu QU
E-mail:zhangxt4@cnooc.com.cn;quxiyu@upc.edu.cn
CLC Number:
Xintao ZHANG, Xiyu QU, Peng XU, Qingbin WANG, Xiaojian LIU, Tao YE. Genesis and evolution of pore-fractures in deep sandy conglomerate reservoirs in Bohai Bay Basin: Taking the Paleogene Kongdian Formation in Bozhong 19-6 structure as an example[J]. Oil & Gas Geology, 2023, 44(3): 707-719.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Statistical table of reservoir space types and characteristics of Kongdian Formation in Bozhong19-6 structure, Bohai Bay Basin"
孔隙类型 | 相对含量/% | 成因及主要特征 | |
---|---|---|---|
孔隙型 | 原生孔 | 4.10 | 花岗质原岩经过长期的风化淋滤,物理风化后破碎为花岗质碎块原地堆积,形成颗粒支撑格架而出现粒间原生孔 |
粒内溶孔 | 48.83 | 碱性长石及部分火成岩岩屑,在大气淡水淋滤及酸性流体的作用下通过溶解作用被溶蚀形成溶孔 | |
粒间溶孔 | 33.94 | 风化破裂后无明显颗粒骨架及钙质等胶结物被溶蚀形成粒间溶孔 | |
裂缝型 | 构造缝 | 4.61 | 构造运动过程中,应力集中而产生的裂缝,具有开启宽度大、延伸远、方向性强的特点,裂缝间相互切割或平行 |
成岩压实破裂缝 | 8.53 | 砾石压裂形成与砾石边缘高角度相交的成岩压实缝,具有开启程度差、数量多、多被泥质充填的特点;沿长石等脆性矿物解理发育,后期多被溶蚀扩大,含油性好 |
Table 2
Statistics of porosity changes caused by diagenesis of Kongdian Formation in Bozhong 19-6 structure, Bohai Bay Basin"
孔隙度演化阶段 | 白云石-铁白云石胶结成岩相① | 高岭石-铁白云石胶结成岩相② | 酸性溶蚀成岩相③ | |||||
---|---|---|---|---|---|---|---|---|
孔隙度变化量/% | 孔隙度/% | 孔隙度变化量/% | 孔隙度/% | 孔隙度变化量/% | 孔隙度/% | |||
初始孔隙度 | — | 34.43 | — | 40.49 | — | 33.22 | ||
早期压实减孔 | -18.77 | 15.66 | -16.88 | 23.61 | -16.48 | 16.74 | ||
第一期溶蚀增孔 | 1.80 | 17.46 | — | — | 2.35 | 19.09 | ||
白云石胶结减孔 | -4.16 | 13.31 | — | — | -4.82 | 14.27 | ||
高岭石胶结减孔 | — | — | -12.01 | 11.60 | — | — | ||
硅质胶结减孔 | — | — | — | — | -1.88 | 12.39 | ||
第二期溶蚀增孔 | 4.79 | 18.10 | 3.60 | 15.20 | 5.97 | 18.36 | ||
铁白云石胶结减孔 | -8.31 | 9.78 | -8.23 | 6.97 | -4.71 | 13.62 | ||
伊利石胶结减孔 | -1.39 | 8.40 | — | — | — | — | ||
晚期压实减孔 | -4.20 | 4.20 | -3.77 | 3.20 | -3.73 | 9.92 | ||
现今孔隙度 | — | 4.20 | — | 3.20 | — | 9.92 |
1 | 贾承造, 庞雄奇. 深层油气地质理论研究进展与主要发展方向[J]. 石油学报, 2015, 36(12): 1457-1469. |
JIA Chengzao, PANG Xiongqi. Research processes and main development directions of deep hydrocarbon geological theories[J]. Acta Petrolei Sinica, 2015, 36(12): 1457-1469. | |
2 | 施和生, 王清斌, 王军, 等. 渤中凹陷深层渤中19-6构造大型凝析气田的发现及勘探意义[J]. 中国石油勘探, 2019, 24(1): 36-45. |
SHI Hesheng, WANG Qingbin, WANG Jun, et al. Discovery and exploration significance of large condensate gas fields in BZ19-6 structure in deep Bozhong Sag[J]. China Petroleum Exploration, 2019, 24(1): 36-45. | |
3 | 侯明才, 曹海洋, 李慧勇, 等. 渤海海域渤中19-6构造带深层潜山储层特征及其控制因素[J]. 天然气工业, 2019, 39(1): 33-44. |
HOU Mingcai, CAO Haiyang, LI Huiyong, et al. Characteristics and controlling factors of deep buried-hill reservoirs in the BZ19-6 structural belt, Bohai Sea area[J]. Natural Gas Industry, 2019, 39(1): 33-44. | |
4 | 牛涛, 范洪军, 范廷恩, 等. 渤中19-6气田太古界变质岩潜山 “隔夹层” 成因及发育模式[J]. 大庆石油地质与开发, 2021, 40(4): 1-8. |
