Oil & Gas Geology ›› 2023, Vol. 44 ›› Issue (5): 1141-1158.doi: 10.11743/ogg20230506
• Petroleum Geology • Previous Articles Next Articles
Zhiyong GAO1(), Yongping WU2, Zhaolong LIU1, Cong WEI2, Yongzhong ZHANG1, Cuili WANG2, Qunming LIU1
Received:
2023-02-15
Revised:
2023-05-10
Online:
2023-10-19
Published:
2023-10-19
CLC Number:
Zhiyong GAO, Yongping WU, Zhaolong LIU, Cong WEI, Yongzhong ZHANG, Cuili WANG, Qunming LIU. Development model and significance of favorable lithofacies association of sandy braided river facies of the Cretaceous Bashijiqike Formation in Zhongqiu 1 well block, Kuqa Depression, Tarim Basin[J]. Oil & Gas Geology, 2023, 44(5): 1141-1158.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Thickness and percentage of different lithology under the isochronous stratigraphic framework of Zhongqiu 1 well block, Kuqa Depression, Tarim Basin"
井号 | 地层 | 最大洪泛面 深度/m | 等时地层 格架深度/m | 泥岩-粉砂岩厚度/m | 细砂岩-砾岩厚度/m | 地层 总厚度/m | 细砂岩-砾岩厚度占地层比例/% | |
---|---|---|---|---|---|---|---|---|
中秋1 | 巴一段 | 6 183 | 6 074.0~6 105.0 | 6 | 25.0 | 31.0 | 80.6 | |
巴二段 | 洪泛面之上 | 6 105.0~6 183.0 | 9 | 69.0 | 78.0 | 88.5 | ||
洪泛面之下 | 6 183.0~6 316.0 | 37 | 96.0 | 133.0 | 72.2 | |||
中秋101 | 巴一段 | 6 395 | 6 262.5~6 306.0 | 7 | 36.5 | 43.5 | 83.9 | |
巴二段 | 洪泛面之上 | 6 306.0~6 395.0 | 11 | 78.0 | 89.0 | 87.6 | ||
洪泛面之下 | 6 395.0~6 500.0 | 20 | 85.0 | 105.0 | 80.9 | |||
中秋102 | 巴一段 | 6 315 | 6 193.0~6 229.0 | 6 | 30.0 | 36.0 | 83.3 | |
巴二段 | 洪泛面之上 | 6 229.0~6 315.0 | 15 | 71.0 | 86.0 | 82.6 | ||
洪泛面之下 | 6 315.0~6 415.0 | 21 | 79.0 | 100.0 | 79.0 | |||
中秋104 | 巴一段 | ≥6 125 | 6 008.0~6 042.0 | 8 | 26.0 | 34.0 | 76.5 | |
巴二段 | 洪泛面之上 | 6 042.0~6 125.0 | 19 | 64.0 | 83.0 | 77.1 | ||
中秋2 | 巴一段 | 6 390 | 6 267.0~6 312.5 | 6 | 39.5 | 45.5 | 86.8 | |
巴二段 | 洪泛面之上 | 6 312.5~6 390.0 | 12 | 65.5 | 77.5 | 84.5 | ||
洪泛面之下 | 6 390.0~6 456.0 | 11 | 55.0 | 66.0 | 83.3 |
Table 2
Characteristic statistics of the 9 types of lithofacies combinations in Zhongqiu 1 well block in the Kuqa Depression, Tarim Basin"
岩相组合分类 | 岩相组合 名称 | 发育井与层位 | 沉积微相 | 厚度/m | 裂缝特征 | 岩性 | 孔隙类型 | 孔隙度/% | 渗透率/ (10-3 μm2) |
---|---|---|---|---|---|---|---|---|---|
Ⅰ类 | 高孔渗裂缝发育粗中粒含泥砾河道砂岩相 | 中秋101井 巴一段 | 冲积平原辫状河河道 | 单层砂体 厚1.6 | 裂缝发育 | 粗中粒岩屑长石砂岩、含泥砾粗中粒岩屑长石砂岩 | 残余原生孔为主,少量溶孔 | 普遍大于10,最高可达16 | 1.0~20.0, 最高可达182 |
Ⅱ类 | 高孔渗裂缝发育中细粒河道砂岩相 | 中秋102井和中秋2井巴二段下部,中秋102井巴一段 | 辫状河三角洲前缘水下分流河道、冲积平原辫状河河道 | 单层砂体厚1.0~2.5 | 裂缝发育 | 中粒、细中粒岩屑长石砂岩 | 残余原生孔为主,少量长石及粒间溶孔 | 普遍大于10,最高可达14 | 0.2~9.0 |
Ⅲ类 | 高孔含裂缝中细粒含泥砾河道砂岩相 | 中秋101井和中秋102井巴一段,中秋2井巴二段上部 | 冲积平原辫状河河道 | 单层砂体 厚1.6~2.6 | 裂缝较发育 | 中粒、中细粒岩屑长石砂岩 | 残余原生孔为主,少量长石、岩屑内溶孔及粒间溶孔 | 普遍大于10,最高可达15 | 0.3~3.0 |