NIU Tao, FAN Hongjun, FAN Tingen, et al. Genesis and development pattern of the interlayer in Archaeozoic metamorphic-rock buried hill of Bozhong 19-6 Gas Field[J]. Petroleum Geology & Oilfield Development in Daqing, 2021, 40(4): 1-8. | |
5 | 徐长贵, 于海波, 王军, 等. 渤海海域渤中19-6大型凝析气田形成条件与成藏特征[J]. 石油勘探与开发, 2019, 46(1): 25-38. |
XU Changgui, YU Haibo, WANG Jun, et al. Formation conditions and accumulation characteristics of Bozhong 19-6 large condensate gas field in offshore Bohai Bay Basin[J]. Petroleum Exploration and Development, 2019, 46(1): 25-38. | |
6 | 孙靖, 尤新才, 张全, 等. 准噶尔盆地玛湖地区深层致密砾岩储层发育特征及成因[J/OL]. 天然气地球科学: 1-14[2022-11-05]. . |
SUN Jing, YOU Xincai, ZHANG Quan, et al. Development characteristics and genesis of deep tight conglomerate reservoirs of Mahu area in Junggar Basin[J/OL]. Natural Gas Geoscience: 1-14[2022-11-05]. . | |
7 | 李建忠, 王小军, 杨帆, 等. 准噶尔盆地中央坳陷西部下组合油气成藏模式及勘探前景[J]. 石油与天然气地质, 2022, 43(5): 1059-1072. |
LI Jianzhong, WANG Xiaojun, YANG Fan, et al. Hydrocarbon accumulation pattern and exploration prospect of the structural traps in lower play of the western Central Depression in the Junggar Basin[J]. Oil & Gas Geology, 2022, 43(5): 1059-1072. | |
8 | 田军, 杨海军, 吴超, 等. 博孜9井的发现与塔里木盆地超深层天然气勘探潜力[J]. 天然气工业, 2020, 40(1): 11-19. |
TIAN Jun, YANG Haijun, WU Chao, et al. Discovery of Well Bozi 9 and ultra-deep natural gas exploration potential in the Kelasu tectonic zone of the Tarim Basin[J]. Natural Gas Industry, 2020, 40(1): 11-19. | |
9 | 操应长, 远光辉, 杨海军, 等. 含油气盆地深层—超深层碎屑岩油气勘探现状与优质储层成因研究进展[J]. 石油学报, 2022, 43(1): 112-140. |
CAO Yingchang, YUAN Guanghui, YANG Haijun, et al. Current situation of oil and gas exploration and research progress of the origin of high-quality reservoirs in deep-ultra-deep clastic reservoirs of petroliferous basins[J]. Acta Petrolei Sinica, 2022, 43(1): 112-140. | |
10 | 张东东, 刘文汇, 王晓锋, 等. 深层油气藏成因类型及其特征[J]. 石油与天然气地质, 2021, 42(5): 1169-1180. |
ZHANG Dongdong, LIU Wenhui, WANG Xiaofeng, et al. Genetic types and characteristics of deep oil and gas plays[J]. Oil & Gas Geology, 2021, 42(5): 1169-1180. | |
11 | 庞小军, 杜晓峰, 王冠民, 等. 渤海海域渤中 19-6构造及围区深层孔店组砂砾岩优质储层成因及孔隙演化[J/OL]. 地球科学: 1-20[2022-11-05]. . |
PANG Xiaojun, DU Xiaofeng, WANG Guanmin, et al. Genetic mechanism and pore evolution of high-quality glutenite reservoirs of the deep Kongdian Formation in southwestern, BZ19-6, Bohai Sea[J/OL]. Earth Science: 1-20[2022-11-05]. . | |
12 | 王鸿祯. 中国地壳构造发展的主要阶段[J]. 地球科学, 1982(3): 155-178. |
WANG Hongzhen. The main stage of tectonic development of the earth’s crust in China[J]. Earth Science, 1982(3): 155-178. | |
13 | 翟明国. 克拉通化与华北陆块的形成[J]. 中国科学: 地球科学, 2011, 41(8): 1037-1046. |
ZHAI Minguo. Cratonization and the formation of North China Block[J]. Scientia Sinica(Terrae), 2011, 41(8): 1037-1046. | |
14 | 薛永安, 柴永波, 周园园. 近期渤海海域油气勘探的新突破[J]. 中国海上油气, 2015, 27(1): 1-9. |