Ⅳ类 | 高孔含裂缝细粒河道砂岩相 | 中秋101井 巴一段 | 冲积平原辫状河河道 | 单层砂体 厚2.1 | 裂缝较发育 | 细粒、中细粒岩屑长石砂岩 | 残余原生孔为主,少量长石内溶孔及粒间溶孔 | 普遍大于8,最高可达14 | 0.1~2.0 |
Ⅴ类 | 高孔渗无裂缝粗中粒含泥砾河道砂岩相 | 中秋101井巴一段、巴二段上部,中秋102井巴一段、巴二段下部,中秋2井的巴二段上部 | 冲积平原辫状河河道,少量辫状河三角洲前缘水下分流河道 | 单层砂体厚0.8~4.0 | 裂缝不发育 | 粗粒、粗中粒岩屑长石砂岩 | 残余原生孔为主,少量长石、岩屑内溶孔及粒间溶孔 | 10~16 | 0.3~20.0 |
Ⅵ类 | 高孔低渗粗中粒含泥砾河道砂岩相 | 中秋101井和中秋102井巴一段 | 冲积平原辫状河河道 | 单层砂体厚0.8~2.9 | 裂缝不发育 | 粗粒、粗中粒岩屑长石砂岩 | 残余原生孔为主,少量长石内溶孔及粒间溶孔 | 5~13 | 0.2~2.5 |
Ⅶ类 | 高孔低渗细粒河道砂岩相 | 中秋101井巴一段,中秋2井巴二段上部、巴二段下部 | 冲积平原辫状河河道,少量辫状河三角洲前缘水下分流河道 | 单层砂体厚0.8~1.8 | 裂缝不发育 | 细粒岩屑长石砂岩 | 残余原生孔为主,少量长石、岩屑内溶孔及粒间溶孔 | 5~13,个别达15 | 0.2~2.5 |
Ⅷ类 | 低孔渗细粒废弃河道砂岩相 | 中秋101井巴一段、巴二段上部,中秋102井巴一段、巴二段下部,中秋2井巴二段上部 | 冲积平原辫状河废弃河道,少量辫状河三角洲前缘水下分流河道 | 单层砂体厚0.3~1.1 | 裂缝不发育 | 细粒岩屑长石砂岩 | 残余原生孔为主,少量长石、岩屑内溶孔及粒间溶孔 | 3~11 | 0.1~2.0 |
Ⅸ类 | 隔夹层泥粉砂岩相 | 中秋1井区均有发育 | 冲积平原辫状河漫滩、落淤层,辫状河三角洲前缘分流间湾 | 岩层厚 0.2~1.8 | 裂缝不发育 | 泥质粉砂岩、粉砂质泥岩 | 残余原生孔、次生溶蚀孔 | 2~6, 一般<5 | 0.1~2.0, 一般<1.0 |
Table 3
Data of braided channel belt width predicted based on average thickness of the cross bed set in the cores from Zhongqiu 1 well block, Kuqa Depression, Tarim Basin"
井号 | 地层 | 岩心中交错层组平均厚度(Sm)/m | 河道内平均沙丘高度(hm)/m | 平均满岸水流深度(dm)/m | 辫状河河道宽度(Wc)/m |
---|---|---|---|---|---|
中秋101 | 巴一段 | 0.85 | 0.824 6 | 4.95 | 1 065.90 |
巴二段上部 | 0.75 | 0.699 0 | 4.01 | 729.60 | |
中秋102 | 巴一段 | 0.80 | 0.761 2 | 4.57 | 923.16 |
巴二段下部 | 0.70 | 0.638 1 | 3.83 | 671.71 | |
中秋2 | 巴二段上部 | 0.70 | 0.638 1 | 3.83 | 671.71 |
巴二段下部 | 0.60 | 0.520 7 | 3.12 | 464.41 |
1 | 张东东, 刘文汇, 王晓锋, 等. 深层油气藏成因类型及其特征[J]. 石油与天然气地质, 2021, 42(5): 1169-1180. |
ZHANG Dongdong, LIU Wenhui, WANG Xiaofeng, et al. Genetic types and characteristics of deep oil and gas plays[J]. Oil & Gas Geology, 2021, 42(5): 1169-1180. | |
2 | 杜金虎, 田军, 李国欣, 等. 库车坳陷秋里塔格构造带的战略突破与前景展望[J]. 中国石油勘探, 2019, 24(1): 16-23. |
DU Jinhu, TIAN Jun, LI Guoxin, et al. Strategic breakthrough and prospect of Qiulitag structural belt in Kuqa Depression[J]. China Petroleum Exploration, 2019, 24(1): 16-23. | |
3 | 刘春, 徐振平, 陈戈, 等. 塔里木盆地中秋1凝析气藏成藏条件及演化过程[J]. 天然气工业, 2019, 39(4): 8-17. |
LIU Chun, XU Zhenping, CHEN Ge, et al. Hydrocarbon accumulation conditions and evolution process of the ZQ1 large condensate gas reservoir in the Qiulitage structural belt, Tarim Basin[J]. Natural Gas Industry, 2019, 39(4): 8-17. | |
4 | 陈戈, 赵继龙, 杨宪彰, 等. 塔里木盆地秋里塔格构造带深部碎屑岩储层特征及控制因素[J]. 天然气工业, 2019, 39(4): 18-27. |
CHEN Ge, ZHAO Jilong, YANG Xianzhang, et al. Characteristics and controlling factors of deep-buried clastic reservoirs in the Qiulitage structural belt, Tarim Basin[J]. Natural Gas Industry, 2019, 39(4): 18-27. | |
5 | 贾进华. 库车前陆盆地白垩纪巴什基奇克组沉积层序与储层研究[J]. 地学前缘, 2000, 7(3): 133-143. |
JIA Jinhua. Depositional sequence and reservoir of Cretaceous Bashijiqike Formation in Kuqa foreland basin[J]. Earth Science Frontiers, 2000, 7(3): 133-143. | |
6 | 顾家裕, 方辉, 贾进华. 塔里木盆地库车坳陷白垩系辫状三角洲砂体成岩作用和储层特征[J]. 沉积学报, 2001, 19(4): 517-523. |
GU Jiayu, FANG Hui, JIA Jinhua. Diagenesis and reservoir characteristics of Cretaceous braided delta sandbody in Kuqa Depression, Tarim Basin[J]. Acta Sedimentologica Sinica, 2001, 19(4): 517-523. | |
7 | 李忠, 王道轩, 林伟, 等. 库车坳陷中-新生界碎屑组分对物源类型及其构造属性的指示[J]. 岩石学报, 2004, 20(3): 655-666. |
LI Zhong, WANG Daoxuan, LIN Wei, et al. Mesozoic-Cenozoic clastic composition in Kuqa Depression, northwest China: Implication for provenance types and tectonic attributes[J]. Acta Petrologica Sinica, 2004, 20(3): 655-666. | |
8 | 梅冥相, 于炳松, 靳卫广. 塔里木盆地库车坳陷白垩纪层序地层格架及古地理演化[J]. 古地理学报, 2004, 6(3): 261-278. |
MEI Mingxiang, YU Bingsong, JIN Weiguang. Sequence stratigraphic framework and palaeogeography evolution of the Cretaceous in Kuqa Depression, Tarim Basin[J]. Journal of Palaeogeography, 2004, 6(3): 261-278. | |
9 | 严德天, 王华, 王家豪, 等. 库车坳陷东部白垩系沉积体系分析及有利油气勘探区带预测[J]. 地质学报, 2006, 80(3): 382-389. |
YAN Detian, WANG Hua, WANG Jiahao, et al. Analysis of depositional systems and prediction of favorable regions of the Cretaceous in the east part of the Kuqa Depression, Tarim Basin, Xinjiang[J]. Acta Geologica Sinica, 2006, 80(3): 382-389. | |
10 | 张惠良, 张荣虎, 杨海军, 等. 超深层裂缝-孔隙型致密砂岩储集层表征与评价——以库车前陆盆地克拉苏构造带白垩系巴什基奇克组为例[J]. 石油勘探与开发, 2014, 41(2): 158-167. |
ZHANG Huiliang, ZHANG Ronghu, YANG Haijun, et al. Characterization and evaluation of ultra-deep fracture-pore tight sandstone reservoirs: A case study of Cretaceous Bashijiqike Formation in Kelasu tectonic zone in Kuqa foreland basin, Tarim, NW China[J]. Petroleum Exploration and Development, 2014, 41(2): 158-167. | |
11 | 李宝帅. 库车坳陷克拉苏构造带深层致密砂岩气成藏机制[J]. 特种油气藏, 2021, 28(5): 17-22. |
LI Baoshuai. Accumulation mechanism of deep tight sandstone gas reservoir in Kelasu structural belt, Kuqa Depression[J]. Special Oil & Gas Reservoirs, 2021, 28(5): 17-22. | |
12 | 高志勇, 冯佳睿, 周川闽, 等. 干旱气候环境下季节性河流沉积特征——以库车河剖面下白垩统为例[J]. 沉积学报, 2014, 32(6): 1060-1071. |
GAO Zhiyong, FENG Jiarui, ZHOU Chuanmin, et al. Arid climate seasonal rivers deposition: A case of Lower Cretaceous in Kuche river outcrop[J]. Acta Sedimentologica Sinica, 2014, 32(6): 1060-1071. | |
13 | 高志勇, 周川闽, 冯佳睿, 等. 中新生代天山隆升及其南北盆地分异与沉积环境演化[J]. 沉积学报, 2016, 34(3): 415-435. |
GAO Zhiyong, ZHOU Chuanmin, FENG Jiarui, et al. Relationship between the Tianshan mountains uplift and depositional environment evolution of the basins in Mesozoic-Cenozoic[J]. Acta Sedimentologica Sinica, 2016, 34(3): 415-435. | |