XUE Yongan, CHAI Yongbo, ZHOU Yuanyuan. Recent new breakthroughs in hydrocarbon exploration in Bohai Sea[J]. China Offshore Oil and Gas, 2015, 27(1): 1-9. | |
15 | 祝春荣, 韦阿娟, 王保全. 油气运聚模拟在目标钻前研究中的成功应用——以渤海海域渤中21-22区为例[J]. 海洋石油, 2013, 33(3): 23-28. |
ZHU Chunrong, WEI Ajuan, WANG Baoquan. Successful application of hydrocarbon migration and accumulation modeling in predrilling target study of exploration well in Bohai Sea area[J]. Offshore Oil, 2013, 33(3): 23-28. | |
16 | COOK J E, GOODWIN L B, BOUTT D F. Systematic diagenetic changes in the grain-scale morphology and permeability of a quartz-cemented quartz arenite[J]. AAPG Bulletin, 2011, 95(6): 1067-1088. |
17 | 杨兵, 张占松, 张超谟. 渤中19-6气田孔店组砂砾岩储层分类研究[J]. 当代化工, 2020, 49(12): 2786-2790, 2817. |
YANG Bing, ZHANG Zhansong, ZHANG Chaomo. Investigation of reservoir classification of glutenites in Bozhong 19-6 Gas Field[J]. Contemporary Chemical Industry, 2020, 49(12): 2786-2790, 2817. | |
18 | 李建平, 周心怀, 刘士磊, 等. 渤海孔店组及其油气勘探意义[J]. 地层学杂志, 2010, 34(1): 89-96. |
LI Jianping, ZHOU Xinhuai, LIU Shilei, et al. On the distribution of the Kongdian Formation in the Bohai area with special reference to its bearings on oil exploration[J]. Journal of Stratigraphy, 2010, 34(1): 89-96. | |
19 | 王德英, 刘晓健, 邓辉, 等. 渤海湾盆地渤中19-6区中-新生代构造转换特征及其对太古宇潜山大规模储层形成的控制作用[J]. 石油与天然气地质, 2022, 43(6): 1334-1346. |
WANG Deying, LIU Xiaojian, DENG Hui, et al. Characteristics of the Meso-Cenozoic tectonic transformation and its control on the formation of large-scale reservoirs in the Archean buried hills in Bozhong 19-6 area, Bohai Bay Basin[J]. Oil & Gas Geology, 2022, 43(6): 1334-1346. | |
20 | 贾海松, 李振鹏, 张汶, 等. 渤海B气田孔店组砂砾岩储层特征及主控因素分析[J]. 重庆科技学院学报(自然科学版), 2020, 22(3): 44-48. |
JIA Haisong, LI Zhenpeng, ZHANG Wen, et al. Analysis of characteristics and main controlling factors of glutenite reservoir of E1-2k2 Formation in B Gas Field of Bohai Sea[J]. Journal of Chongqing University of Science and Technology(Natural Sciences Edition), 2020, 22(3): 44-48. | |
21 | 曹英权, 王清斌, 曲希玉, 等. 岩屑的有机酸溶蚀实验及验证——以渤中凹陷CFD6-4油田东营组为例[J]. 石油学报, 2020, 41(7): 841-852. |
CAO Yingquan, WANG Qingbin, QU Xiyu, et al. A dissolution experiment of organic acid of cuttings and its verification: A case study of the Dongying Formation of the CFD6-4 Oilfield, Bozhong Sag[J]. Acta Petrolei Sinica, 2020, 41(7): 841-852. | |
22 | 曲希玉, 苗长盛, 李瑞磊, 等. 致密碎屑岩储层物性影响因素及优质储层主控因素——以松辽盆地长岭断陷龙凤山次凹营城组为例[J]. 天然气地球科学, 2022, 33(7): 1036-1048. |
QU Xiyu, MIAO Changsheng, LI Ruilei, et al. Influencing factors of tight clastic reservoir physical properties and main controlling factors of high-quality reservoirs: Taking the Yingcheng Formation of Longfengshan sub-sag in Changling fault depression of Songliao Basin as an example[J]. Natural Gas Geoscience, 2022, 33(7): 1036-1048. | |