14 | 王珂, 张荣虎, 王俊鹏, 等. 超深层致密砂岩储层构造裂缝分布特征及其成因——以塔里木盆地库车前陆冲断带克深气田为例[J]. 石油与天然气地质, 2021, 42(2): 338-353. |
WANG Ke, ZHANG Ronghu, WANG Junpeng, et al. Distribution and origin of tectonic fractures in ultra-deep tight sandstone reservoirs: A case study of Keshen Gas Field, Kuqa foreland thrust belt, Tarim Basin[J]. Oil & Gas Geology, 2021, 42(2): 338-353. | |
15 | 王胜军, 唐永亮, 朱松柏, 等. 塔里木盆地库车坳陷北部典型露头剖面白垩系巴什基奇克组三段高分辨率层序地层特征[J]. 石油与天然气地质, 2022, 43(4): 804-822. |
WANG Shengjun, TANG Yongliang, ZHU Songbai, et al. High-resolution sequence stratigraphy of the third member of Cretaceous Bashijiqike Formation in a typical outcrop section, northern Kuqa Depression, Tarim Basin[J]. Oil & Gas Geology, 2022, 43(4): 804-822. | |
16 | 卢志远, 何治亮, 马世忠, 等. 高能辫状河沉积特征及砂体分布——以苏东X密井网区为例[J]. 石油学报, 2021, 42(8): 1003-1014. |
LU Zhiyuan, HE Zhiliang, MA Shizhong, et al. Characteristics and sand distribution of high-energy braided river deposits: A case study of X tight well area in eastern Sulige region[J]. Acta Petrolei Sinica, 2021, 42(8): 1003-1014. | |
17 | 李剑, 李谨, 谢增业, 等. 塔里木盆地秋里塔格构造带中秋1圈闭油气来源与成藏[J]. 石油勘探与开发, 2020, 47(3): 512-522. |
LI Jian, LI Jin, XIE Zengye, et al. Oil and gas source and accumulation of Zhongqiu 1 trap in Qiulitage structural belt, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(3): 512-522. | |
18 | 王振彪, 孙雄伟, 肖香姣. 超深超高压裂缝性致密砂岩气藏高效开发技术——以塔里木盆地克拉苏气田为例[J]. 天然气工业, 2018, 38(4): 87-95. |
WANG Zhenbiao, SUN Xiongwei, XIAO Xiangjiao. Efficient development technologies for ultradeep, overpressured and fractured sandstone gas reservoirs: A cased study of the Kelasu Gas Field in the Tarim Basin[J]. Natural Gas Industry, 2018, 38(4): 87-95. | |
19 | 常宝华, 唐永亮, 朱松柏, 等. 超深层裂缝性致密砂岩气藏试井特征及认识——以塔里木盆地克深气田为例[J]. 大庆石油地质与开发, 2021, 40(3): 167-174. |
CHANG Baohua, TANG Yongliang, ZHU Songbai, et al. Well test characteristics and understandings of the ultra-deep fractured tight sandstone gas reservoirs: A case study on Keshen Gas Field in Tarim Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2021, 40(3): 167-174. | |
20 | 杨海军, 李勇, 唐雁刚, 等. 塔里木盆地克深气田成藏条件及勘探开发关键技术[J]. 石油学报, 2021, 42(3): 399-414. |
YANG Haijun, LI Yong, TANG Yangang, et al. Accumulation conditions, key exploration and development technologies for Keshen gas field in Tarim Basin[J]. Acta Petrolei Sinica, 2021, 42(3): 399-414. | |
21 | 印森林, 陈恭洋, 陈玉琨, 等. 砂砾岩储层孔隙结构复杂模态差异机制[J]. 西南石油大学学报(自然科学版), 2019, 41(1): 1-17. |
YIN Senlin, CHEN Gongyang, CHEN Yukun, et al. Mechanism of complex modes of the pore structure of sandstone/conglomerate reservoirs[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2019, 41(1): 1-17. | |
22 | 鲍怡晨, 刘强虎, 杜晓峰, 等. 基于砾石-基质-裂缝三元素的砂砾岩岩相划分[J]. 地球科学, 2021, 46(6): 2157-2171. |