23 | 黄思静, 杨俊杰, 张文正, 等. 不同温度条件下乙酸对长石溶蚀过程的实验研究[J]. 沉积学报, 1995, 13(1): 7-17 |
HUANG Sijing, YANG Junjie, ZHANG Wenzheng, et al. Experimental study of feldspar dissolution by acetic acid at different burial temperatures[J]. Acta Sedimentologica Sinica, 1995, 13(1): 7-17. | |
24 | 杨俊杰, 黄月明, 张文正, 等. 乙酸对长石砂岩溶蚀作用的实验模拟[J]. 石油勘探与开发, 1995, 22(4): 82-86, 113-114. |
YANG Junjie, HUANG Yueming, ZHANG Wenzheng, et al. Experimental approach of dissolution of feldspar sand stone by acetic acid[J]. Petroleum Exploration and Development, 1995, 22(4): 82-86, 113-114. | |
25 | 罗孝俊, 杨卫东. 有机酸对长石溶解度影响的热力学研究[J]. 矿物学报, 2001, 21(2): 183-188. |
LUO Xiaojun, YANG Weidong. The effect of organic acid on feldspar solubility: A thermodynamic study[J]. Acta Mineralogica Sinica, 2001, 21(2): 183-188. | |
26 | 向廷生, 蔡春芳, 付华娥. 不同温度、羧酸溶液中长石溶解模拟实验[J]. 沉积学报, 2004, 22(4): 597-602. |
XIANG Tingsheng, CAI Chunfang, FU Huae. Dissolution of microcline by carboxylic acids at different temperatures and complexing reaction of Al anion with carboxylic acid in aqueous solution[J]. Acta Sedimentologica Sinica, 2004, 22(4): 597-602. | |
27 | 张文正, 杨华, 解丽琴, 等. 鄂尔多斯盆地上古生界煤成气低孔渗储集层次生孔隙形成机理——乙酸溶液对钙长石、铁镁暗色矿物溶蚀的模拟实验[J]. 石油勘探与开发, 2009, 36(3): 383-391. |
ZHANG Wenzheng, YANG Hua, XIE Liqin, et al. Secondary porosity formation of Upper Paleozoic low porosity-permeability coal-formed gas reservoirs, Ordos Basin: Simulation on dissolution of anorthite and dark-colored femic minerals in acetic acid solution[J]. Petroleum Exploration and Development, 2009, 36(3): 383-391. | |
28 | 李美蓉, 宋来弟, 于海鹏, 等. 酸碱度对长石溶蚀及增孔效应的影响[J]. 中国石油大学学报(自然科学版), 2021, 45(5): 33-41. |
LI Meirong, SONG Laidi, YU Haipeng, et al. Influence of pH value on feldspar dissolution and pore-increasing effect[J]. Journal of China University of Petroleum(Edition of Natural Science), 2021, 45(5): 33-41. | |
29 | 曾庆鲁, 张荣虎, 王力宝, 等. 库车坳陷白垩系深层致密砂岩储层溶蚀作用实验模拟研究[J]. 沉积学报, 2018, 36(5): 946-956. |
ZENG Qinglu, ZHANG Ronghu, WANG Libao, et al. Experimental simulation for dissolution of Cretaceous tight sand rocks as deep reservoir in Kuqa Depression[J]. Acta Sedimentologica Sinica, 2018, 36(5): 946-956. | |
30 | 李宝帅. 库车坳陷克拉苏构造带深层致密砂岩气成藏机制[J]. 特种油气藏, 2021, 28(5): 17-22. |
LI Baoshuai. Accumulation mechanism of deep tight sandstone gas reservoir in Kelasu structural belt, Kuqa Depression[J]. Special Oil & Gas Reservoirs, 2021, 28(5): 17-22. | |
31 | 朱翔, 陈倩倩, 伏美燕, 等. 多种流体体系与砂岩水岩反应的实验研究[J]. 海相油气地质, 2018, 23(2): 17-24. |
ZHU Xiang, CHEN Qianqian, FU Meiyan, et al. Experimental study on water-rock reaction of sandstone in various fluid systems[J]. Marine Origin Petroleum Geology, 2018, 23(2): 17-24. | |
32 | SUN Xiuting, LI Meirong, XING Juntao, et al. The complex effect of organic acids on the dissolution of feldspar at high temperature[J]. Environmental Earth Sciences, 2021, 80(7): 244. |
33 | 曹婷婷, 曲希玉, 蒋龑, 等. 混积条件下有机酸-矿物溶蚀模拟实验[J]. 矿物岩石地球化学通报, 2021, 40(5): 1181-1188. |
CAO Tingting, QU Xiyu, JIANG Yan, et al. Dissolution simulation of organic acids and minerals under mixed deposition[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2021, 40(5): 1181-1188. | |
34 | 方晓玲, 蒋定建. 乙酸条件下长石溶解—沉淀过程探究[J]. 当代化工, 2019, 48(9): 1990-1994. |
FANG Xiaoling, JIANG Dingjian. Study on dissolution and precipitation process of feldspar under acetic acid condition[J]. Contemporary Chemical Industry, 2019, 48(9): 1990-1994. | |
35 | 冯佳睿, 高志勇, 崔京钢, 等. 库车坳陷迪北侏罗系深部储层孔隙演化特征与有利储层评价——埋藏方式制约下的成岩物理模拟实验研究[J]. 地球科学进展, 2018, 33(3): 305-320. |
FENG Jiarui, GAO Zhiyong, CUI Jinggang, et al. Reservoir porosity evolution characteristics and evaluation of the Jurassic deep reservoir from Dibei in Kuqa Depression: Insight from diagenesis modeling experiments under the influence of burial mode[J]. Advances in Earth Science, 2018, 33(3): 305-320. | |
36 | 郭沫贞, 朱国华, 寿建峰, 等. 碎屑岩压裂缝的特征、成因与油气勘探意义[J]. 沉积学报, 2006, 24(4): 483-487. |
GUO Mozhen, ZHU Guohua, SHOU Jianfeng, et al. Features, origin and petroleum explorative significance of crushed fracture in clastic rock[J]. Acta Sedimentologica Sinica, 2006, 24(4): 483-487. | |
37 | 曾联波, 李跃纲, 王正国, 等. 川西南部须二段低渗透砂岩储层裂缝类型及其形成序列[J]. 地球科学(中国地质大学学报), 2007, 32(2): 194-200. |
ZENG Lianbo, LI Yuegang, WANG Zhengguo, et al. Type and sequence of fractures in the second member of Xujiahe Formation at the South of Western Sichuan Depression[J]. Earth Science(Journal of China University of Geosciences), 2007, 32(2): 194-200. | |
38 | 吴元燕, 吴胜和, 蔡正旗. 油矿地质学[M]. 3版. 北京: 石油工业出版社, 2005. |
WU Yuanyan, WU Shenghe, CAI Zhengqi. Industrial geology of petroleum[M]. 3rd ed. Beijing: Petroleum Industry Press, 2005. | |
39 | 李绍华, 何汶锶, 吴育鹏. 低渗透砂砾岩储层裂缝发育特征及主控因素[J]. 西部探矿工程, 2015, 27(1): 73-74, 77. |
LI Shaohua, HE Wensi, WU Yupeng. Fracture development characteristics and main controlling factors of low permeability glutenite reservoir[J]. West-China Exploration Engineering, 2015, 27(1): 73-74, 77. | |
40 | 龙鹏宇, 张金川, 唐玄, 等. 泥页岩裂缝发育特征及其对页岩气勘探和开发的影响[J]. 天然气地球科学, 2011, 22(3): 525-532. |
LONG Pengyu, ZHANG Jinchuan, TANG Xuan, et al. Feature of muddy shale fissure and its effect for shale gas exploration and development[J]. Natural Gas Geoscience, 2011, 22(3): 525-532. | |
41 | SCHERER M, 侯瑞云. 影响砂岩孔隙度的参数——一种预测砂岩孔隙度的模式[J]. 地质科学译丛, 1988(2): 74-79. |
SCHERER M, HOU Ruiyun. Parameters affecting porosity of sandstone: A model for predicting sandstone porosity[J]. Journal of Geoscience Translations, 1988(2): 74-79. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||