BAO Yichen, LIU Qianghu, DU Xiaofeng, et al. Division of glutenite lithofacies based on the trielement of gravel-matrix-fracture[J]. Earth Science, 2021, 46(6): 2157-2171. | |
23 | 裘亦楠, 张志松, 唐美芳, 等. 河流砂体储层的小层对比问题[J]. 石油勘探与开发, 1987, 14(2): 46-52. |
QIU Yinan, ZHANG Zhisong, TANG Meifang, et al. The detailed correlation of fluvial sandbody reservoirs[J]. Petroleum Exploration and Development, 1987, 14(2): 46-52. | |
24 | 高志勇, 郑荣才, 罗平. 陆相高分辨率层序地层中洪泛面特征研究[J]. 成都理工大学学报(自然科学版), 2007, 34(1): 47-56. |
GAO Zhiyong, ZHENG Rongcai, LUO Ping. A study of the flooding surface in the high-resolution stratigraphic sequence of continental deposit[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2007, 34(1): 47-56. | |
25 | 于兴河, 李顺利, 谭程鹏, 等. 粗粒沉积及其储层表征的发展历程与热点问题探讨[J]. 古地理学报, 2018, 20(5): 713-736. |
YU Xinghe, LI Shunli, TAN Chengpeng, et al. Coarse-grained deposits and their reservoir characterizations: A look back to see forward and hot issues[J]. Journal of Palaeogeography, 2018, 20(5): 713-736. | |
26 | 裘亦楠. 河流沉积学中的河型分类[J]. 石油勘探与开发, 1985, 12(2): 72-74. |
QIU Yinan. Classification of river types in fluvial sedimentology[J]. Petroleum Exploration and Development, 1985, 12(2): 72-74. | |
27 | 张金亮. 河流沉积相类型及相模式[J]. 新疆石油地质, 2019, 40(2): 244-252. |
ZHANG Jinliang. Fluvial facies styles and their sedimentary facies models[J]. Xinjiang Petroleum Geology, 2019, 40(2): 244-252. | |
28 | 陈彬滔, 于兴河, 王天奇, 等. 砂质辫状河岩相与构型特征——以山西大同盆地中侏罗统云冈组露头为例[J]. 石油与天然气地质, 2015, 36(1): 111-117. |
CHEN Bintao, YU Xinghe, WANG Tianqi, et al. Lithofacies and architectural characteristics of sandy braided river deposits: A case from outcrops of the Middle Jurassic Yungang Formation in the Datong Basin, Shanxi Province[J]. Oil & Gas Geology, 2015, 36(1): 111-117. | |
29 | 王锐. 辫状河厚砂体内部夹层的识别及分布特征[J]. 大庆石油地质与开发, 2016, 35(3): 83-87. |
WANG Rui. Identification and distribution characteristics of the internal interbeds in the thick sandbodies of the braided river[J]. Petroleum Geology & Oilfield Development in Daqing, 2016, 35(3): 83-87. | |
30 | 陈修, 徐守余, 李顺明, 等. 基于支持向量机和主成分分析的辫状河储层夹层识别[J]. 中国石油大学学报(自然科学版), 2021, 45(4): 22-31. |
CHEN Xiu, XU Shouyu, LI Shunming, et al. Identification of interlayers in braided river reservoir based on support vector machine and principal component analysis[J]. Journal of China University of Petroleum(Edition of Natural Science), 2021, 45(4): 22-31. | |
31 | 何辉, 刘畅, 李顺明, 等. 基于支持向量机算法的辫状河储层砂体连通性定量评价[J]. 中国石油大学学报(自然科学版), 2021, 45(2): 1-10. |
HE Hui, LIU Chang, LI Shunming, et al. Quantitative evaluation of sand body connectivity in braided river reservoirs based on support vector machine algorithm[J]. Journal of China University of Petroleum(Edition of Natural Science), 2021, 45(2): 1-10. | |
32 | 苏亚拉图, 李千, 张波, 等. 砂质辫状河砂体构型及剩余油分布模式[J]. 特种油气藏, 2020, 27(4): 10-18. |
SU Yalatu, LI Qian, ZHANG Bo, et al. Sandy braided river sandbody configuration and remaining oil distribution pattern[J]. Special Oil & Gas Reservoirs, 2020, 27(4): 10-18. | |
33 | 王敏, 赵国良, 冯敏, 等. 砂质辫状河储层隔夹层分布模式及其对边底水运移的影响——以南苏丹P油田Fal块为例[J]. 油气地质与采收率, 2017, 24(2): 8-14, 21. |
WANG Min, ZHAO Guoliang, FENG Min, et al. Distribution pattern of intercalations and its impact on migration of edge and bottom water in sandy braided-river reservoirs——A case study of Fal structure in P Oilfield, South Sudan[J]. Petroleum Geology and Recovery Efficiency, 2017, 24(2): 8-14, 21. | |
34 | 兰朝利, 何顺利, 门成全. 利用岩心或露头的交错层组厚度预测辫状河河道带宽度——以鄂尔多斯盆地苏里格气田为例[J]. 油气地质与采收率, 2005, 12(2): 16-18. |
LAN Chaoli, HE Shunli, Chengquan MEN. Prediction of braided channel belt width based on cross-stratum sets thickness measurements of cores or outcrops-taking Sulige Gas Field, Ordos Basin as an example[J]. Petroleum Geology and Recovery Efficiency, 2005, 12(2): 16-18. | |
35 | 张昌民, 尹太举, 赵磊, 等. 辫状河储层内部建筑结构分析[J]. 地质科技情报, 2013, 32(4): 7-13. |
ZHANG Changmin, YIN Taiju, ZHAO Lei, et al. Reservoir architectural analysis of braided channel[J]. Geological Science and Technology Information, 2013, 32(4): 7-13. |
[1] | Tongfei HUANG, Guangya ZHANG, Beiwei LUO, Zhihua YU, Lei ZHANG, Zhiliang HE, Guoping BAI, Jiquan YIN, Houqin ZHU, Jinyin YIN, Jianhuan YAO. Cretaceous prototype basins and lithofacies paleogeography in the Tethyan domain and their role in hydrocarbon accumulation [J]. Oil & Gas Geology, 2024, 45(3): 658-672. |
[2] | Yanqiu ZHANG, Honghan CHEN, Xiepei WANG, Peng WANG, Danmei SU, Zhou XIE. Assessment of connectivity between source rocks and strike-slip fault zone in the Fuman oilfield, Tarim Basin [J]. Oil & Gas Geology, 2024, 45(3): 787-800. |
[3] | Zicheng CAO, Lu YUN, Lixin QI, Haiying LI, Jun HAN, Feng GENG, Bo LIN, Jingping CHEN, Cheng HUANG, Qingyan MAO. A major discovery of hydrocarbon-bearing layers over 1,000-meter thick in well Shunbei 84X, Shunbei area, Tarim Basin and its implications [J]. Oil & Gas Geology, 2024, 45(2): 341-356. |
[4] | Shuangjian LI, Zhi LI, Lei ZHANG, Yingqiang LI, Xianwu MENG, Haijun WANG. Hydrocarbon accumulation conditions and exploration targets of the Triassic subsalt ultra-deep sequences in the western Sichuan Depression, Sichuan Basin [J]. Oil & Gas Geology, 2023, 44(6): 1555-1567. |
[5] | Tao LEI, Guanglei REN, Xiaohui LI, Wenjie FENG, Huachao SUN. Sedimentary evolution pattern and architectural characteristics of mid-channel bars in sandy braided rivers: Understanding based on sedimentary numerical simulation [J]. Oil & Gas Geology, 2023, 44(6): 1595-1608. |
[6] | Honghui GUO, Jianwei FENG, Libin ZHAO. Characteristics of passive strike-slip structure and its control effect on fracture development in Bozi-Dabei area, Tarim Basin [J]. Oil & Gas Geology, 2023, 44(4): 962-975. |
[7] | Shengjun Wang, Yongliang Tang, Songbai Zhu, Wei Xie, Changan Shan, Yanbo Nie, Yong Wang, Yimin Wang, Guojun Jiang, Jianbo Shao, Congchen Ye. High-resolution sequence stratigraphy of the third member of Cretaceous Bashijiqike Formation in a typical outcrop section,northern Kuqa Depression, Tarim Basin [J]. Oil & Gas Geology, 2022, 43(4): 804-822. |
[8] | Xiaoning Liu, Zaixing Jiang, Xiaodong Yuan, Chen Chen, Cheng Wang. Influence of the Cretaceous fine-grained volcanic materials on shale oil/gas, Luanping Basin [J]. Oil & Gas Geology, 2022, 43(2): 390-406. |
[9] | Shiwei Yi, Mingpeng Li, Tuzhi Fan, Fan Yang, Hui Fang, Fuxi Huang, Wudi Jin. Exploration directions on the Kelasu and East-Qiulitag fault hanging walls, Kuqa Depression, Tarim Basin [J]. Oil & Gas Geology, 2021, 42(2): 309-324. |
[10] | Xianyu Mao, Benbiao Song, Rubing Han, Changbing Tian, Baozhu Li, Haiqiang Song. Depositional characteristics of tidal channel facies in carbonate ramp of the Cretaceous Mishrif Formation in southern Iraq [J]. Oil & Gas Geology, 2020, 41(6): 1233-1243, 1256. |
[11] | Yue Gong, Zhiqiang Feng, Changwu Wu, Naxin Tian, Tianbi Ma, Dapeng Wang, Chongzhi Tao, Weiyuan Gao. Sedimentary system of the Cretaceous terrigenous clastics and its controlling factors in Senegal Basin, northern West Africa [J]. Oil & Gas Geology, 2020, 41(6): 1244-1256. |
[12] | Daxiang He, Youjun Tang, Jinjie Hu, Shaowu Mo, Jianfa Chen. Geochemical characteristics of noble gases in natural gases from the Tarim Basin [J]. Oil & Gas Geology, 2020, 41(4): 755-762. |
[13] | Sun Shuai, Hou Guiting. Analysis of conceptual models for the influence of rock mechanics on tensile zone in faulted anticlines [J]. Oil & Gas Geology, 2020, 41(3): 455-462. |
[14] | Feng Jianwei, Sun Jianfang, Zhang Yajun, Dai Junsheng, Wei Hehua, Quan Lianshun, Ren Qiqiang, Zhao Libin. Control of fault-related folds on fracture development in Kuqa Depression,Tarim Basin [J]. Oil & Gas Geology, 2020, 41(3): 543-557. |
[15] | Peng Wang, Linghui Sun, He Wang, Zi'an Li. Microscopic pore structure of Ahe tight sand gas reservoirs of the Low Jurassic in Kuqa Depression and its controls on tight gas enrichment [J]. Oil & Gas Geology, 2020, 41(2): 295-304. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||